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THREE DIMENSIONAL GRAPHICS SYSTEMS 

[0001] This invention relates to 3-dimensional computer 
graphics systems and in particular to systems of the type 
described in our British patent numbers 2281682 and 
2298111. 

[0002] British patent number 2282682 describes a system 
that uses a ray casting method to determine the visible 
surfaces in a scene composed of a set of in?nite planar 
surfaces. An improvement to the system is described in UK 
Patent Application number 2298111, in Which the image 
plane is divided into a number of rectangular tiles. Objects 
are stored in a display list memory, With ‘object pointers’ 
used to associate particular objects With the tiles in Which 
they may be visible. The structure of this system is shoWn in 
FIG. 1. 

[0003] In FIG. 1, the Tile Accelerator 2 is the part of the 
system that processes the input data, performs the tiling 
calculations, and Writes object parameter and pointer data to 
the display list memory 4. The layout of data in the display 
list memory is as shoWn in FIG. 2. There are numerous 
possible variations on this, but essentially, there is one list of 
object pointers per tile, and a number of object parameter 
blocks, to Which the object pointers point. The layout of 
objects in the display list memory is shoWn in FIG. 2, The 
top part of the diagram shoWs the basic system, With 
parameters stored for tWo objects, A and B. Object A is 
visible in tiles 1, 2, 5, 6, and 7, and so ?ve object pointers 
are Written. Object B is visible only in tiles 3 and 7, so only 
tWo object pointers are Written. It can be seen that the use of 
object pointers means that the object parameter data can be 
shared betWeen tiles, and need not be replicated When the 
objects fall into more than one tile. It also means that the 
Image Synthesis Processor 6 of FIG. 1 (ISP) is able to read 
the parameters for only the objects that may be visible in that 
tile. It does this using the ISP Parameter Fetch unit 8. In the 
eXample of FIG. 2, the ISP Would read only the parameters 
for object B When processing tile 3, but Would read the 
parameters for both objects When processing tile 7. It Would 
not be necessary to read data for tile 4. The loWer part of 
FIG. 2 shoWs the memory layout that is used With the macro 
tiling Parameter management system, Which is described 
later. 

[0004] When the Tile Accelerator has built a complete 
display list, the Image Synthesis Processor (ISP) 6 begins to 
process the scene. The ISP Parameter Fetch unit 8 processes 
each tile in turn, and uses the object pointer list to read only 
the parameter data relevant to that tile from the display list 
memory 4. The ISP then performs hidden surface removal 
using a technique knoWn as ‘Z-buffering’ in Which the depth 
values of each object are calculated at every piXel in the tile, 
and are compared With the depths previously stored. Where 
the comparison shoWs an object to be closer to the eye than 
the previously stored value the identity and depth of the neW 
object are used to replace the stored values. When all the 
objects in the tile have been processed, the ISP 6 sends the 
visible surface information to the TeXturing and Shading 
Processor (TSP) 10 Where it is teXtured and shaded before 
being sent to a frame buffer for display. 

[0005] An enhancement to the system described above is 
described in UK Patent Application number 00278978. The 
system is knoWn as ‘Parameter Management’ and Works by 
dividing the scene into a number of ‘partial renders’ in order 
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to reduce the display list memory siZe required. This method 
uses a technique knoWn as ‘Z Load and Store’ to save the 
state of the ISP after rendering a part of the display list. This 
is done in such a Way that it is possible to reload the display 
list memory With neW data and continue rendering the scene 
at a later time. The enhancement therefore makes it possible 
to render arbitrarily complex scenes With reasonable ef? 
ciency While using only a limited amount of display list 
memory. 

[0006] As 3D graphics hardWare has become more poW 
erful the compleXity of the images being rendered has 
increased considerably, and can be eXpected to continue to 
do so. This is a concern for display list based rendering 
systems such as the one discussed above because a large 
amount of fast memory is required for the storage of the 
display list. Memory bandWidth is also a scarce resource. 
Depending upon the memory architecture in use, the limited 
bandWidth for Writing to and reading from the display list 
memory may limit the rate at Which data can be read or 
Written, or it may have an impact on the performance of 
other subsystems Which share the same bandWidth, e.g. 
teXturing. 

[0007] Embodiments of the present invention address 
these problems by examining the depth ranges of objects and 
tiles, and culling objects from the scene that can be shoWn 
not to contribute to the rendered result. 

[0008] Embodiments of the invention use the depth values 
stored in the ISP to compute a range of depth values for the 
Whole tile. By comparing the depths of objects With the 
range of stored depth values it is possible to cull objects that 
are guaranteed to be invisible Without needing to process 
them in the ISP. 

[0009] The Parameter Management system referred to 
above alloWs renders to be performed in a limited amount of 
memory, but it can have a signi?cant impact on performance 
compared to a system With a suf?cient amount of real 
memory. 

[0010] Embodiments of the invention mitigate the inef? 
ciencies of the Parameter Management system by culling 
objects before they are stored in the display list. Reducing 
the amount of data stored in the display list means that feWer 
partial renders are required to render the scene. As the 
number of partial renders is reduced, the signi?cant memory 
bandWidth consumed by the Z Load and Store function is 
also reduced. 

[0011] To perform this type of culling the Tile Accelerator 
compares incoming objects With information about the range 
of depths stored in the ISP during previous partial renders. 

[0012] FIG. 3, shoWs a graph illustrating the depths for a 
previous partial render and for a neW object to be rendered. 
The neW object lies Within a depth range of 0.7 to 0.8, and 
during the previous partial render all piXels in a tile Were set 
to values betWeen 0.4 and 0.6. There is no Way that the 
object can be visible since it is further aWay and therefore 
occluded by the objects draWn previously. Therefore the 
object need not be stored in the display list memory since it 
cannot contribute to the image. 

[0013] A second stage of culling, in the parameter fetch 
stage of the ISP, occurs in a further embodiment. This is at 
the point at Which object pointers are dereferenced, and 
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parameter data is read from the display list memory. This 
Works on a very similar principle to the ?rst stage culling 
shown in FIG. 3. By storing a little additional information 
in the object pointer, and by testing this against depth range 
information maintained in the ISP, it is possible to avoid 
reading the parameter data for some objects altogether. This 
type of culling reduces the input bandWidth to the ISP, and 
the number of objects that the ISP must process, but it does 
not reduce the amount of data Written into the display list 
memory. 

[0014] Unlike the ?rst stage of culling, the second stage 
Works With object pointers that correspond to the tile that is 
currently being processed by the ISP. The ISP’s depth range 
information can be updated more quickly, and more accu 
rately, than the range information used in the ?rst stage 
culling, and this alloWs objects to be culled that Were passed 
by the ?rst stage. 

[0015] The invention is de?ned in its various aspects in the 
appended claims to Which reference should noW be made. 

[0016] Speci?c embodiments of the invention Will noW be 
described in detail by Way of example With reference to the 
accompanying draWings in Which: 

[0017] FIG. 1 shoWs a knoWn system; 

[0018] FIG. 2 shoWs schematically the layout of the 
display list memory; 

[0019] FIG. 3 shoWs a graph illustrating the differences 
betWeen previously stored depths and the depth of an 
incoming object; 
[0020] FIG. 4 is a block diagram of an embodiment of the 
invention; 
[0021] FIGS. 5a) and b) shoWs graphically hoW stored 
depth range changes as objects are processed; 

[0022] FIG. 6 shoWs a block diagram of the comparator 
arrays required to derive the depth range in an embodiment 
of the invention; 

[0023] FIG. 7 shoWs schematically various depth compare 
modes of operation; 

[0024] 
[0025] FIG. 9 shoWs the effect of movement of the depth 
range during pipeline delay. 

[0026] FIG. 4 is an expanded and modi?ed version of the 
block diagram of FIG. 1. The ISP Z range generation unit 12 
computes the range of Z values stored in the ISP 6 and feeds 
it back to the ?rst stage of culling, located in the TA2, via the 
Z range memory 14. A second feedback path sends Z range 
data to the second stage of culling, located in the ISP 
parameter fetch unit 8. 

[0027] 
[0028] The embodiment described uses a range of depths 
that represent the minimum and maximum depths of the 
objects stored in the ISP 6. This range is computed in the ISP 
as objects are processed, and represents the actual range of 
depth values that are stored in the tile at that moment. This 
range has to be updated constantly, as stored values are 
continually being replaced and the range may groW and 
shrink as the scene is rendered. FIG. 5a) and b) shoW 
respectively before and after a situation in Which an incom 

FIG. 8 shoWs the effect of pipeline delay; and 
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ing object is rendered into the pixels Which previously 
determined the maximum Z value of the tile, thus causing 
both the minimum and maximum depth values to be 
reduced. 

[0029] The ISP 6 contains storage for each pixel in the tile, 
Which may vary in siZe depending on the particular imple 
mentation of the technology. A typical tile siZe might be 
32x16 pixels. The ISP also contains a number of PEs 
(Processor Elements) Which are hardWare units Which oper 
ate in parallel to perform the functions of the ISP by 
determining depth values at each pixel. Typically there are 
feWer PEs than there are pixels in the tile. For example, there 
may be 32 PEs arranged as a grid of 8x4 pixels. In this case 
32 (8x4) pixels can be computed simultaneously, and the 
PEs Will perform the computations up to 16 (4x4) times at 
?xed locations Within the tile in order to process an entire 
object. FIG. 6 shoWs a possible arrangement of PEs 16 
Within a tile, as Well as the comparator structures described 
beloW. 

[0030] To compute the range of depths the PEs compute 
the range of depths for the set of pixels on Which they are 
currently Working. This range, together With range informa 
tion from the other possible PE positions, is then used to 
update the overall depth range for the tile. A typical imple 
mentation Would use comparators in tree structures to ?nd 
the range of values stored in a set of pixels. For example, a 
set of 32 PEs Would require 16+2><(8+4+2+1)=46 compara 
tors to calculate both the maximum and minimum values. 
This tree structure can be seen at the bottom of FIG. 6. In 
this diagram, blocks marked “Min/Max”18 contain one 
comparator to determine the minimum and maximum of tWo 
input values from tWo PEs 16, and blocks marked “Min/Max 
2”20 contain a pair of comparators, in order to compute the 
minimum and maximum of tWo input ranges. The output of 
the comparator tree is a pair of values representing the 
minimum and maximum set of depth values in those 32 
pixels, Which is stored in memory associated With that 
particular set of pixels. 

[0031] Each Min/Max block 18 is coupled to the outputs 
of tWo of the PEs 16 and compares the minimum and 
maximum values output by these elements and stores these 
in its memory, passing a range to the Min/Max 2 unit 20. The 
Min/Max 2 unit 20 receives input from a second Min/Max 
unit 18 and passes the output to the next Min/Max 2 unit 20 
in the tree. All PE ranges ultimately feed into a single 
Min/Max 2 unit 20 at the bottom of the tree. This gives a PE 
Z range output 22 for the array of 32 PEs 16. 

[0032] Once the PEs have computed a polygon in all areas 
of the tile, ie at every pixel, it is necessary to combine the 
stored depth values into a single value for the Whole tile. 
Again, a tree of comparators may be used. In the case of the 
32x16 tile, there are 16 sets of ranges to be reduced to one, 
and so 2><(8+4+2+1)=30 comparators are required. This 
structure is shoWn at the top-right of FIG. 6, Where each 
“Min/Max 2” block 20 contains a pair of comparators. The 
output of the ?nal pair of comparators 26 gives the range of 
depth values for the Whole tile, updated With the depths of 
the triangle that has just been processed. The inputs to the 
tree are the block Min/Max range memories 24 Which store 
range information corresponding to each of the PE array 
positions. These memories are updated With the PE Z range 
data 22 after the PE array has been processed. 
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[0033] The comparators 18, 20, 26 of FIG. 6 and the other 
Z range generation circuiting are all contained Within the ISP 
Z range generation unit 12 in FIG. 4. Thus, this generates 
and stores the Z range for the Whole tile. 

[0034] It is also necessary to knoW Whether a valid depth 
value has been stored at every pixel in the ISP. Normally 
there is a polygon near the beginning of each frame that is 
used to initialiZe the values in the Z buffer, hoWever this 
cannot be relied on. Any uninitialised depth value Will 
obviously affect the validity of any range information, and 
so this condition must be detected and the range marked as 
being invalid. Depth based object culling must be avoided 
until the range information becomes valid. 

[0035] Precision 

[0036] The large number of comparators used in the ISP’s 
Z range generation hardWare 12 is expensive to build, as it 
Will use a considerable amount of silicon area. In order to 
reduce the siZe of the hardWare 12 the precision of the 
calculations can be reduced. For example, While the Z values 
coming into the ISP can be stored as ?oating point values 
With 24 bit mantissas, the Z range comparators can operate 
on shorter words, eg 8 or 16 bit mantissas. 

[0037] As values are truncated to the smaller Word length 
it is important that the values are rounded appropriately, 
since it is unlikely that the shorter Word Will be able to 
represent the value of the long Word precisely. When dealing 
With ranges, the minimum value must be rounded to the 
nearest value that is smaller than the original, and the 
maximum value must be rounded to the nearest value that is 
larger than the original. In this Way, the truncation errors 
alWays cause the Z range to expand. Expansion of the Z 
range reduces the efficiency slightly since feWer objects are 
found to lie entirely outside the range, but it maintains the 
correctness of the generated image. If the range is alloWed 
to contract it is found that objects close to the edge of the 
range are discarded When in fact they should be visible in the 
image. This is obviously not desirable. 

[0038] In order to maintain the required precision at the 
output of a comparator tree it is necessary to use progres 
sively higher levels of precision at higher levels in the tree. 

[0039] The use of full precision Z range values is also 
impractical in other parts of the system. For example, in the 
discussion of the ISP parameter fetch culling stage, it Will be 
seen that at least one value representing the Z range of the 
object is stored inside the object pointer. For reasons of 
space ef?ciency it may be desirable to store a reduced 
precision value here also. In this case there is little point in 
the ISP generating a range using more precision than is 
available in the object pointer values. On the other hand, the 
culling stage in the tile accelerator bene?ts from higher 
precision ranges from the ISP, since it does not have the 
same storage constraints. 

[0040] In practice the bene?ts of higher precision Z range 
calculations are small, and typically a reduced mantissa 
length of betWeen 8 and 16 bits Will be found to be optimal. 
The exact siZes used Will be determined by the requirements 
of the particular device being implemented. 

[0041] Z Range Testing 

[0042] The minimum and maximum Z values of a polygo 
nal object can be determined easily by examination of the 
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vertex coordinates. When valid range information is avail 
able from the ISP in the Z range generation unit 12 it is 
possible to conditionally cull the object based on compari 
son of the tWo ranges of values. 

[0043] Each object in the score has a “Depth Compare 
Mode” (DCM) Which takes one of eight values and is an 
instruction that tells the ISP’s depth comparison hardWare 
hoW to decide Whether the object passes the depth test at a 
pixel. The culling test must be modi?ed according to the 
DCM of the object. The eight possible values of DCM, and 
the appropriate culling test for each, are shoWn in Table 1. 

TABLE 1 

Depth Compare Modes 

DCM Condition Culling Test 

DCMiALWAYS The object always N/A 
passes the depth test, 
regardless of Z values. 

DCMiNEVER The object never N/A 
passes the depth test, 
regardless of Z values. 

DCMiEQUAL The object passes the Cull if (Obj :Max < 

DCMiNOTiEQUAL 

depth test if its Z value 
is equal to the Z value 
stored in the ISP. 
The object passes the 

ISPzMin) OR 
(Obj :Min > ISP:Max) 

N/A 
depth test if its Z value 
is not equal to the Z 
value stored in the 
ISP. 
The object passes the Cull if (Obj:Min >= 
depth test if its Z value ISP:Max) 
is less than the Z value 
stored in the ISP. 
The object passes the Cull if (Obj:Min > 
depth test if its Z value ISP:Max) 
is less than or equal to 
the Z value stored in 
the ISP. 
The object passes the Cull if (Obj:Max < 
depth test if its Z value ISP:Min) 
is greater than the Z 
value stored in the 
ISP. 
The object passes the Cull if (Obj:Max <= 
depth test if its Z value ISP:Min) 
is greater than or equal 
to the Z value stored in 
the ISP. 

DCMiLESS 

DCMiLESSiEQ 

DCMiGREATER 

DCMiGREATERiEQ 

[0044] Depth comparisons in the ISP are performed for 
every pixel in the object for each tile being processed, With 
depths being iterated across the surface of the polygon. 
Depth based culling performs a single test per object, and 
must therefore perform appropriate comparison betWeen 
suitable ranges of values. 

[0045] The depth compare mode must be taken into 
account When performing the depth based culling tests. The 
diagrams in FIG. 7 shoW three of the simple conditions that 
correspond to DCM modes DCM_EQUAL, DCM_LESS, 
and DCM_GREATER.. The shaded areas indicate the range 
of depths stored in the ISP, Which are made available by the 
Z range generation unit 12 to the culling stages, and the 
triangles indicate candidates for culling. Triangles marked 
‘OK’ Would be passed While triangles marked ‘X’ Would be 
culled. 

[0046] In the DCM_EQUAL example, objects Will only be 
stored in the ISP if they have a depth value equal to one of 
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the currently stored depth values. This means that any object 
With a depth range that intersects the stored range (objects 
marked ‘OK’) may pass the depth test and so must not be 
culled. The objects that do not intersect the stored range 
(objects marked ‘X’) cannot possibly pass the depth test, and 
can therefore be safely culled. 

[0047] In the DCM_LESS example, objects Will be stored 
in the ISP if they have depth values that are less than the 
corresponding stored value. Objects With depths that are 
entirely less than the stored range are very likely to be 
visible, and are therefore not culled. Objects With depth 
ranges that intersect Wholly or partly With the stored range 
may also be visible, and are not culled. Only objects Whose 
range is entirely greater than the stored depth range are 
guaranteed to be completely occluded, and may therefore be 
culled. These objects are marked With ‘X’. 

[0048] The DCM_GREATER eXample is the opposite of 
the DCM_LESS eXample. Objects With depth ranges 
entirely less than the stored range can be culled, While those 
With depths that intersect or have depth values greater than 
the stored range cannot be culled. 

[0049] The DCM modes DCM_LESS_EQ and DCM 
GREATER_EQ are very similar to DCM_LESS and 
DCM_GREATER respectively, but differ in Whether an 
equality condition is considered to be an intersection of the 
ranges or not. 

[0050] For the remaining modes, DCM_ALWAYS, DCM 
_NEVER, and DCM_NOT_EQUAL, it is not possible to use 
depth based culling. It is clear that there is no comparison of 
depth values that can be used to indicate Whether the object 
can be culled in these cases. 

[0051] Notice that four of the DCM modes, (the LESS and 
GREATER modes) require only one value from each of the 
ranges, While the test for DCM_EQUAL requires both 
values from each range. 

[0052] The DCM_NEVER mode appears to be of some 
What limited usefulness as it Will never pass the depth test, 
and Will never be visible in the scene. We have to assume 
that such objects have been added to the scene for a good 
reason, and therefore should not be culled. One possible 
reason Would be if the object has a side-effect, such as 
performing stencil operations. In fact, it is essential that any 
object that may have side-effects should not be culled. 

[0053] Handling Changes in Depth Compare Mode 

[0054] The design of 3D rendering hardWare relies heavily 
on pipelining, Which is a technique in Which the processing 
that is required is divided up into a large number of simpler 
stages. Pipelining increases the throughput of the system by 
keeping all parts of the hardWare busy, and alloWs results to 
be issued at the rate achieved by the sloWest stage, regard 
less of the length of the pipeline itself. 

[0055] Pipelining is a useful technique, and it is essential 
in the design of high performance rendering systems. HoW 
ever, it presents some problems to the Z based culling 
system, Where the culling ideally happens at an early stage 
in the pipeline, but the ISP depth range generation happens 
much later. The effect is that of a delay, betWeen determining 
that an object can be culled, and the time When that object 
Would actually have been rendered in the ISP. Any change 
in the state of the ISP betWeen the culling test and the actual 
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rendering time could cause the culled object to become 
visible again, and thus cause an error in the rendered image. 
The things that can, and Will, cause changes in the state of 
the ISP are the other non-culled objects already in the 
pipeline. 
[0056] For an eXample of a situation in Which the delay 
caused by the pipeline causes a problem, consider a large 
number of objects With a DCM of DCM_LESS. This is a 
typical mode for draWing scenes, Where objects closer to the 
vieWpoint obscure the vieW of those further aWay NoW 
consider a single object in the middle of the scene, With a 
DCM of DCM_ALWAYS. This situation in shoWn in FIG. 
8, Where all objects eXcept ‘B’ are DCM_LESS, and the 
object marked ‘B’ is DCM_ALWAYS. Object ‘C’ is cur 
rently being processed in the ISP, object ‘A’ is being culled, 
and there are eight objects (including ‘B’) at intermediate 
stages in the pipeline. 

[0057] As object ‘C’ is processed, the range of values in 
the ISP is betWeen 0.5 and 0.6. This is the range that is fed 
back to the culling unit and used for the culling of object ‘A’. 
Object A has a Z value of 0.8, Which When compared With 
the ISP’s Z range, means that it Will be culled. NoW suppose 
that object ‘B’ covers the entire tile, and has a Z value of 0.9. 
The DCM_ALWAYS mode means that it Will replace all the 
stored depths in the ISP With 0.9, and so object ‘A’, if it had 
not been culled, Would actually be closer to the vieWpoint 
than the stored object ‘B’, and should therefore be rendered 
as a visible object. It can be seen that the use of depth based 
culling produces incorrect results When the Z range feedback 
is delayed, either by a pipeline, or for any other reason. 

[0058] This problem occurs due to the pipeline length 
betWeen the ISP parameter fetch and ISP depth range 
generation hardWare units, and also due to the delay betWeen 
processing an object in the Tile Accelerator, and that object 
being rendered in the ISP. In the latter case the delay is 
considerably larger, and the problem is exacerbated if the Z 
range information from the ISP is updated only at the end of 
each partial render. Solutions to these problems are 
described beloW. 

[0059] In the majority of cases, objects are grouped such 
that objects With a constant depth compare mode occur in 
long runs. In a typical application, a single depth compare 
mode, such as DCM_LESS or DCM_GREATER Will 
account for the majority of the objects in the scene, since it 
is these modes that alloW hidden surface removal to occur. 
Where other modes are used, these tend to be for special 
effects purposes, and the objects are feW in numbers and are 
often grouped together at the end of the display list. It is 
fortunate that delayed Z range feedback is not a problem in 
the case Where the DCM does not change. 

[0060] As an eXample of correct behaviour, consider the 
case of a number of DCM_LESS objects, shoWn in FIG. 9. 
The objects Will replace the objects stored in the ISP only if 
their Z value is less than the currently stored value. This 
means that the numbers in the ISP can only ever become 
smaller, and because objects are replaced it is possible that 
both the minimum and maXimum stored depth values Will be 
reduced.. The appropriate culling test for a DCM_LESS 
object is to discard the object if the minimum Z value of the 
object is greater than the maXimum eXtent of the ISP’s Z 
range. Since the delay can only cause the ISP’s maXimum 
value to be larger than it Would otherWise be, the culling is 






