| B2
CODE monkeys

THE
SEGA
DEVELOPMENT

SYSTEM

CONFIDENTIAL INFORMATION
by Tim Wilson

Copyright 1990,1991 Accolade, Inc.

THIS IS A CONTROLLED DOCUMENT. DO NOT COPY
OR DISTRIBUTE THIS DOCUMENT WITHOUT EXPRESS
WRITTEN PERMISSION FROM A CCOLADE, INC,

version 2.0 21-February-91 _]

Setting Up the Accolade Sega Development System

1. Insert the Sega System card into the Sega with the component side towards the
front of the system.

2. Insert the cable as follows:

a) DB-25 end into the PC parallel port addressed at $378 and $379,
usually LPT?2: if you have a monochrome card with a parallel port
and a port on the motherboard. To use the port at $3BC and $3BD
you must type HOST 2 to start the program.

b) DB-9 end into the Sega rear port.

c¢) Wire with spade connector; connect to wire on system card. If you have
a 2 Mb board with a Molex connector, attach the cable to the connector,
taking care to observe proper polarity.

3. Install the PC software (HOST and SHOW) into a directory in your path.

4. Turn on the Sega, and run the PC program called HOST (or type
HOST 2 for the other parallel port)..

5. Type ? at the SegaHost> prompt to see the help screens.

The file formats for the loading commands (L, LS, and VL) are:

Code - binary executable image (Any binary, or 2500 A.D. option X)
Data - binary image (Any binary, or 2500 A.D. option X)

Symbols - 2500 A.D. format option S

Video - as needed by you, no preset format required.

version 2.0 21-February-91 : 2

Operational Notes

The development system hooks into the Sega vertical blank interrupt vector, as well
as the TRAP $F and TRACE vectors. A monitor/debugger resides in the upper 2K or
so of the RAM card. It is protected from being overwritten by any monitor command.
Except for breakpoints and tracing, the vertical blank interrupt must be enabled
(command $81xx bit 5) and the interrupt mask must be $x5xx or below. You can use

a semaphore to logically disable the interrupt while leaving the development system
active.

The vectors are set and daisy-chained automatically by the development system, and
need not be handled manually. You may load your object-file at memory location
zero, and the development system will automatically store your VBlank (external
level 6 at $78), TRACE, and TRAP $F vectors in the monitor area and connect itself.
Your vectors will be called when the monitor/debugger is inactive. However, the
monitor will be unable to stop your code from overwriting the vector table at runtime,
thus disabling the development system.

When displaying memory at the vector table, the monitor displays the data from the
shadow area for the three vectors, as if the monitor were not present.

All commands which deal with video RAM assume that register $8F is set to word
sized auto-incrementing ($8F02). If this is not the case, the video commands will
produce unexpected results.

Before beginning a debugging session, you should usually execute a R (reset) com-
mand from the host to allow the stack pointer and PC to be set properly. If you need
to gain control of the program from the very beginning, set a breakpoint at the first
instruction, reset the Sega, and do a BW (break wait). You can then trace through the
program as needed.

NOTE: DO NOT CHANGE the data direction register or data register of the rear
port while using the development system.

version 2.0 21-February-91 . 3

A View of the SEGA Genesis System

General Features

R N O W oo =

9.

10.
11.
12,
13.

320-by-224 visible screen.

16-colors per character or sprite from a palette of 512.

Four selectable palettes (per character or sprite).

All character mapped screens.

Two screens active with priority (overlaid) with a third non-scrolling screen.
Bidirectional scrolling of screens.

80-sprite "'clusters”, each 1 to 16 characters in size.

16-sprite cluster arrangements (all possible rectangular arrangements
of 1 to 16 characters, 4 max. per dimension).

Sprites are 16-colors each, and have individually selectable palettes.
68000 processor at 8 MHz for main program.

64K of user RAM.

Custom video controller for graphics and sprites.

Yamaha sound controller.

Video Hardware

L

2 P PR G0 b

=

Custom video processor with 64K of internal RAM for character
screens, definitions, and sprites. All video screens and objects are
character-mapped.

Video chip can also read cartridge ROM and user RAM.

Both scan line and V-blank interrupts available.

- Screen sizes (in characters) of 32 x 32, 64 x 32, and 128 x 32.

16-color graphics and sprites.

Palette of 512 colors.

Video controller and it's RAM are accessed through two addresses:
$C00000 and $C00004 . Commands are sent to port $C00004, and
data to the other port.

The Z-80 is able to communicate with the video controller.
Word-sized character pointers.

o Hardware

Audi

1

| Y

2,

3.

The sound controller is a Yamaha YM-2612. At present, we do not
have a list of its specifications.

A Z-80 processor with 8K of RAM resides at the $A00000 address
space. The address buss can be requested by the 68000 to allow
transferring of data to the Z-80.

The Z-80 can read and write to the 68000 ROM and RAM.

version 2.0 21-February-91 4

Hand Controllers

1. The controllers are read by miscellaneous hardware and the button
status is returned encoded in two bytes.

2. The three ports have selectable I/O direction and state.

Programmin nsideration

The current ROM size is 512K, which is equivalent of one-and-a-half IBM 360K
disks. Graphics data must be compressed in order to conserve space, and the use of
languages such as C may be difficult due to the limited space. The video RAM and
system RAM are only 64K bytes each, which limits the number and size of graphic
elements stored in their displayable (unpacked) form.

Address/Register List

000000. .3FFFFF Cartridge space
A0000O. .AOFFFF Z80 address space
10001 Unknown - but used in some software
A10003 Control Pad A
A10005 Control Pad B
A10007 Rear port
A10009 Pad A Data Direction Register
A1000B Pad B Data Direction Register
A1000D Rear port Data Direction Register
AT1100" 780 Buss request
A11200 Z80 Reset
A14000 Unknown - but used in some software
c00000 VidDat - video chip data port
C00004 VidCom - video chip command port

. 20007 RaSTER Posicnd ety
(pocCly [4oy
FFO000. .FFFFFF User RAM

version 2.0 21-February-91 ; o)

General Video RAM Information

The video chip has 64K bytes of RAM which is used to store all of the character data,
screens, control tables, and miscellaneous data. Only the vertical scroll table and the

palette information are stored in the chip registers, and therefore do not occupy any of
the limited RAM.

Internally, the RAM is a contiguous 64K block, but commands from the 68000 must
use a modified addressing scheme, as follows:

- A video address comprises two words. The high word contains the actual address
MOD $4000, while the low word contains the quotient of the actual address / $4000.
To signal the video chip that you are preparing to read video data, the address is sent

as 1§, while to prepare for writing, the high word must be added to $4000. Some ex-
amples:

Actual address VidCom formatted address

Read Write
e
$0000 $00000000 $40000000
$1000 $10000000 $50000000
$2345 $23450000 $63450000
$8000 $00000002 $40000002
$C123 $01230003 $41230003
$F82D $382D0003 $782D0003

There are several video commands available to map the video RAM to the user’s lik-
ing. Character screens are positioned on 8K boundaries, while other elements have
smaller increments available (see following section). Character definitions (data) may
be located i any otherwise unmapped or unused space within video RAM, as the
character/sprite pointers can cover the entire 64K video RAM.

A high speed DMA is available for copying data from the 68000 address space into
ihe video RAM. This process temporarily shuts down the 68000, but it is significant-
ly faster than transmitting the data through the single data port (herein called VidDat).

Nidlom
$000 0 oooo

3‘4!&%@%

Vet Aecasels
?,2{3 PaLeTiE Amgﬁ%
0040 HANGSL

° oo?S'oooo 6000 "’Boo
?6“‘(\4%0 Kar
u

0 1= sctoue ReGasTels
| 0:PneTE RetnsTeks

D:HANGS

version 2.0 21-February-91

Reading Video Ram

Send and address 0000 - 3FFF and bank number 0..3 to VidCom. Read word sized
data at VidDat. Auto incrementing is active (see below and $8Fxx command).

Example: Read long at $D000

MOVE.L #$10000003,VidCom
MOVE VidDat,DO

And if desired...
MOVE VidDat,destination

Writing Video Ram

Send an address 4000-7FFF and a bank 0..3 to VidCom, then write data to VidDat.
Auto incrementing is active (see below and $8Fxx command).

Example: Write $A5AS5 to $C000

MOVE.L #$40000003,VidCom
MOVE #$AS5A5,VidDat
And if desired...
MOVE next data value,VidDat
The auto increment value determines the offset (from the initial address) each
successive piece data is written in video RAM. An offset of 2 (e.g. $8F02 command)
would cause each VidDat write to be placed 2 bytes from the last.

version 2.0 21-February-91) 7

Character Screens

There are three character mapped screens available: the foreground, the background,
and the “clip” screen. The foreground and background screens operate identically,
except for the standard priority difference (i.e. foreground over background if both
priority bits clear). The clip screen is a non-scrolling screen which is mutually exclu-
sive with the foreground. When it is enabled (see 91xx and 92xx), it replaces the
foreground screen in the selected area.

Character pointers: Each is a word in size. The address is the 64K video RAM ad-
dress of the character definition divided by $20.

15 14 13 12 11 10 9 8 7 0
z 4
« |
flip |flip
. » l’
J L“:L_l J
Priority Palette Data pointer
select = address /7 32

Each character definition is 32 bytes:

0 1 2 3

0 | pixel 1|pixel 2

4
4-bits per pixel, 2 pixels per byte
Priority Levels
Highest

Sprite data

Foreground character data OR Clip Screen character data

Background character data
Lowest
If the priority bit in the character pointer of a lower priority image is set, and the bit of
a upper priority image is clear, then the priority sequence of those two images is
reversed. If both bits are set, the standard priority sequence remains.
A pixel value of 0 is always transparent, regardless of the setting of the priority bit.

version 2.0 21-February-91 _ 8

Controller Ports

There are a total of three controller ports: two on the front and one on the rear. The
two front ports are male DB-9 connectors.

The pinout for front ports is:
1 2 3 4 5

o 0 0 0 0
0000/

6 7 8 9
Pin Pin Pin
1. I/OBit0 4- T/O Bit 3 7-1/O Bit 6
2. /O Bit 1 5- +5 volts 8- ground
3. I/O Bit 2 6- 1/O Bit4 9-1/0O Bit 5

The rear port is physically identical, but since it is a female connector, the pin assign-
ments are reversed.

The data I/O ports are one byte wide and memory mapped:
$A10003 = front left port
$A10005 = front right port
$A10007 = rear port

Each port also has a data direction register where each bit is the current I/O state (1=
output, 0= input) of the corresponding data I/0 port bit. The control registers are also
memory mapped:

$A10009 = front left port

$A1000B = front right port

$A1000D = rear port

I/O bit 6 controls which control pad switches will be returned when the I/O port is
read. Therefore, this bit must be initialized at startup to be an output bit (all other bits
rernalit inputs) by writing $40 to the data direction register.

version 2.0 21-February-91 9

When I/O Bit 6 is set, the I/O read returns:

X X C | B |Right|Left| Dn |Up

When I/O Bit 6 is clear, the I/O read returns:

X | X |startf A| X | x |Dn| Up

NOTE: You must delay for a few cycles between the write and the read to the ports,
otherwise the hardware will not have enough time to make the signals stable.

To read the first controller:

Initialize MOVE.B #$40,$A10009 :Set DDR in init code
then to read MOVE.B #%$40,$A10003 :Read first set

NOP

NOP

MOVEB $A10003,D0 ;get status

MOVE.B #0,$A10003 :read the second set

NOP

NOP

MOVE.B $A10003,D1 ;get status

NOTE: DO NOT CHANGE the data direction register or data register of the rear
port while using the development system.

version 2.0 21-February-91 10

Palettes

Four palettes of 16 colors each are located at VidCom write command address
SCO000000. This special address is used because the data is stored in video chip reg-
isters rather than video RAM.

Each palette is a table of 16 words:

| T T T T T
I U[[l@ X I @F’@@Eﬂ X I Red X
Only the upper three bits of each nibble are valid (i.e. values range $0....$E).

Read with VidCom read address of "offset" 0020, such as 00000020 to read palette O
color 0, or 00060020 to read palette O color 3. Auto increment ($8Fxx) is active.

(See also 87xx.)

version 2.0 21-February-91 _ 11

Vertical Scrolling

The vertical scroll table is located at VidCom write command address $40000010.

This special address is used because the data is stored in video chip registers rather
than video RAM.

Command sequence: _
$40000010 to VidCom
<word>: to VidDat foreground screen scroll
<word>: to VidDat background screen scroll
And if column mode is enabled...

<word>: to VidDat Next foreground column
F 8 |7 0
L Yertical line —

Value is the line number of data screen to display at line O of visual screen.
If column enable bit is ON, the first word scrolls the foreground left two columns.

The next word scrolls the background left two columns. Succeeding words similarly
affect foreground and background columns proceeding to the right side of the screen.

(See also 8Bxx.)

This table may be read (see Reading Video RAM) at VidCom read command address
$00000010.

NOTE: The clip screen is unaffected by scroll settings.

version 2.0 21-February-91 12

Horizontal Scrolling

The scrolling table is composed of 16 words for each character line, beginning with
line 0.

Each word contains the pixel offset (from the left edge) of the displayed character line
OF TOW.

Table Format:
<word> offset for foreground whole screen or line 0
<word> offset for background whole screen or line 0
And if enabled...
<word> offset for foreground screen line/group 1
<word> offset for background screen line/group 1

If the whole screen mode is set, the first word scrolls the whole foreground screen and
the second word scrolls the whole background screen. If the scan line scroll mode is
set, the first word scrolls foreground line 0; the next word scrolls background line 0.
Succeeding words scroll the following lines in similar order. In the character line
mode, eight scan line groups are scrolled by the first two words of each 16-word
group. In the combined mode, only the first 16-word group is used to scroll each scan
line. (The first character line group of offsets is repeated down the screen.)

(See also 8Bxx.)

NOTE: The clip screen is unaffected by scroll settings.

version 2.0 21-February-91 13

Sprite Control

All 80 sprites are controlled by a 640-byte structure. Each sprite has an eight byte
control block, as follows:

Byte Offset Data
0,1 Y location word (9 bits) - $80 is screen location 0.
2 Cluster shape 0....$F (see table below)
3 Next sprite block to display; in order of pnonty
o (1...$4F). 0 signals the last sprite.
4,5 W Pointer to data: same format as character screens

= real address F 32

Lﬁ (VK - I TJ
B ' /l;-T— Address of data

Horizontal flip
Yertical flip

Palette select bits

Foreground priority

6,7 X location word (9 bits) - $80 is screen location 0.
A value of 0 will cause disabling or clipping of
lower priority sprites on lines occupied by
higher priority sprites.

(See also 85xx)
NOTE: A maximum of 40 ($28) characters of sprite data may be displayed on any

one scan line, regardless of the sprite X positions. (e.g. Overlapping sprites are still
subject to the 40 character maximum limit)

version 2.0 21-February-91 14

Cluster Arrangement

1 to 16 characters of data can be displayed in the following shapes. The data is
organized by column first, and then row.

Cluster # Shape Cluster # Shape
0 X ©mEEE 8 XXX \ o
1 X 9 XXX
X XXX
2 X A XXX « Gles
X XXX
X KKK
3 X B XXX
X xxx 'en
X XXX
X XXX
4 Xx O C XXXX \\ 0o
5 XX bo R XXXX o
XX XXXX
6 XX 4o E XXXX .,
XX XXXX ‘
XX XXXX
7 XX > L F ‘ XXXX
MK XXXX
XX XXXX
XX XXXX
W HH

Remember, a maximum of 40 characters can be displayed per line.

Control Block Table

The table is 640 bytes long, with 80 8-byte control blocks available. The first entry is
drawn first, then the "next sprite number"” value is used to select which sprite block is
drawn next (at lower priority).

The next sprite=0 control block is last, and signals the end of the table. It has the
lowest priority.

(See also 85xx).

version 2.0 21-February-91 ' 15

Video Status

Sceen FleUec

Read the word at VidCom. These bits are active high.
“ : ©-botz , [2HoHZ

150 [l o fel]el7]|6|s|a|3|2]1]0
— —
Display active Yideo Chip busy,

as in fill operation.
Sprites colh’ded

Horizontal sync

- The v1deo chip busy bit can be tested dunng a fill operatlon to find out if the video
chip is done. Sending another command to VidCom during a fill will interrupt the fill
operation. Otherwise, this bit can be ignored.

Vsync interrupt apparently occurs within two scan lines after bit 3 changes.

Display Active (negative true) is high when $81xx bit 6 if off (screen disabled).

The sprite collision bit changes to one when sprites have collided, either on screen or
off screen. Is is unknown at this time if there is additional sprites collision informa-
tion, such as a collision table of some sort.

Scan Line Information

Read the word at $C00008. The-upper byte is the current scan line position being
drawn, while the. lower byte may indicate the current column being drawn.

version 2.0 21-February-91 ’ 16

Video Chip Configuration Commands

These commands allow you to map or configure the video RAM and video chip to
your specifications. Write each command or command sequence to VidCom. Most
of these commands map the location of display components in the video chip RAM.

80XX Command

7 6 S| 4] 3 2 1 0

;B_liﬁ . Result ;s
0 ‘on: Scrambles display
1 Unknown - but used in some software
2 on: Normal display
off: Dims display and palettes
3
4 on: Scan line interrupt enable (External. interrupt 4 at $70)
5 on: Blanks left character column
6
7 on: Unknown - Seems to disable vertical scroll on a portlon
of the screen
81XX Command
7 6 S 41 3 2 1 0
Bit # Result
0
1 on: Unknown - When bit 2 is off, shows patterns
-2 on: Seems required for normal display
3 on: PAL Display Mode
off: NTSC Display Mode
4 on: Enables fill command and Vid DMA
5 on: VBlank interrupt enable (External Interrupt 6 at $78)
6 on: Screen enable
off: Blank screen to background color
7 on: Unknown - Mapping change possibly for Z80

version 2.0 21-February-91 ' 17

~N AW O

82XX Command

Selects bank for foreground character screen (e.g. character

pointers) on 8k boundary

83XX Command

version 2.0 21-February-91

84XX Command

Bit # Result
T
1 I--- Selects bank for background character screen on 8k boundary
D e
3
4
5
6
7

85XX Command

Bit # Result
0
 R—
3 |--—- Selects Sprite Control block location on 1k-boundaries
4 | '
5 |
[—
7

version 2.0 21-February-91 ' 19

86XX Command

Unused command. 77?

87XX Command

Bit # Result
0
1
2
-3
5.
6
7
Bit # Result
[-
1
2
31
4 |

version 2.0 21-February-91

20

qoxm#wt\)»aolg

=
+

\]O\LII—IE-L»JI\)P—‘O! .

88XX Command

7 6 S| 413 2

E
9%

Unused command. ??7?

89XX Command

716 | 5| 4| 3| 2

~
(9~
72
=
=<

version 2.0 21-February-91

Unused command. ?7?

21

\xmu\#wt\w—*oE

~ NN B LW

on:

S8AXX Command

This register controls the frequency with which scan line

interrupts occur. The basic formula is: An interrupt will

occur-every 1 + n lines, where n is the register value. -~
When set to 0, an interrupt occurs every scan line. When

set to 8, the first interrupt will occur on line 8, then line 16, etc.
This value may be changed during the interrupt for non-regular
spacing requirements.

SBXX Command

Horizontal scroll mode select

.00 - whole screen
01 - scan line/character line. First eight hnes

are repeated down the screen.
10 - character line
11 - scan line
V-Scroll columnar scroll mode enable

Unknown - causes halt sometimes

version 2.0 21-February-91 ' 22

8CXX Command
7 6 5 4 3 2 1 0

0 on: Enables 320 pixel horizontal format
off: Enables 256 pixel format

1 on: Interlace mode enable

2 on: With interlace bit,may display FG character lines
' - interlaced with BG character lines - :

3 on: Shiny/shadow mode enable

4

5

6

7 on: Intensity (also some scan change)

Shiny/shadow mode

When enabled, there are two cases:

A) Any colored, displayed pixel data from sprites or character map pages will be
shown dimmed if its pointer does not have its priority bit set AND the pixel does not
intersect any other character that has its priority bit set. If the priority bit is set in

either case, the plxel will be displayed normally, with proper display priority still in
effect.

B) Sprites may also now be used to dim or highlight, on a pixel-by-pixel basis, any
character map data they overlay. When a sprite uses palette 3, a pixel data value of
$E will highlight the underlying character screen data, while a pixel data value of $F
will dim the underlying data provided the sprite has priority over the character data
that it covers. Any overlaid sprite data of lower priority is erased. All colors,
including black, will be highlighted by palette 3, pixel $E sprite data. Dimming
ncenrs to all colors, but is unnoticeable on black. All of palette 3 is still usable with
normal results by screen character data.

version 2.0 21-February-91 ' 23

8DXX Command

[-

[

2 |--- Address of Horizontal scroll table 1k boundary
3

4

Lo p—

6

7

S8EXX Command
7 6 S 4 | 3 2 1 0
Bit # Result

0 Unused command ?7?

1

2

3

4

5

6

7

version 2.0 21-February-91 - 24

SFXX Command

7 6 S 4 | 3 2 1 0

0

1

3+ |- Auto increment value for video chip. Resets counter to 0 when
4 | changed. | '
5
6
7

This register controls the writing of successive values to VidDat. The value is the
offset, in bytes from the last address used, that each word written to VidDat will be
placed into video RAM. A value of 2 will cause successive words to be placed con-

tiguously in video RAM, while a value of $10 would cause each word to be written
$10 bytes from the last.

- 90XX Command

716 | 5| al3|2|1]0

it Result
0----- 00 characters per line 32
l--- 01 characters per line 64
I 10 repeats top 32 character line entire screen
----- 11 characters per line 128

/!

1

2

3

4 - Unknown - but used in some software
Z] ;.

7

version 2.0 21-February-91 ' 29

91XX Command

Bit # Result

Q-nnmm

1|

2

3 I--- Number of two character-wide columns to clip, O = none.
4 |

o5
[
7 on: Display xx columns from foreground left edge,

. then display remaining screen area from the clip screen
off: Display clip screen data xx columns from left edge,
then display foreground screen data.

92XX Command

716 S| 4| 3| 2 1 0

I--- Number of character rows to clip, 0 = none.

on: Display xx character lines from foreground top,
then display remaining screen area from the clip screen
off: Display clip screen data xx character lines from top,
then display foreground screen data.

version 2.0 21-February-91 ' 26

93xx 94yy 9780 Command

Video Memory Fill

Send the following commands to VidCom to fill video RAM. The data byte (or hi
byte of word data) output for the fill value is written to video memory according to
the auto-increment skip value. 81xx bit 4 must be on for this command to work.

ToVidCom: e T |
93xx 94yy where yyxx is fill length -1
9780

<Addr> <Bank> with bit 7 of low word set
<fill data> (Byte, or high byte of word) Send to VidDat

Example:

Fill $C000 to $C3FF with A5 ,
MOVE #$8F01,VidCom ;Set byte auto inc
MOVE.L #$93FF9403,VidCom ;Length -1
MOVE #$9780,VidCom :End command
MOVE.L #$40000083,VidCom ;Address
MOVE #$A500,VidDat :Data

version 2.0 21-February-91 ' 2

93xx 94yy 95aa 96bb 97cc Command

Video Memory DMA (copy)

You can instruct the video controller to DMA the main address space for data as fol-
lows. 81xx bit 4 must be on for this command to work.

To Vidcom:
93xx 94yy Where yyxx is the number of words to copy.
7 Auto Inc s active.
'95aa 96bb 97cc Where ccbbaa is the long address of the source
' data divided by 2.
<addr> <bank> Address of video memory to copy to,
and bank number with bit 7 set.

Example:
To cause the video chip to read all four palettes ($40 words) from $FFE000 in the
68000 RAM area.

MOVE . #$8F02,VidCom ;Set byte auto inc
MOVE.L #$93409400,VidCom ;Length
MOVE.L #$950096F0,VidCom ;Address lo and med

MOVE #$977F,VidCom :Address hi
MOVE.L #$C0000080,VidCom ;Address
MOVE #$A500 VidDat :Data

SoulR E N, ¢ et (
: Thls command forces aone t1me copy of the data to video RAM. IT CANNOT
CROSS a 64k * autoinc value boundary (e.g., if autoinc = 2, can't cross 128k).

During vertical blanking (when the video display is not fetching data), the transfer
rate is 2 Mb per second. However, during display time, the DMA access is inter-

leaved with video display access, and the rate drops significantly. The same slow-
down (during display time) will affect direct writes from the 68000 to video RAM.

2)
r D ’ l,v / - ;A i ! ! Aal == N a1 a
IS Wikl Cppee Z80 NTH YT KoL = DA TSOLG B L K

version 2.0 21-February-91 28

Appendix A

Allooo Z.-80 Coprocessor

780 Buss request $A11100
Send a $0100 to request the ZSO Buss (Wthh is mapped in the
68000 $A00000 space) " Tile 280 BoshA LINE Lt
Read 1(00at1on to verlfy grant 0 granted (blt 9) Vahd only when not reset.

enl
LANE

780 Reset line $A11200
.- Send a 0000 to hold the Z80 reset line low. Send a $0100 to start the
780. A delay between the low/high transition should be performed
in order to allow the reset cycle to be complete. Example:
MOVE #0,5A11200 :reset
MULU DO0,DO ;delay
MOVE #$0100,$A11200 ;start ‘er up

Addresses $A00000 through $AO01FFF are the 8K Z80 RAM (Z80 addresses $0000
through $1FFF).

Addresses $A04000 throdgh $A04003 are the sound chip register/data address pairs,
which are located at $4000 through $4003 for the Z80.

Address $A06000 (Z80 address $6000) is the Z80 memory mapping register. This
register controls what area of RAM or ROM will be “seen” by the Z80 in its upper
32K of address space.. Set this “window” by writing to the map register at $6000.
Nine successive bytes must be written to this register. Only bit O is significant for
each byte, and the bits are written from lowest significant bit to the highest. These
nine bits represent the upper nine bits of a 24 bit absolute address in the 68000 RAM
or ROM.

Addresses $A08000 through $AOFFFF are the Z80’s 32K “window” into the
680000’s address space

Address $COOOil, when accessed from either the Z-80 or the 68000, seems to write
data directly to the sound attenuation registers.

The 7-80 reset line is held low on power up; i.e. in a permanent reset state. All data
transfei or buss request operations are valid only When the Z 80 is in a non-reset state.

(9] THé
:,:‘)\/k
{

ia = 5/

version 2.0 21-February-91 ' 29 RISAK -

’ - e
NeaT=3Y
AT

NOTE: When reading or writing from the 68000 to the 7Z-80 address space, use
BYTE sized operations only.

Miscellaneous information:

Int 38h occurs at twice the screen refresh rate (120 Hz for NTSC systems)

Set IM 1 on startup.

The Z80 clock speed appears to be 3.57 MHz, the colorburst rate.

An invalid read from the upper 32K “window” of the Z-80 seems to always return a
value of $FF.

Digitized Audio

‘The Yamaha sound chip has a 8 bit D/A converter which can be used for replaying
digitized audio samples. - This feature is available in the first pair of register and data
addresses at $4000 (register number) and $4001 (value for register).

Enable the D/A converter by writing a $80 to register $2B. Disable the mode by writ-
ing a $00 to register $2B.

LD A,2Bh :Set D/A mode active
LD 4000h,A ;by writing to register $2B
LD A,80h

LD 4001h,A ;with a $80
Once enabled, the audio samples are sent to register $2A from a software timing loop.
A typical program will delay with an empty DNJZ loop with a count appropriate to
the sampling rate of the data. Then send the data to register $2A.

LD A,2Ah ;Write the amplitude to $2A

LD 4000h,A
LD AC ;Let’s say that the datais in C
LD 4001h,A

version 2.0 21-February-91 30

Appendix B

Items requiring further study:

1) Twelve words of information may be read from $C00004 (VidCom) through
$CO000F. While some of this information is currently known, there may be signifi-
cant status and/or configuration information present in these data.

2) Access to $C00011 from the Z-80 or 68000 seems to write information directly to
the audio chip’s attenuation registers. Could this chip be memory mapped in this ad-
-dress space? . : Lo

3) The video commands $86xx, $88xx, $89xx, and $8Exx are completely unknown.
It is unlikely that they are unused, just that their effect is unknown because of interre-
lationships with other settings.

4) The video commands listed below have unknown bits, or bits whose definition is
not entirely certain.

$80xx bits 0,1, and 7

$81xx bits 1,2, and 7

$8Bxx bit 6

$8Cxx bits 1 and 2

$90xx bit 4

version 2.0 21-February-91 . 31

