Difference between revisions of "Sega Saturn/Hardware comparison"

From Sega Retro

Line 198: Line 198:
 
! Fillrate <br> (tiled textures)
 
! Fillrate <br> (tiled textures)
 
| 500 MTexels/s (VDP2) <br> (2048×2048 to 4096×4096){{fileref|ST-058-R2-060194.pdf|page=132}}
 
| 500 MTexels/s (VDP2) <br> (2048×2048 to 4096×4096){{fileref|ST-058-R2-060194.pdf|page=132}}
| 33 MTexels/s <br> (256×256)
+
| 33 MTexels/s <br> (256×256){{ref|Net Yaroze Official Startup Guide.pdf|page=18}}
 
| 62 MTexels/s{{ref|[http://level42.ca/projects/ultra64/Documentation/man/pro-man/pro12/index.html RDP Programming], ''[[wikipedia:Nintendo 64 programming characteristics|Nintendo 64 Programming Manual]]'', [[Nintendo]]}} <br> (128×128 to 1024×256){{ref|[http://level42.ca/projects/ultra64/Documentation/man/pro-man/pro13/index13.11.html Texture Mapping: Restrictions], ''Nintendo 64 Programming Manual'', [[Nintendo]]}}
 
| 62 MTexels/s{{ref|[http://level42.ca/projects/ultra64/Documentation/man/pro-man/pro12/index.html RDP Programming], ''[[wikipedia:Nintendo 64 programming characteristics|Nintendo 64 Programming Manual]]'', [[Nintendo]]}} <br> (128×128 to 1024×256){{ref|[http://level42.ca/projects/ultra64/Documentation/man/pro-man/pro13/index13.11.html Texture Mapping: Restrictions], ''Nintendo 64 Programming Manual'', [[Nintendo]]}}
 
|-
 
|-

Revision as of 13:11, 8 December 2016


This short article is in need of work. You can help Sega Retro by adding to it.


Vs. Consoles

PlayStation

The Sega Saturn generally has more raw power than the rival PlayStation,[1][2][3][4] but its complex hardware was more difficult to get to grips with.[2][3][5][3][6] The Saturn has more computational power and faster pixel drawing; the PS1 can only draw pixels through its polygon engine, whereas the Saturn can draw pixels directly with its processors, giving it more programming flexibility.[7]

When both SH-2 and the SCU DSP are used in parallel, the Saturn is capable of computing fixed-point operations faster than the PS1's GTE. The GTE is faster at calculating 3D geometry than each SH-2 and SCU DSP individually, but when these processors are used as a parallel geometry engine, the Saturn calculates 3D geometry faster than the PS1.[3][6]

In terms of polygon rendering fillrate, the PS1's GPU and the Saturn's VDP1 have similar performance. The GPU has a performance advantage for large polygons and flat shading, while the VDP1 has a performance advantage for small polygons and Gouraud shading. The GPU uses multiplicative Gouraud shading,[8] which halves its fillrate,[9] whereas the VDP1 uses additive Gouraud shading,[8] which has less of an impact on fillrate.[10]

The Saturn's VDP2 has a higher rendering fillrate than the PS1's GPU. If the VDP2 is used for drawing textured 3D infinite planes, this significantly reduces the fillrate requirements of the VDP1, maximizing its fillrate for other 3D assets. In comparison, the PS1's GPU needs to use much of its fillrate to render textured planes, with very limited draw distance compared to the VDP2, limiting the PS1's fillrate for other 3D assets.[11] When the VDP1 and VDP2 are used in parallel, the Saturn is capable of a significantly higher fillrate than the PS1.

The VDP1's quad polygons are rendered with forward texture mapping (a form of perspective correction), bilinear approximation (reduces texture warping), and medium polygon accuracy (resulting in seamless polygons), while the VDP2's textured infinite planes are rendered with true perspective correction, whereas the PS1's triangle polygons are rendered with affine texture mapping (which lacks perspective correction, resulting in perspective distortion), linear approximation (resulting in texture warping), and low polygon accuracy (resulting in seams between polygons).[8][12] In terms of transparency, the PS1's GPU is more effective than the VDP1, whereas the VDP2 is more effective than the PS1's GPU. In terms of visual effects, the VDP2 is more effective at visual effects such as misting and reflective water effects.[2]

The PS1's straightforward hardware architecture, triangle polygons, and more effective development tools and C language support, made it easier for developers to program 3D graphics. When it came to 2D graphics, on the other hand, the Saturn's combination of a VDP1 sprite framebuffer and VDP2 parallax scrolling backgrounds made it both more powerful and straightforward to program 2D graphics, compared to the PS1 which draws all 2D graphics to a single framebuffer.

SCPH-1000

The Saturn's VDP1 had smoother and more intense Gouraud shading than the PS1's GPU.[2] The VDP1's additive Gouraud shading displayed significantly more shades, resulting in smoother shading, and had more intense colored lighting,[8] whereas the GPU's multiplicative Gouraud shading displayed much fewer shades, resulting in color banding, but had more intense white light.

In terms of memory, the Saturn has more RAM and VRAM than the PS1. The Saturn's VRAM (SDRAM) is also faster, with a higher bandwidth and lower latency, than the PS1's VRAM. On the other hand, the PS1's GPU has a small, on-chip texture cache. However, the Saturn's VRAM is equivalent to the PS1's texture cache, as the Saturn's VRAM has low latency, with an access time nearly as fast as the PS1's texture cache. In comparison, the PS1's VRAM has a latency almost twice as high as, and thus almost half the access speed of, the Saturn's VRAM. The Saturn's VDP1 and VDP2 are capable of single-cycle VRAM access,[13][14] whereas the PS1's GPU requires multiple cycles for each VRAM access,[15][16] making the texture cache necessary to help reduce the effect of the PS1's VRAM latency. Due to the Saturn VRAM's low latency, it functions like a very large texture cache. In addition, the VDP2 is capable of tiled texture compression, further increasing the amount of texture data the VDP2's VRAM can hold, though only the VDP2 can use compressed textures.

SCPH-5000

The comparison above is for the original PS1 hardware, used in the SCPH-1000 to SCPH-3500 models, released from 1994 to 1995. A new PS1 hardware was introduced with the SCPH-5000 model, released for Japan in late 1995. This new hardware was eventually introduced to North America in late 1996 and then the rest of the world in 1997. This was the basis for the hardware used in subsequent PlayStation models.

The new PS1 hardware replaced the VRAM with SGRAM, which was capable of lower latency, allowing faster memory access. The SGRAM's lower latency was only used for faster transparency and improved Gouraud shading. The original PS1 hardware's 5-bit Gouraud shading led to color banding, which was eliminated by the new PS1 hardware, which improved it to 8-bit Gouraud shading. This still results in fewer shades than the Saturn's VDP1, which produces 15-bit Gouraud shading. However, the PS1's GPU is capable of full-screen dithering, which could give the illusion of smoother shading on the newer PS1 hardware.

Nintendo 64

Vs. PC

The Saturn's VDP1 was the basis for NVIDIA's first graphics processor, the NV1, which was one of the first 3D graphics accelerators on PC, released in 1995. Like the Saturn, it uses quad polygons and supports forward texture mapping with limited perspective correction, and several Saturn ports are available for it. However, the NV1 has a lower fillrate and rendering performance

The most powerful PC graphics card of 1995 was Yamaha's Tasmania 3D, which was based on triangle polygons. It had a higher fillrate and rendering throughput than the NV1, but less than the Saturn and PlayStation.

Graphics comparison table

See Sega Saturn technical specifications for more technical details on Saturn hardware
System Sega Saturn (1994) Sony PlayStation (1994) Nintendo 64 (1996) PC (1995)
Geometry processors 2x Hitachi SH-2 (28.63636 MHz),[n 1]
Sega SCU DSP (14.31818 MHz)
Sony GTE (33.8688 MHz)[19] SGI RSP (62.5 MHz) Intel Pentium (133 MHz)
Arithmetic operations 85 MOPS[n 2][n 3] 66 MOPS[22] 100 MOPS[n 4] 44 MOPS[n 5]
Calculations Additions 71 million adds/sec[n 6] 50 million adds/sec 100 million adds/sec 44 million adds/sec[n 7]
Multiplications 71 million multiplies/sec[n 8] 50 million multiplies/sec 100 million multiplies/sec 44 million multiplies/sec[n 9]
16-bit divisions 5 million divides/sec[n 10] 4 million divides/sec[n 11] 14 million divides/sec[n 12] 4 million divides/sec[n 13]
Geometry Transformations 2,400,000 vertices/sec,[n 14]
1,800,000 polygons/sec[n 15]
1,900,000 vertices/sec,[n 16]
1,300,000 polygons/sec[n 17]
2,500,000 vertices/sec,[n 18]
2,000,000 polygons/sec[n 19]
1,100,000 vertices/sec,[n 20]
380,000 polygons/sec[n 21]
Flat lighting 800,000 polygons/sec[n 22] 600,000 polygons/sec[n 23] 1,400,000 polygons/sec[n 24] 290,000 polygons/sec[n 25]
Gouraud lighting 700,000 polygons/sec[n 26] 360,000 polygons/sec[n 27] 1,000,000 polygons/sec[n 28] 200,000 polygons/sec[n 29]
Rendering processors Hitachi VDP1 (28.63636 MHz),
Yamaha VDP2 (28.63636 MHz)
Sony GPU (33.8688 MHz)[41] SGI RDP (62.5 MHz)[42] NVIDIA NV1
(12.5 MHz)[n 30]
Yamaha Tasmania
3D (50 MHz)[43]
Bitmap
framebuffer
fillrate
15-bit color/pixel 57 MPixels/s[n 31] 33 MPixels/s[41] 62 MPixels/s 12 MPixels/s 25 MPixels/s
8-bit color/pixel 92 MPixels/s[n 32] 67 MPixels/s[41] 120 MPixels/s
4-bit color/pixel 150 MPixels/s[n 33]
Tile
fillrate
15-bit color/tile 560 MPixels/s[n 34] 33 MPixels/s[n 35] 62 MPixels/s
8-bit color/tile 570 MPixels/s[n 36] 67 MPixels/s[n 37] 120 MPixels/s
Flat
shading
Fillrate
(8-bit color)
28 MPixels/s 66 MPixels/s (512×512 polys),
18 MPixels/s (10×10 polys)
62 MPixels/s (512×512 polys),
50 MPixels/s (10×10 polys)[n 38]
12 MPixels/s 25 MPixels/s (512×512 polys),
18 MPixels/s (10×10 polys)
Fillrate
(15-bit color)
28 MPixels/s 33 MPixels/s (512×512 polys),
18 MPixels/s (10×10 polys)[44]
Polygons 800,000 polygons/s (32-pixel),
500,000 polygons/s (50-pixel)[n 39]
500,000 polygons/s (32-pixel),[n 40]
360,000 polygons/s (50-pixel)[44]
900,000 polygons/s (40-pixel),
600,000 polygons/s (80-pixel)[n 41]
50,000 polygons/s 290,000 polygons/s
Gouraud
shading
Shades 32,768 shades (15-bit)[46] 32 shades (1994–1995),
256 shades (1995/1996)[n 42]
65,536 shades (16-bit) 16 shades (4-bit) 16 shades (4-bit)
Fillrate
(polygons)
28 MPixels/s (512×512),
16 MPixels/s (10×10)[n 43]
33 MPixels/s (512×512),
10 MPixels/s (10×10)[49]
62 MPixels/s (512×512),[50]
50 MPixels/s (10×10)
10 MPixels/s 25 MPixels/s (512×512),
10 MPixels/s (10×10)
Polygons 200,000 polygons/s[n 44] 200,000 polygons/s[49] 600,000 polygons/s 50,000 polygons/s 200,000 polygons/s
Texture
mapping
Fillrate
(bitmap textures)
33 MTexels/s (504×255),
14 MTexels/s (10×10)[n 45]
33 MTexels/s (128×64),[n 46]
10 MTexels/s (10×10)[49]
60 MTexels/s (128×64),[n 47]
40 MTexels/s (10×10)[n 48]
10 MTexels/s 12 MTexels/s (64×64),
10 MTexels/s (10×10)
Fillrate
(tiled textures)
500 MTexels/s (VDP2)
(2048×2048 to 4096×4096)[54]
33 MTexels/s
(256×256)[55]
62 MTexels/s[42]
(128×128 to 1024×256)[56]
4-bit color 300,000 polygons/s (32-texel),
200,000 polygons/s (70-texel)
200,000 polygons/s (50-texel)[49] 600,000 polygons/s (60-texel),
500,000 polygons/s (80-texel)[n 49]
50,000 polygons/s 150,000 polygons/s
8-bit color 300,000 polygons/s (32-texel),
200,000 polygons/s (70-texel)
100,000 polygons/s (50-texel)[49] 600,000 polygons/s (60-texel),
500,000 polygons/s (80-texel)
50,000 polygons/s 100,000 polygons/s
15-bit color 200,000 polygons/s (70-texel) 60,000 polygons/s (50-texel)[49] 500,000 polygons/s (80-texel) 50,000 polygons/s 60,000 polygons/s
Texture
Gouraud
shading
Fillrate
(textures)
19 MTexels/s (504×255),
9 MTexels/s (10×10)
16 MTexels/s (256×256),[n 50]
7 MTexels/s (10×10)[49]
60 MTexels/s (128×64),
40 MTexels/s (8×8)
7 MTexels/s 7 MTexels/s
Polygons 140,000 polygons/s (15-bit color) 140,000 polygons/s (4-bit color),
100,000 polygons/s (8-bit color)[49]
500,000 polygons/s 50,000 polygons/s 100,000 polygons/s
Sprites Fillrate
(4/8-bit color)
12 MTexels/s (8×8),
130 MTexels/s (504×255),[n 51]
250 MTexels/s (1024×1024)[n 52]
15 MTexels/s (8×8),[9]
66 MTexels/s (256×256)[51]
40 MTexels/s (8×8),
120 MTexels/s (1024×256)[42]
10 MTexels/s 12 MTexels/s
Fillrate
(15-bit color)
12 MTexels/s (8×8),
47 MTexels/s (504×255),[n 53]
250 MTexels/s (1024×1024)
10 MTexels/s (8×8),[49]
33 MTexels/s (256×256)[57]
40 MTexels/s (8×8),
120 MTexels/s (1024×256)
10 MTexels/s 10 MTexels/s
Performance
(8-bit color)
500,000 sprites/sec,[n 54]
16,383 sprites/frame (VDP1)
240,000 sprites/sec,[9]
4000 sprites/frame[58][59][52]
600,000 sprites/sec,[n 55]
10,000 sprites/frame
50,000 sprites/sec,
1000 sprites/frame
100,000 sprites/sec,
2000 sprites/frame
Performance
(15-bit color)
500,000 sprites/sec,
16,383 sprites/frame (VDP1)
160,000 sprites/sec,[49]
2600 sprites/frame
Graphical planes 7 planes[n 56] 1 plane 1 plane 1 plane 1 plane
2D
tilemap
planes
2D planes 5 planes[n 57] 1 plane 1 plane 1 plane 1 plane
Tiles 4,000,000 tiles/sec,[n 58]
80,000 tiles/frame[n 59]
240,000 tiles/sec,
4000 tiles/frame
600,000 tiles/sec,
10,000 tiles/frame
50,000 tiles/sec,
1000 tiles/frame
100,000 tiles/sec,
2000 tiles/frame
3D
planes
3D planes 3 planes[n 60] 1 plane 1 plane 1 plane 1 plane
Equivalent textured
polygons
1,300,000 polygons/s[n 61] 200,000 polygons/s 600,000 polygons/s 50,000 polygons/s 150,000 polygons/s
Gameplay resolution 704×512 640×512[60] 720×576 640×480 640×480
Video
RAM
Memory 4–8 MB[n 62] 3 MB[n 63] 4–8 MB[n 64] 2–4 MB[n 65] 2–4 MB[n 66]
Bandwidth 440 MB/s[n 67] 264 MB/s[n 68] 562 MB/s[n 69] 96 MB/s[65] 200 MB/s[n 70]
Latency 34 ns 60 ns (1994–1995),[n 71]
30–60 ns (1995/1996)[n 72]
60 ns[n 73] 80 ns[n 74] 60 ns[43]
Texture
cache
Memory 1 MB[n 75] (17 MB compressed)[n 76] 2 KB 4 KB N/A
Bandwidth 171 MB/s[n 77]
(592 MB/s compressed)[n 78]
132 MB/s[57] 500 MB/s[n 79]
Latency 34 ns 30 ns[n 80] 16 ns[n 81]
Compression 34:1 (tiled)[n 76] 1:1 (N/A) 1:1 (N/A)
System Sega Saturn (1994) PlayStation (1994) Nintendo 64 (1996) PC (1995)

Notes

  1. [2x CPU cores, 2x DMAC controllers, 2x MULT multiplier DSP, 2x DIVU division units[17][18] 2x CPU cores, 2x DMAC controllers, 2x MULT multiplier DSP, 2x DIVU division units[17][18]]
  2. [MOPS (million operations per second) MOPS (million operations per second)]
  3. [2x SH-2 MULT DSP: 57.27272 MOPS[20]
    2x SH-2 DIVU: 1.468531 MOPS (39 cycles per divide)[21]
    SCU DSP: 28.63636 MOPS (add and multiply per cycle) 2x SH-2 MULT DSP: 57.27272 MOPS[20]
    2x SH-2 DIVU: 1.468531 MOPS (39 cycles per divide)[21]
    SCU DSP: 28.63636 MOPS (add and multiply per cycle)]
  4. [100 MFLOPS, 1.6 floating-point operations per cycle 100 MFLOPS, 1.6 floating-point operations per cycle]
  5. [3 cycles per add, 3 cycles per multiply 3 cycles per add, 3 cycles per multiply]
  6. [2x SH-2: 57,272,720 adds/sec (1 cycle per add)[20]
    SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply) 2x SH-2: 57,272,720 adds/sec (1 cycle per add)[20]
    SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply)]
  7. [3 cycles per add[23] 3 cycles per add[23]]
  8. [2x SH-2 MULT DSP: 57,272,720 multiplies/sec (1 cycle per multiply)[24]
    SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply) 2x SH-2 MULT DSP: 57,272,720 multiplies/sec (1 cycle per multiply)[24]
    SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply)]
  9. [3 cycles per multiply[23] 3 cycles per multiply[23]]
  10. [2x CPU: 3,579,545 divides/sec (16 cycles per 16-bit divide)[25]
    2x DIVU: 1,468,531 divides/sec (39 cycles per divide)[21] 2x CPU: 3,579,545 divides/sec (16 cycles per 16-bit divide)[25]
    2x DIVU: 1,468,531 divides/sec (39 cycles per divide)[21]]
  11. [25 cycles (23 cycles instruction,[26] 2 cycles delay[27]) per 3 divides[12] 25 cycles (23 cycles instruction,[26] 2 cycles delay[27]) per 3 divides[12]]
  12. [7 FLOPS per divide[28] 7 FLOPS per divide[28]]
  13. [30 cycles per divide[29] 30 cycles per divide[29]]
  14. [Transformation (21 adds/multiplies),[30] projection (4 adds/multiplies)[31] and perspective division (1 divide)[32] per vertex:
    • 894,886 vertices/sec: 894,886 SCU DSP transformations (14 cycles per transform,[30] 2 cycles per projection), 894,886 SH-2 DIVU divisions (1 divide per vertex)
    • 573,644 vertices/sec: 14,341,100 SH-2 MULT DSP transform/projection operations (25 cycles per vertex), 573,644 SH-2 DIVU divisions (1 divide per vertex)
    • 1,011,294 vertices/sec: 41,463,054 SH-2 transform/projection/divide cycles (41 cycles per vertex)
    Transformation (21 adds/multiplies),[30] projection (4 adds/multiplies)[31] and perspective division (1 divide)[32] per vertex:
    • 894,886 vertices/sec: 894,886 SCU DSP transformations (14 cycles per transform,[30] 2 cycles per projection), 894,886 SH-2 DIVU divisions (1 divide per vertex)
    • 573,644 vertices/sec: 14,341,100 SH-2 MULT DSP transform/projection operations (25 cycles per vertex), 573,644 SH-2 DIVU divisions (1 divide per vertex)
    • 1,011,294 vertices/sec: 41,463,054 SH-2 transform/projection/divide cycles (41 cycles per vertex)]
  15. [8 vertices per cube (6 quad polygons)[33] 8 vertices per cube (6 quad polygons)[33]]
  16. [17 cycles (15 cycles instruction,[34] 2 cycles delay[27]) per vertex 17 cycles (15 cycles instruction,[34] 2 cycles delay[27]) per vertex]
  17. [25 cycles (23 cycles instruction,[26] 2 cycles delay) per triangle polygon 25 cycles (23 cycles instruction,[26] 2 cycles delay) per triangle polygon]
  18. [39 FLOPS per vertex (32 multiplies/adds,[35] 1 divide[32]) 39 FLOPS per vertex (32 multiplies/adds,[35] 1 divide[32])]
  19. [16 vertex blocks, equivalent polygons/vertex ratio to triangle strips[36] (N polygons per N+2 vertices), 14 polygons per 16 vertices (7 polygons per 8 vertices) 16 vertex blocks, equivalent polygons/vertex ratio to triangle strips[36] (N polygons per N+2 vertices), 14 polygons per 16 vertices (7 polygons per 8 vertices)]
  20. [116 cycles per vertex (74 cycles matrix transformation,[37] 4 projection multiplies/adds,[35] 1 divide[32]) 116 cycles per vertex (74 cycles matrix transformation,[37] 4 projection multiplies/adds,[35] 1 divide[32])]
  21. [3 vertices per triangle polygon 3 vertices per triangle polygon]
  22. [8 transformations (168 adds/multiplies), 6 surface normals (72 multiplies, 36 adds),[38] 6 light sources (72 adds/multiplies),[39] 8 projections (32 adds/multiplies) and 8 perspective divisions (24 divides)[31] per cube with 8 vertices and 6 quad polygons:
    • 52,640 cubes/sec: 52,640 SCU DSP cubes (112 transform cycles, 72 surface normal cycles, 72 light source cycles,[39] 16 projection cycles), 1,263,360 SH-2 DIVU divisions (24 divides per cube)
    • 8548 cubes/sec: 2,940,512 SH-2 MULT DSP transform/projection operations (347 cycles per cube), 205,152 SH-2 DIVU divisions (24 divides per cube)
    • 72,614 cubes/sec: 52,862,992 SH-2 transform/projection/divide cycles (728 cycles per cube)
    8 transformations (168 adds/multiplies), 6 surface normals (72 multiplies, 36 adds),[38] 6 light sources (72 adds/multiplies),[39] 8 projections (32 adds/multiplies) and 8 perspective divisions (24 divides)[31] per cube with 8 vertices and 6 quad polygons:
    • 52,640 cubes/sec: 52,640 SCU DSP cubes (112 transform cycles, 72 surface normal cycles, 72 light source cycles,[39] 16 projection cycles), 1,263,360 SH-2 DIVU divisions (24 divides per cube)
    • 8548 cubes/sec: 2,940,512 SH-2 MULT DSP transform/projection operations (347 cycles per cube), 205,152 SH-2 DIVU divisions (24 divides per cube)
    • 72,614 cubes/sec: 52,862,992 SH-2 transform/projection/divide cycles (728 cycles per cube)]
  23. [54 cycles (23 cycles RTPT, 8 cycles MVMVA, 17 cycles NCCS,[40] 6 cycles delay) per triangle polygon 54 cycles (23 cycles RTPT, 8 cycles MVMVA, 17 cycles NCCS,[40] 6 cycles delay) per triangle polygon]
  24. [976 FLOPS per 16-vertex block, 14 polygons per block, 75 FLOPS per polygon[35]
    • Transformation: 528 FLOPS per 16-vertex block (512 multiplies/adds, 16 divides)
    • Lighting: 448 FLOPS per 14-polygon block (32 FLOPS per polygon)
    976 FLOPS per 16-vertex block, 14 polygons per block, 75 FLOPS per polygon[35]
    • Transformation: 528 FLOPS per 16-vertex block (512 multiplies/adds, 16 divides)
    • Lighting: 448 FLOPS per 14-polygon block (32 FLOPS per polygon)]
  25. [444 cycles: 348 cycles transformation (116 cycles per vertex), 32 lighting multiplies/adds[35] 444 cycles: 348 cycles transformation (116 cycles per vertex), 32 lighting multiplies/adds[35]]
  26. [8 transformations (168 adds/multiplies), 8 surface normals (96 multiplies, 48 adds), 8 light sources (96 adds/multiplies), 8 projections (32 adds/multiplies) and 8 perspective divisions (24 divides) per cube with 8 vertices and 6 quad polygons:
    • 44,744 cubes/sec: 44,744 SCU DSP cubes (112 transform cycles, 96 surface normal cycles, 96 light source cycles, 16 projection cycles), 1,073,856 SH-2 DIVU divisions (24 divides per cube)
    • 16,444 cubes/sec: 7,235,360 SH-2 MULT DSP transform/projection operations (440 cycles per cube), 394,675 SH-2 DIVU divisions (8 divides per cube)
    • 58,942 cubes/sec: 48,568,208 SH-2 transform/projection/divide cycles (824 cycles per cube)
    8 transformations (168 adds/multiplies), 8 surface normals (96 multiplies, 48 adds), 8 light sources (96 adds/multiplies), 8 projections (32 adds/multiplies) and 8 perspective divisions (24 divides) per cube with 8 vertices and 6 quad polygons:
    • 44,744 cubes/sec: 44,744 SCU DSP cubes (112 transform cycles, 96 surface normal cycles, 96 light source cycles, 16 projection cycles), 1,073,856 SH-2 DIVU divisions (24 divides per cube)
    • 16,444 cubes/sec: 7,235,360 SH-2 MULT DSP transform/projection operations (440 cycles per cube), 394,675 SH-2 DIVU divisions (8 divides per cube)
    • 58,942 cubes/sec: 48,568,208 SH-2 transform/projection/divide cycles (824 cycles per cube)]
  27. [92 cycles (23 cycles RTPT, 24 cycles MVMVA, 39 cycles NCCT,[40] 6 cycles delay) per triangle polygon 92 cycles (23 cycles RTPT, 24 cycles MVMVA, 39 cycles NCCT,[40] 6 cycles delay) per triangle polygon]
  28. [1040 FLOPS per 16-vertex block, 14 polygons per block, 70 FLOPS per polygon[35]
    • Transformation: 528 FLOPS per 16-vertex block (512 multiplies/adds, 16 divides)
    • Lighting: 512 FLOPS per 16-vertex block (32 FLOPS per vertex)
    1040 FLOPS per 16-vertex block, 14 polygons per block, 70 FLOPS per polygon[35]
    • Transformation: 528 FLOPS per 16-vertex block (512 multiplies/adds, 16 divides)
    • Lighting: 512 FLOPS per 16-vertex block (32 FLOPS per vertex)]
  29. [636 cycles: 348 cycles transformation (116 cycles per vertex), 96 lighting multiplies/adds[35] 636 cycles: 348 cycles transformation (116 cycles per vertex), 96 lighting multiplies/adds[35]]
  30. [Diamond Edge 3D Diamond Edge 3D]
  31. [28.63636 MPixels/s per VDP 28.63636 MPixels/s per VDP]
  32. [VDP1: 35.6465 MPixels/s
    VDP2: 57.27272 MPixels/s VDP1: 35.6465 MPixels/s
    VDP2: 57.27272 MPixels/s]
  33. [VDP1: 35.6465 MPixels/s
    VDP2: 114.54544 MPixels/s VDP1: 35.6465 MPixels/s
    VDP2: 114.54544 MPixels/s]
  34. [VDP1: 28.63636 MPixels/s (447,443 tiles/sec, 8×8 pixel tiles)
    VDP2: 534.77376 MPixels/s (8,355,840 tiles/sec, 8×8 pixel tiles) VDP1: 28.63636 MPixels/s (447,443 tiles/sec, 8×8 pixel tiles)
    VDP2: 534.77376 MPixels/s (8,355,840 tiles/sec, 8×8 pixel tiles)]
  35. [33.8688 MPixels/s (529,200 tiles/sec, 8×8 pixel tiles) 33.8688 MPixels/s (529,200 tiles/sec, 8×8 pixel tiles)]
  36. [VDP1: 35.646464 MPixels/s
    VDP2: 534.77376 MPixels/s VDP1: 35.646464 MPixels/s
    VDP2: 534.77376 MPixels/s]
  37. [67.7376 MPixels/s (1,058,400 tiles/sec) 67.7376 MPixels/s (1,058,400 tiles/sec)]
  38. [18 cycles memory access (9 cycles double-buffering) per polygon, 5 cycles data (40 bytes, 9 bytes/sec) and 4 cycles latency (60 ns access, 16 ns cycles) per polygon,[42] 1 cycle per pixel: 529,661 polygons/sec (118 cycles per 10×10 pixel polygon) 18 cycles memory access (9 cycles double-buffering) per polygon, 5 cycles data (40 bytes, 9 bytes/sec) and 4 cycles latency (60 ns access, 16 ns cycles) per polygon,[42] 1 cycle per pixel: 529,661 polygons/sec (118 cycles per 10×10 pixel polygon)]
  39. [16 cycles per polygon in 28.63636 MHz texture cache,[45] 1 cycle per pixel in 28.63636 MHz framebuffer 16 cycles per polygon in 28.63636 MHz texture cache,[45] 1 cycle per pixel in 28.63636 MHz framebuffer]
  40. [18 megapixels/sec for polygons that are 50-pixel or less[44] 18 megapixels/sec for polygons that are 50-pixel or less[44]]
  41. [18 cycles memory access (9 cycles double-buffering) per polygon, 5 cycles data (40 bytes, 9 bytes/sec) and 4 cycles latency (60 ns access, 16 ns cycles) per polygon,[42] 1 cycle per pixel, 62 cycles per 40-pixel polygon, 104 cycles per 80-pixel polygon 18 cycles memory access (9 cycles double-buffering) per polygon, 5 cycles data (40 bytes, 9 bytes/sec) and 4 cycles latency (60 ns access, 16 ns cycles) per polygon,[42] 1 cycle per pixel, 62 cycles per 40-pixel polygon, 104 cycles per 80-pixel polygon]
  42. [5-bit shading (32 shades) with color banding in original PlayStation hardware,[47] 8-bit shading (256 shades) in newer PlayStation hardware 5-bit shading (32 shades) with color banding in original PlayStation hardware,[47] 8-bit shading (256 shades) in newer PlayStation hardware]
  43. [164,576 Gouraud-shaded 10×10 polygons/sec: 57.27272 million parallel bus cycles/sec, 248 cycles overhead per polygon (16 cycles command table fetch,[45] 232 cycles Gouraud shading),[48] 348 cycles per polygon (100 cycles drawing per 100-pixel polygon)[10] 164,576 Gouraud-shaded 10×10 polygons/sec: 57.27272 million parallel bus cycles/sec, 248 cycles overhead per polygon (16 cycles command table fetch,[45] 232 cycles Gouraud shading),[48] 348 cycles per polygon (100 cycles drawing per 100-pixel polygon)[10]]
  44. [57.27272 million parallel bus cycles/sec, 248 cycles overhead per polygon (16 cycles command table fetch,[45] 232 cycles Gouraud shading),[48] 32 cycles drawing per 32-pixel polygon[10] 57.27272 million parallel bus cycles/sec, 248 cycles overhead per polygon (16 cycles command table fetch,[45] 232 cycles Gouraud shading),[48] 32 cycles drawing per 32-pixel polygon[10]]
  45. [VDP1: 19.023 MTexels/s (504×255 textures), 14 MTexels/s (10×10 textures)[48]
    VDP2: 14.31818 MTexels/s (512×256 to 256×512 textures) VDP1: 19.023 MTexels/s (504×255 textures), 14 MTexels/s (10×10 textures)[48]
    VDP2: 14.31818 MTexels/s (512×256 to 256×512 textures)]
  46. [33 MTexels/s,[51] 2 KB texture cache, automatic tiling[52] 33 MTexels/s,[51] 2 KB texture cache, automatic tiling[52]]
  47. [4 KB texture cache, manual tiling[53] 4 KB texture cache, manual tiling[53]]
  48. [36 cycles memory access (2x access) per textured polygon,[42] 1 cycle per texel:
    • 8228 cycles per 128×64 texel polygon (7596 polygons/sec)
    • 136 cycles per 10×10 texel polygon (459,558 polygons/sec)
    36 cycles memory access (2x access) per textured polygon,[42] 1 cycle per texel:
    • 8228 cycles per 128×64 texel polygon (7596 polygons/sec)
    • 136 cycles per 10×10 texel polygon (459,558 polygons/sec)]
  49. [36 cycles memory access (2x access) per textured polygon,[42] 1 cycle per texel:
    • 96 cycles per 60-texel polygon
    • 116 cycles per 80-texel polygon
    36 cycles memory access (2x access) per textured polygon,[42] 1 cycle per texel:
    • 96 cycles per 60-texel polygon
    • 116 cycles per 80-texel polygon]
  50. [Gouraud shading halves fillrate[9] Gouraud shading halves fillrate[9]]
  51. [VDP1: 19.023 MTexels/s
    VDP2: 114.54544 MTexels/s VDP1: 19.023 MTexels/s
    VDP2: 114.54544 MTexels/s]
  52. [VDP2: 4x 1024×1024 textures, 60 FPS VDP2: 4x 1024×1024 textures, 60 FPS]
  53. [VDP1: 19.023 MTexels/s
    VDP2: 28.63636 MTexels/s VDP1: 19.023 MTexels/s
    VDP2: 28.63636 MTexels/s]
  54. [57.27272 million parallel bus cycles/sec, 99 parallel cycles per 8×1 sprite[48] 57.27272 million parallel bus cycles/sec, 99 parallel cycles per 8×1 sprite[48]]
  55. [36 cycles memory access (2x access) per sprite,[42] 1 cycle per texel: 100 cycles per 8×8 texel sprite 36 cycles memory access (2x access) per sprite,[42] 1 cycle per texel: 100 cycles per 8×8 texel sprite]
  56. [1 VDP1 plane, 5 VDP2 planes 1 VDP1 plane, 5 VDP2 planes]
  57. [1 VDP1 plane, 4 VDP2 planes 1 VDP1 plane, 4 VDP2 planes]
  58. [VDP1: 500,000 sprites/tiles per second
    VDP2: 3,932,160 tiles per second (4x 128×128 tiles[54] at 60 FPS) VDP1: 500,000 sprites/tiles per second
    VDP2: 3,932,160 tiles per second (4x 128×128 tiles[54] at 60 FPS)]
  59. [VDP1: 16,383 sprites/tiles per frame
    VDP2: 65,536 tiles per second (4x 128×128 tiles)[54] VDP1: 16,383 sprites/tiles per frame
    VDP2: 65,536 tiles per second (4x 128×128 tiles)[54]]
  60. [1 VDP1 plane, 2 VDP2 planes 1 VDP1 plane, 2 VDP2 planes]
  61. [VDP1: 300,000 textured polygons per second
    VDP2: Equivalent to 1,000,000 textured polygons per second. 4096×4096 tiled planes can be manipulated as textured polygons, with scaling, rotation, perspective transformation, curved surface, and bumps. At 500 pixels per polygon, equivalent to 33,554 textured polygons per frame, at 30 frames per second. VDP1: 300,000 textured polygons per second
    VDP2: Equivalent to 1,000,000 textured polygons per second. 4096×4096 tiled planes can be manipulated as textured polygons, with scaling, rotation, perspective transformation, curved surface, and bumps. At 500 pixels per polygon, equivalent to 33,554 textured polygons per frame, at 30 frames per second.]
  62. [2 MB main RAM (1 MB SDRAM, 1 MB FPM DRAM), 1.5 MB VRAM (SDRAM), 512 KB CD-ROM buffer, 1–4 MB optional main RAM expansion (Extended RAM Cartridge) 2 MB main RAM (1 MB SDRAM, 1 MB FPM DRAM), 1.5 MB VRAM (SDRAM), 512 KB CD-ROM buffer, 1–4 MB optional main RAM expansion (Extended RAM Cartridge)]
  63. [2 MB main RAM (EDO DRAM),[61][62] 1 MB VRAM[63] 2 MB main RAM (EDO DRAM),[61][62] 1 MB VRAM[63]]
  64. [4 MB RDRAM, 4 MB optional RDRAM Expansion Pak 4 MB RDRAM, 4 MB optional RDRAM Expansion Pak]
  65. [FPM DRAM / VRAM FPM DRAM / VRAM]
  66. DRAM[64]
  67. [114.54544 MB/s main RAM (SH-4), 286.3636 MB/s VRAM (171.81816 MB/s VDP1, 114.54544 MB/s VDP2), 40 MB/s CD-ROM buffer 114.54544 MB/s main RAM (SH-4), 286.3636 MB/s VRAM (171.81816 MB/s VDP1, 114.54544 MB/s VDP2), 40 MB/s CD-ROM buffer]
  68. [132 MB/s main RAM, 132 MB/s VRAM 132 MB/s main RAM, 132 MB/s VRAM]
  69. [562.5 MB/s (9-bit, 500 MHz) 562.5 MB/s (9-bit, 500 MHz)]
  70. [32-bit,[64] 50 MHz 32-bit,[64] 50 MHz]
  71. [Original PlayStation hardware released during 1994–1995:
    Main RAM: Samsung KM48V514DJ-6 EDO DRAM (60 ns access)[61][66]
    VRAM: Samsung KM4216V2566-6 VRAM (60 ns access)[67][68] Original PlayStation hardware released during 1994–1995:
    Main RAM: Samsung KM48V514DJ-6 EDO DRAM (60 ns access)[61][66]
    VRAM: Samsung KM4216V2566-6 VRAM (60 ns access)[67][68]]
  72. [Revised PlayStation hardware released for Japan in late 1995 and North America in late 1996:
    Main RAM: Samsung KM48V514DJ-6 EDO DRAM (60 ns access)
    VRAM: NEC UPD481850GF-A12-T SGRAM (30 ns access)[61][69] Revised PlayStation hardware released for Japan in late 1995 and North America in late 1996:
    Main RAM: Samsung KM48V514DJ-6 EDO DRAM (60 ns access)
    VRAM: NEC UPD481850GF-A12-T SGRAM (30 ns access)[61][69]]
  73. [60 ns RDRAM access[70][71][72] 60 ns RDRAM access[70][71][72]]
  74. [12.5 MHz, 80 ns cycles 12.5 MHz, 80 ns cycles]
  75. [SDRAM: 512 KB VDP1 texture memory, 512 KB VDP2 memory SDRAM: 512 KB VDP1 texture memory, 512 KB VDP2 memory]
  76. 76.0 76.1 [17 MB textures (4096×4096 and 1024×1024 texels, 8-bit palettes) compressed in 512 KB VDP2 memory 17 MB textures (4096×4096 and 1024×1024 texels, 8-bit palettes) compressed in 512 KB VDP2 memory]
  77. [57.27272 MB/s VDP1 texture bandwidth, 114.54544 MB/s VDP2 bandwidth 57.27272 MB/s VDP1 texture bandwidth, 114.54544 MB/s VDP2 bandwidth]
  78. [57.27272 MB/s VDP1 texture bandwidth, 534.77376 MB/s compressed VDP2 texture bandwidth 57.27272 MB/s VDP1 texture bandwidth, 534.77376 MB/s compressed VDP2 texture bandwidth]
  79. [64-bit, 62.5 MHz 64-bit, 62.5 MHz]
  80. [33.8688 MHz, 30 ns cycles 33.8688 MHz, 30 ns cycles]
  81. [62.5 MHz, 16 ns cycles 62.5 MHz, 16 ns cycles]

References

  1. File:Edge UK 030.pdf, page 99
  2. 2.0 2.1 2.2 2.3 File:SSM UK 24.pdf, page 25
  3. 3.0 3.1 3.2 3.3 Pure Entertainment Interview
  4. Jason Gosling (Core Design) Interview (Edge)
  5. Shiny Entertainment Interview (Edge)
  6. 6.0 6.1 Jason Gosling (Core Design) Interview (Edge)
  7. Scavenger Interview (Edge)
  8. 8.0 8.1 8.2 8.3 Sega Saturn 3D Capabilities
  9. 9.0 9.1 9.2 9.3 File:SCEA BBS.pdf, page 672
  10. 10.0 10.1 10.2 Saturn VDP1 hardware notes (2003-05-17)
  11. Core Design Interview (Edge)
  12. 12.0 12.1 Playstation Specifications (GTE Coordinate Calculation Commands)
  13. File:ST-TECH.pdf, page 142
  14. File:ST-058-R2-060194.pdf, page 49
  15. File:ADV GPU.pdf, page 24
  16. File:SCEA BBS.pdf, page 1209
  17. File:SH7604 Hardware Manual.pdf, page 3
  18. File:SH7604 Hardware Manual.pdf, page 22
  19. File:PlayStation Hardware.pdf, page 17
  20. 20.0 20.1 File:SH7604 Hardware Manual.pdf, page 51
  21. 21.0 21.1 File:Hitachi SuperH Programming Manual.pdf, page 308
  22. File:NextGeneration US 12.pdf, page 42
  23. 23.0 23.1 File:Instruction Tables.pdf, page 101
  24. File:SH7604 Hardware Manual.pdf, page 36
  25. File:Hitachi SuperH Programming Manual.pdf, page 155
  26. 26.0 26.1 Everything You Have Always Wanted to Know about the Playstation (pages 60-61)
  27. 27.0 27.1 Team PSX (page 17)
  28. MSP Simulation Layer for Vector Unit Computational Divides (RSP)
  29. File:Instruction Tables.pdf, page 100
  30. 30.0 30.1 File:ST-240-A-SP1-052295.pdf, page 8
  31. 31.0 31.1 Design of Digital Systems and Devices (page 97)
  32. 32.0 32.1 32.2 3D Polygon Rendering Pipeline (page 50)
  33. File:ST-237-R1-051795.pdf, page 51
  34. Everything You Have Always Wanted to Know about the Playstation (pages 59-60)
  35. 35.0 35.1 35.2 35.3 35.4 35.5 Design of Digital Systems and Devices (pages 95-97)
  36. gSPVertex (N64 SDK)
  37. File:MMX Technology Architecture Overview.pdf, page 10
  38. Design of Digital Systems and Devices (page 95)
  39. 39.0 39.1 [Sega DTS, March 1996, DSP Demo Sega DTS, March 1996, DSP Demo]
  40. 40.0 40.1 Everything You Have Always Wanted to Know about the Playstation (pages 49-51, 59-67)
  41. 41.0 41.1 41.2 File:ADV GPU.pdf, page 28
  42. 42.0 42.1 42.2 42.3 42.4 42.5 42.6 42.7 RDP Programming, Nintendo 64 Programming Manual, Nintendo
  43. 43.0 43.1 Tasmania 3D
  44. 44.0 44.1 44.2 File:SCEA BBS.pdf, page 1041
  45. 45.0 45.1 45.2 File:TUTORIAL.pdf, page 15
  46. [ST-013-R3-061694.pdf ST-013-R3-061694.pdf]
  47. File:ADV_GPU.pdf, page 23
  48. 48.0 48.1 48.2 48.3 File:TUTORIAL.pdf, page 8
  49. 49.0 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 Sony PlayStation (SONY PS) FREQUENTLY ASKED QUESTIONS
  50. Microcode: Past Microcode, Nintendo 64 Programming Manual, Nintendo
  51. 51.0 51.1 File:ADV GPU.pdf, page 29
  52. 52.0 52.1 PlayStation GPU documentation
  53. Texture Mapping, Nintendo 64 Programming Manual, Nintendo
  54. 54.0 54.1 54.2 File:ST-058-R2-060194.pdf, page 132
  55. [Net Yaroze Official Startup Guide.pdf Net Yaroze Official Startup Guide.pdf]
  56. Texture Mapping: Restrictions, Nintendo 64 Programming Manual, Nintendo
  57. 57.0 57.1 File:ADV GPU.pdf, page 30
  58. File:NextGeneration US 01.pdf, page 48
  59. PlayStation documentation (pages 28-29)
  60. File:Net Yaroze Official Startup Guide.pdf, page 17
  61. 61.0 61.1 61.2 PU-18 (PSX Dev)
  62. Samsung KM48V514DJ-6 datasheet
  63. File:NextGeneration US 06.pdf, page 53
  64. 64.0 64.1 PARADISE TASMANIA 3D
  65. Nvidia NV1
  66. File:KM48 datasheet.pdf
  67. PU-7 (PSX Dev)
  68. File:KM4216 datasheet.pdf
  69. File:UPD481850 datasheet.pdf
  70. Map (N64dev)
  71. File:Direct RDRAM datasheet.pdf
  72. File:Oki Concurrent RDRAM datasheet.pdf

See also


Sega Saturn
Topics Technical Specifications (Hardware Comparison) | History (Development | Release | Decline and legacy) | List of games (A-M) | List of games (N-Z) | Magazine articles | Promotional material | Merchandise
Hardware Japan | North America | Western Europe | Eastern Europe | South America | Asia | South Korea | Australasia | Africa

HiSaturn Navi | SunSeibu SGX | Sega Titan Video

Add-ons Backup Memory (third-party) | Sega PriFun | Video CD Card (third-party) | Extended RAM Cartridge (third-party) | Twin Advanced ROM System
Controllers Control Pad | Control Pad (Australia) | 3D Control Pad | Arcade Racer | Infrared Control Pad | Mission Stick | Shuttle Mouse | Twin Stick | Virtua Gun | Virtua Stick | Virtua Stick Pro
Online Services/Add-ons NetLink Internet Modem (NetLink Keyboard | NetLink Keyboard Adapter | NetLink Mouse) | Saturn Modem (Floppy Drive | Keyboard)
Connector Cables 21 Pin RGB Cable | Monaural AV Cable | RF Unit | Stereo AV Cable | S-Video Cable | Taisen Cable
Development Hardware Programming Box | Sound Box | E7000 | CartDev | SNASM2 | Address Checker | PSY-Q Development System | MIRAGE Universal CD Emulator
Misc. Hardware 6Player | SBom Multitap‎ | Saturn region converter cartridges | Action Replay | Pro Action Replay | Action Replay Plus | X-Terminator (Version 3) | S-S Promoter | Other cartridges