
US 20030025695A1

(12) Patent Application Publication (10) Pub. N0.: US 2003/0025695 A1
(19) United States

Morphet (43) Pub. Date: Feb. 6, 2003

(54) THREE DIMENSIONAL GRAPHICS (52) US. Cl. 345/423
SYSTEMS

(76) Inventor: Stephen Morphet, Hertfordshire (GB) (57) ABSTRACT

Correspondence Address:
FLYNN TI'IIEL BOUTELL & TANIS, P-C- An apparatus and a method for generating 3-dimensional
2026 RAMBLING ROAD computer graphic images. The image is ?rst sub-divided into
KALAMAZOO, MI 49008-1699 (Us) a plurality of rectangular areas Adisplay list memory (4)

is loaded With object data for each rectangular area. The
(21) Appl' NO‘: 10/202’220 image and shading data for each picture element of each

- _ rectangular area are derived from the object data in the
(22) Flled' Jul‘ 24’ 2002 image synthesis processor (6) and a teXturing and shading
(30) Foreign Application Priority Data processor (10). Adepth range generator (12) derives a depth

range for each rectangular area from the ob]ect data as the
Jul. 24, 2001 (GB) GB 0118025.6 imaging and shading data is derived This is Compared With

the depth of each neW object to be provided to the image
Publication Classi?cation synthesis processor (6) and the object may be prevented

from being provided to the image synthesis processor (6)
(51) Int. Cl.7 G06T 15/00 independence on the result of the comparison.

Z Range Memory

lSP
Parameter

Fetch Display List Memory

Tile Accelerator
(TA)

Input Data

Image Synthesis
Processor

lSP Z
Range

Generation

ILL

Texture Data

Texturing and
Shading Processor

(TSP)

Patent Application Publication Feb. 6, 2003 Sheet 1 0f 7 US 2003/0025695 A1

[SP

Display List Memory \ Palrfcrtncehter

A ivq ' 2 Texture Data

v i
Tile Accakrator Image Synthesis Textun'nig and

Input Dnt?_.__> (TA) Prgzseéior ‘ Shadmgégcessor Image

J’ ‘G *Lo

Figure l

Patent Application Publication

Region
Headers

Object/X 1 ObjectB

5 6 7 8

Feb. 6, 2003 Sheet 2 0f 7

Parameters A

Parameters B

Display List Layout —- Original PowerVR

Region
Headers

Object A

lmage

Object B

Macro Tile 1 Macro Tile 2

Figure

Parameters B1

Parameters A1 J

US 2003/0025695 A1

Allocation Block for
Macro Tile 1

J

w
Allocation Block for
Macro Tile 2

Patent Application Publication Feb. 6, 2003 Sheet 3 0f 7

0.8 _

Object added to scene.

Depths of objects already
rendered by ISP.

0.2 _

Z

L 0.0 g
Y

Viewpoint 9’

Figure 3

/ \LF
Z Range Memory

ISP 15? Z ,_ LL
Parameter 4 Rang=

Display List Memory Fetch Generation

Image Synthesis Tile Accelerator

(TA) Processor

Input Data ,

Figure 4

US 2003/0025695 A1

Texture Data

Texturing and
Shading Processor

(TSP)

Image

Patent Application Publication Feb. 6, 2003 Sheet 4 0f 7 US 2003/0025695 A1

1.0 Before After

0.3 _ _
Objects already
slored in 15!‘

Z rang: before
._ addition nfncw 2

object. —

Z :?cx
_ iddiliun of

nzw oiaject. _

New Objecx

0.2 _ _

Z

L 0-O- __
Y X

Viewpoint Q’

Figure 5

Patent Application Publication Feb. 6, 2003 Sheet 5 0f 7 US 2003/0025695 A1

wmcmm N mg

O A J z...

1.:

617E 07E
3 ,E ., \

.NTE E E 5

ON (a

, E

/

EEEEEEEEE
_

2mm @951 III

mmcmm N 2F

2: 20:3 ._2 conmigmu mmcE N

Figure 6

Patent Application Publication Feb. 6, 2003 Sheet 6 0f 7 US 2003/0025695 A1

DCM_EQUAL DCMQLESS DCM_GR_EATER

A - A A

Viewpoint ‘9' ‘g V

Figure 7

Patent Application Publication Feb. 6, 2003 Sheet 7 0f 7 US 2003/0025695 A1

Z range
Min = 015, Max = 0.6

feedbac k

1'

IF , .

Cull Test \ Pipeline
Z = 073 Z = 0.9

DCM__LESS DCNLALWAYS

Figure 8

M.- This object is discarded.

This object could be culled,
but the delay in Z range
feedback means that it is noL

I

IS? Z range, showing movement
ofmin/max during delay time‘

Viewpoint ‘9’

Figure 9

US 2003/0025695 A1

THREE DIMENSIONAL GRAPHICS SYSTEMS

[0001] This invention relates to 3-dimensional computer
graphics systems and in particular to systems of the type
described in our British patent numbers 2281682 and
2298111.

[0002] British patent number 2282682 describes a system
that uses a ray casting method to determine the visible
surfaces in a scene composed of a set of in?nite planar
surfaces. An improvement to the system is described in UK
Patent Application number 2298111, in Which the image
plane is divided into a number of rectangular tiles. Objects
are stored in a display list memory, With ‘object pointers’
used to associate particular objects With the tiles in Which
they may be visible. The structure of this system is shoWn in
FIG. 1.

[0003] In FIG. 1, the Tile Accelerator 2 is the part of the
system that processes the input data, performs the tiling
calculations, and Writes object parameter and pointer data to
the display list memory 4. The layout of data in the display
list memory is as shoWn in FIG. 2. There are numerous
possible variations on this, but essentially, there is one list of
object pointers per tile, and a number of object parameter
blocks, to Which the object pointers point. The layout of
objects in the display list memory is shoWn in FIG. 2, The
top part of the diagram shoWs the basic system, With
parameters stored for tWo objects, A and B. Object A is
visible in tiles 1, 2, 5, 6, and 7, and so ?ve object pointers
are Written. Object B is visible only in tiles 3 and 7, so only
tWo object pointers are Written. It can be seen that the use of
object pointers means that the object parameter data can be
shared betWeen tiles, and need not be replicated When the
objects fall into more than one tile. It also means that the
Image Synthesis Processor 6 of FIG. 1 (ISP) is able to read
the parameters for only the objects that may be visible in that
tile. It does this using the ISP Parameter Fetch unit 8. In the
eXample of FIG. 2, the ISP Would read only the parameters
for object B When processing tile 3, but Would read the
parameters for both objects When processing tile 7. It Would
not be necessary to read data for tile 4. The loWer part of
FIG. 2 shoWs the memory layout that is used With the macro
tiling Parameter management system, Which is described
later.

[0004] When the Tile Accelerator has built a complete
display list, the Image Synthesis Processor (ISP) 6 begins to
process the scene. The ISP Parameter Fetch unit 8 processes
each tile in turn, and uses the object pointer list to read only
the parameter data relevant to that tile from the display list
memory 4. The ISP then performs hidden surface removal
using a technique knoWn as ‘Z-buffering’ in Which the depth
values of each object are calculated at every piXel in the tile,
and are compared With the depths previously stored. Where
the comparison shoWs an object to be closer to the eye than
the previously stored value the identity and depth of the neW
object are used to replace the stored values. When all the
objects in the tile have been processed, the ISP 6 sends the
visible surface information to the TeXturing and Shading
Processor (TSP) 10 Where it is teXtured and shaded before
being sent to a frame buffer for display.

[0005] An enhancement to the system described above is
described in UK Patent Application number 00278978. The
system is knoWn as ‘Parameter Management’ and Works by
dividing the scene into a number of ‘partial renders’ in order

Feb. 6, 2003

to reduce the display list memory siZe required. This method
uses a technique knoWn as ‘Z Load and Store’ to save the
state of the ISP after rendering a part of the display list. This
is done in such a Way that it is possible to reload the display
list memory With neW data and continue rendering the scene
at a later time. The enhancement therefore makes it possible
to render arbitrarily complex scenes With reasonable ef?
ciency While using only a limited amount of display list
memory.

[0006] As 3D graphics hardWare has become more poW
erful the compleXity of the images being rendered has
increased considerably, and can be eXpected to continue to
do so. This is a concern for display list based rendering
systems such as the one discussed above because a large
amount of fast memory is required for the storage of the
display list. Memory bandWidth is also a scarce resource.
Depending upon the memory architecture in use, the limited
bandWidth for Writing to and reading from the display list
memory may limit the rate at Which data can be read or
Written, or it may have an impact on the performance of
other subsystems Which share the same bandWidth, e.g.
teXturing.

[0007] Embodiments of the present invention address
these problems by examining the depth ranges of objects and
tiles, and culling objects from the scene that can be shoWn
not to contribute to the rendered result.

[0008] Embodiments of the invention use the depth values
stored in the ISP to compute a range of depth values for the
Whole tile. By comparing the depths of objects With the
range of stored depth values it is possible to cull objects that
are guaranteed to be invisible Without needing to process
them in the ISP.

[0009] The Parameter Management system referred to
above alloWs renders to be performed in a limited amount of
memory, but it can have a signi?cant impact on performance
compared to a system With a suf?cient amount of real
memory.

[0010] Embodiments of the invention mitigate the inef?
ciencies of the Parameter Management system by culling
objects before they are stored in the display list. Reducing
the amount of data stored in the display list means that feWer
partial renders are required to render the scene. As the
number of partial renders is reduced, the signi?cant memory
bandWidth consumed by the Z Load and Store function is
also reduced.

[0011] To perform this type of culling the Tile Accelerator
compares incoming objects With information about the range
of depths stored in the ISP during previous partial renders.

[0012] FIG. 3, shoWs a graph illustrating the depths for a
previous partial render and for a neW object to be rendered.
The neW object lies Within a depth range of 0.7 to 0.8, and
during the previous partial render all piXels in a tile Were set
to values betWeen 0.4 and 0.6. There is no Way that the
object can be visible since it is further aWay and therefore
occluded by the objects draWn previously. Therefore the
object need not be stored in the display list memory since it
cannot contribute to the image.

[0013] A second stage of culling, in the parameter fetch
stage of the ISP, occurs in a further embodiment. This is at
the point at Which object pointers are dereferenced, and

US 2003/0025695 A1

parameter data is read from the display list memory. This
Works on a very similar principle to the ?rst stage culling
shown in FIG. 3. By storing a little additional information
in the object pointer, and by testing this against depth range
information maintained in the ISP, it is possible to avoid
reading the parameter data for some objects altogether. This
type of culling reduces the input bandWidth to the ISP, and
the number of objects that the ISP must process, but it does
not reduce the amount of data Written into the display list
memory.

[0014] Unlike the ?rst stage of culling, the second stage
Works With object pointers that correspond to the tile that is
currently being processed by the ISP. The ISP’s depth range
information can be updated more quickly, and more accu
rately, than the range information used in the ?rst stage
culling, and this alloWs objects to be culled that Were passed
by the ?rst stage.

[0015] The invention is de?ned in its various aspects in the
appended claims to Which reference should noW be made.

[0016] Speci?c embodiments of the invention Will noW be
described in detail by Way of example With reference to the
accompanying draWings in Which:

[0017] FIG. 1 shoWs a knoWn system;

[0018] FIG. 2 shoWs schematically the layout of the
display list memory;

[0019] FIG. 3 shoWs a graph illustrating the differences
betWeen previously stored depths and the depth of an
incoming object;
[0020] FIG. 4 is a block diagram of an embodiment of the
invention;
[0021] FIGS. 5a) and b) shoWs graphically hoW stored
depth range changes as objects are processed;

[0022] FIG. 6 shoWs a block diagram of the comparator
arrays required to derive the depth range in an embodiment
of the invention;

[0023] FIG. 7 shoWs schematically various depth compare
modes of operation;

[0024]
[0025] FIG. 9 shoWs the effect of movement of the depth
range during pipeline delay.

[0026] FIG. 4 is an expanded and modi?ed version of the
block diagram of FIG. 1. The ISP Z range generation unit 12
computes the range of Z values stored in the ISP 6 and feeds
it back to the ?rst stage of culling, located in the TA2, via the
Z range memory 14. A second feedback path sends Z range
data to the second stage of culling, located in the ISP
parameter fetch unit 8.

[0027]
[0028] The embodiment described uses a range of depths
that represent the minimum and maximum depths of the
objects stored in the ISP 6. This range is computed in the ISP
as objects are processed, and represents the actual range of
depth values that are stored in the tile at that moment. This
range has to be updated constantly, as stored values are
continually being replaced and the range may groW and
shrink as the scene is rendered. FIG. 5a) and b) shoW
respectively before and after a situation in Which an incom

FIG. 8 shoWs the effect of pipeline delay; and

ISP Range Generation

Feb. 6, 2003

ing object is rendered into the pixels Which previously
determined the maximum Z value of the tile, thus causing
both the minimum and maximum depth values to be
reduced.

[0029] The ISP 6 contains storage for each pixel in the tile,
Which may vary in siZe depending on the particular imple
mentation of the technology. A typical tile siZe might be
32x16 pixels. The ISP also contains a number of PEs
(Processor Elements) Which are hardWare units Which oper
ate in parallel to perform the functions of the ISP by
determining depth values at each pixel. Typically there are
feWer PEs than there are pixels in the tile. For example, there
may be 32 PEs arranged as a grid of 8x4 pixels. In this case
32 (8x4) pixels can be computed simultaneously, and the
PEs Will perform the computations up to 16 (4x4) times at
?xed locations Within the tile in order to process an entire
object. FIG. 6 shoWs a possible arrangement of PEs 16
Within a tile, as Well as the comparator structures described
beloW.

[0030] To compute the range of depths the PEs compute
the range of depths for the set of pixels on Which they are
currently Working. This range, together With range informa
tion from the other possible PE positions, is then used to
update the overall depth range for the tile. A typical imple
mentation Would use comparators in tree structures to ?nd
the range of values stored in a set of pixels. For example, a
set of 32 PEs Would require 16+2><(8+4+2+1)=46 compara
tors to calculate both the maximum and minimum values.
This tree structure can be seen at the bottom of FIG. 6. In
this diagram, blocks marked “Min/Max”18 contain one
comparator to determine the minimum and maximum of tWo
input values from tWo PEs 16, and blocks marked “Min/Max
2”20 contain a pair of comparators, in order to compute the
minimum and maximum of tWo input ranges. The output of
the comparator tree is a pair of values representing the
minimum and maximum set of depth values in those 32
pixels, Which is stored in memory associated With that
particular set of pixels.

[0031] Each Min/Max block 18 is coupled to the outputs
of tWo of the PEs 16 and compares the minimum and
maximum values output by these elements and stores these
in its memory, passing a range to the Min/Max 2 unit 20. The
Min/Max 2 unit 20 receives input from a second Min/Max
unit 18 and passes the output to the next Min/Max 2 unit 20
in the tree. All PE ranges ultimately feed into a single
Min/Max 2 unit 20 at the bottom of the tree. This gives a PE
Z range output 22 for the array of 32 PEs 16.

[0032] Once the PEs have computed a polygon in all areas
of the tile, ie at every pixel, it is necessary to combine the
stored depth values into a single value for the Whole tile.
Again, a tree of comparators may be used. In the case of the
32x16 tile, there are 16 sets of ranges to be reduced to one,
and so 2><(8+4+2+1)=30 comparators are required. This
structure is shoWn at the top-right of FIG. 6, Where each
“Min/Max 2” block 20 contains a pair of comparators. The
output of the ?nal pair of comparators 26 gives the range of
depth values for the Whole tile, updated With the depths of
the triangle that has just been processed. The inputs to the
tree are the block Min/Max range memories 24 Which store
range information corresponding to each of the PE array
positions. These memories are updated With the PE Z range
data 22 after the PE array has been processed.

US 2003/0025695 A1

[0033] The comparators 18, 20, 26 of FIG. 6 and the other
Z range generation circuiting are all contained Within the ISP
Z range generation unit 12 in FIG. 4. Thus, this generates
and stores the Z range for the Whole tile.

[0034] It is also necessary to knoW Whether a valid depth
value has been stored at every pixel in the ISP. Normally
there is a polygon near the beginning of each frame that is
used to initialiZe the values in the Z buffer, hoWever this
cannot be relied on. Any uninitialised depth value Will
obviously affect the validity of any range information, and
so this condition must be detected and the range marked as
being invalid. Depth based object culling must be avoided
until the range information becomes valid.

[0035] Precision

[0036] The large number of comparators used in the ISP’s
Z range generation hardWare 12 is expensive to build, as it
Will use a considerable amount of silicon area. In order to
reduce the siZe of the hardWare 12 the precision of the
calculations can be reduced. For example, While the Z values
coming into the ISP can be stored as ?oating point values
With 24 bit mantissas, the Z range comparators can operate
on shorter words, eg 8 or 16 bit mantissas.

[0037] As values are truncated to the smaller Word length
it is important that the values are rounded appropriately,
since it is unlikely that the shorter Word Will be able to
represent the value of the long Word precisely. When dealing
With ranges, the minimum value must be rounded to the
nearest value that is smaller than the original, and the
maximum value must be rounded to the nearest value that is
larger than the original. In this Way, the truncation errors
alWays cause the Z range to expand. Expansion of the Z
range reduces the efficiency slightly since feWer objects are
found to lie entirely outside the range, but it maintains the
correctness of the generated image. If the range is alloWed
to contract it is found that objects close to the edge of the
range are discarded When in fact they should be visible in the
image. This is obviously not desirable.

[0038] In order to maintain the required precision at the
output of a comparator tree it is necessary to use progres
sively higher levels of precision at higher levels in the tree.

[0039] The use of full precision Z range values is also
impractical in other parts of the system. For example, in the
discussion of the ISP parameter fetch culling stage, it Will be
seen that at least one value representing the Z range of the
object is stored inside the object pointer. For reasons of
space ef?ciency it may be desirable to store a reduced
precision value here also. In this case there is little point in
the ISP generating a range using more precision than is
available in the object pointer values. On the other hand, the
culling stage in the tile accelerator bene?ts from higher
precision ranges from the ISP, since it does not have the
same storage constraints.

[0040] In practice the bene?ts of higher precision Z range
calculations are small, and typically a reduced mantissa
length of betWeen 8 and 16 bits Will be found to be optimal.
The exact siZes used Will be determined by the requirements
of the particular device being implemented.

[0041] Z Range Testing

[0042] The minimum and maximum Z values of a polygo
nal object can be determined easily by examination of the

Feb. 6, 2003

vertex coordinates. When valid range information is avail
able from the ISP in the Z range generation unit 12 it is
possible to conditionally cull the object based on compari
son of the tWo ranges of values.

[0043] Each object in the score has a “Depth Compare
Mode” (DCM) Which takes one of eight values and is an
instruction that tells the ISP’s depth comparison hardWare
hoW to decide Whether the object passes the depth test at a
pixel. The culling test must be modi?ed according to the
DCM of the object. The eight possible values of DCM, and
the appropriate culling test for each, are shoWn in Table 1.

TABLE 1

Depth Compare Modes

DCM Condition Culling Test

DCMiALWAYS The object always N/A
passes the depth test,
regardless of Z values.

DCMiNEVER The object never N/A
passes the depth test,
regardless of Z values.

DCMiEQUAL The object passes the Cull if (Obj :Max <

DCMiNOTiEQUAL

depth test if its Z value
is equal to the Z value
stored in the ISP.
The object passes the

ISPzMin) OR
(Obj :Min > ISP:Max)

N/A
depth test if its Z value
is not equal to the Z
value stored in the
ISP.
The object passes the Cull if (Obj:Min >=
depth test if its Z value ISP:Max)
is less than the Z value
stored in the ISP.
The object passes the Cull if (Obj:Min >
depth test if its Z value ISP:Max)
is less than or equal to
the Z value stored in
the ISP.
The object passes the Cull if (Obj:Max <
depth test if its Z value ISP:Min)
is greater than the Z
value stored in the
ISP.
The object passes the Cull if (Obj:Max <=
depth test if its Z value ISP:Min)
is greater than or equal
to the Z value stored in
the ISP.

DCMiLESS

DCMiLESSiEQ

DCMiGREATER

DCMiGREATERiEQ

[0044] Depth comparisons in the ISP are performed for
every pixel in the object for each tile being processed, With
depths being iterated across the surface of the polygon.
Depth based culling performs a single test per object, and
must therefore perform appropriate comparison betWeen
suitable ranges of values.

[0045] The depth compare mode must be taken into
account When performing the depth based culling tests. The
diagrams in FIG. 7 shoW three of the simple conditions that
correspond to DCM modes DCM_EQUAL, DCM_LESS,
and DCM_GREATER.. The shaded areas indicate the range
of depths stored in the ISP, Which are made available by the
Z range generation unit 12 to the culling stages, and the
triangles indicate candidates for culling. Triangles marked
‘OK’ Would be passed While triangles marked ‘X’ Would be
culled.

[0046] In the DCM_EQUAL example, objects Will only be
stored in the ISP if they have a depth value equal to one of

US 2003/0025695 Al

the currently stored depth values. This means that any object
With a depth range that intersects the stored range (objects
marked ‘OK’) may pass the depth test and so must not be
culled. The objects that do not intersect the stored range
(objects marked ‘X’) cannot possibly pass the depth test, and
can therefore be safely culled.

[0047] In the DCM_LESS example, objects Will be stored
in the ISP if they have depth values that are less than the
corresponding stored value. Objects With depths that are
entirely less than the stored range are very likely to be
visible, and are therefore not culled. Objects With depth
ranges that intersect Wholly or partly With the stored range
may also be visible, and are not culled. Only objects Whose
range is entirely greater than the stored depth range are
guaranteed to be completely occluded, and may therefore be
culled. These objects are marked With ‘X’.

[0048] The DCM_GREATER eXample is the opposite of
the DCM_LESS eXample. Objects With depth ranges
entirely less than the stored range can be culled, While those
With depths that intersect or have depth values greater than
the stored range cannot be culled.

[0049] The DCM modes DCM_LESS_EQ and DCM
GREATER_EQ are very similar to DCM_LESS and
DCM_GREATER respectively, but differ in Whether an
equality condition is considered to be an intersection of the
ranges or not.

[0050] For the remaining modes, DCM_ALWAYS, DCM
_NEVER, and DCM_NOT_EQUAL, it is not possible to use
depth based culling. It is clear that there is no comparison of
depth values that can be used to indicate Whether the object
can be culled in these cases.

[0051] Notice that four of the DCM modes, (the LESS and
GREATER modes) require only one value from each of the
ranges, While the test for DCM_EQUAL requires both
values from each range.

[0052] The DCM_NEVER mode appears to be of some
What limited usefulness as it Will never pass the depth test,
and Will never be visible in the scene. We have to assume
that such objects have been added to the scene for a good
reason, and therefore should not be culled. One possible
reason Would be if the object has a side-effect, such as
performing stencil operations. In fact, it is essential that any
object that may have side-effects should not be culled.

[0053] Handling Changes in Depth Compare Mode

[0054] The design of 3D rendering hardWare relies heavily
on pipelining, Which is a technique in Which the processing
that is required is divided up into a large number of simpler
stages. Pipelining increases the throughput of the system by
keeping all parts of the hardWare busy, and alloWs results to
be issued at the rate achieved by the sloWest stage, regard
less of the length of the pipeline itself.

[0055] Pipelining is a useful technique, and it is essential
in the design of high performance rendering systems. HoW
ever, it presents some problems to the Z based culling
system, Where the culling ideally happens at an early stage
in the pipeline, but the ISP depth range generation happens
much later. The effect is that of a delay, betWeen determining
that an object can be culled, and the time When that object
Would actually have been rendered in the ISP. Any change
in the state of the ISP betWeen the culling test and the actual

Feb. 6, 2003

rendering time could cause the culled object to become
visible again, and thus cause an error in the rendered image.
The things that can, and Will, cause changes in the state of
the ISP are the other non-culled objects already in the
pipeline.
[0056] For an eXample of a situation in Which the delay
caused by the pipeline causes a problem, consider a large
number of objects With a DCM of DCM_LESS. This is a
typical mode for draWing scenes, Where objects closer to the
vieWpoint obscure the vieW of those further aWay NoW
consider a single object in the middle of the scene, With a
DCM of DCM_ALWAYS. This situation in shoWn in FIG.
8, Where all objects eXcept ‘B’ are DCM_LESS, and the
object marked ‘B’ is DCM_ALWAYS. Object ‘C’ is cur
rently being processed in the ISP, object ‘A’ is being culled,
and there are eight objects (including ‘B’) at intermediate
stages in the pipeline.

[0057] As object ‘C’ is processed, the range of values in
the ISP is betWeen 0.5 and 0.6. This is the range that is fed
back to the culling unit and used for the culling of object ‘A’.
Object A has a Z value of 0.8, Which When compared With
the ISP’s Z range, means that it Will be culled. NoW suppose
that object ‘B’ covers the entire tile, and has a Z value of 0.9.
The DCM_ALWAYS mode means that it Will replace all the
stored depths in the ISP With 0.9, and so object ‘A’, if it had
not been culled, Would actually be closer to the vieWpoint
than the stored object ‘B’, and should therefore be rendered
as a visible object. It can be seen that the use of depth based
culling produces incorrect results When the Z range feedback
is delayed, either by a pipeline, or for any other reason.

[0058] This problem occurs due to the pipeline length
betWeen the ISP parameter fetch and ISP depth range
generation hardWare units, and also due to the delay betWeen
processing an object in the Tile Accelerator, and that object
being rendered in the ISP. In the latter case the delay is
considerably larger, and the problem is exacerbated if the Z
range information from the ISP is updated only at the end of
each partial render. Solutions to these problems are
described beloW.

[0059] In the majority of cases, objects are grouped such
that objects With a constant depth compare mode occur in
long runs. In a typical application, a single depth compare
mode, such as DCM_LESS or DCM_GREATER Will
account for the majority of the objects in the scene, since it
is these modes that alloW hidden surface removal to occur.
Where other modes are used, these tend to be for special
effects purposes, and the objects are feW in numbers and are
often grouped together at the end of the display list. It is
fortunate that delayed Z range feedback is not a problem in
the case Where the DCM does not change.

[0060] As an eXample of correct behaviour, consider the
case of a number of DCM_LESS objects, shoWn in FIG. 9.
The objects Will replace the objects stored in the ISP only if
their Z value is less than the currently stored value. This
means that the numbers in the ISP can only ever become
smaller, and because objects are replaced it is possible that
both the minimum and maXimum stored depth values Will be
reduced.. The appropriate culling test for a DCM_LESS
object is to discard the object if the minimum Z value of the
object is greater than the maXimum eXtent of the ISP’s Z
range. Since the delay can only cause the ISP’s maXimum
value to be larger than it Would otherWise be, the culling is

