BIA|S|F C| GIAIMIELS
| TPTRIOTGIRIAIMIM[T[N]G

GRANDSTAND
3 E WITH 3
I 1? %E%ZK SEGA SC-3000 ng

— — p— - e ————— e —— - - —

Basic Games Programming

Chapter One

SPRITES AND GRAPHICS

How to work in binary, hexidecimal and decimals
Designing Sprites and Graphics

Use of Colour in programs.

Chapter Two
SOUND

Beep Command
Sound Command

Sound Effects and Music

Chapter Three
SOUND
How to use the keyboard in games

Use of joystics

Chapter Four

GAMES PROGRAMMING AS AN ART
Manipulating the screen

Video Ram Map

Use of VPOKE and VPEEK

Run Down of ‘“Maze-Chase’’

GLOSSARY

Introduction

The Sega SC3000 has been with us a short while now, and some ex-
cellent programs are emerging sporting excellent graphics and sound,
Dollar for dollar the SC3000 beats most home micro’s as far as graphic
and sound capabilities are concerned. The reason for this is that Sega
have been in the Video Game industry a long time and have many years
of experience behind them in dealing with such matters.

This book and program will show you how to develop programming
skills in games writing by producing stunning graphics and sound. The
book and program are meant to run hand-in-hand, therefore, it is im-
portant that you always cross reference.

The book contains numerous exercises and programs for you to ex-
periment with.

One final note, when experimenting with graphics and sound remember
to always say to yourself ‘“What would happenif 77, try alter-
ing a few variables, add a few lines, delete a few lines, you may amaze
yourself with what results you get!

ENJOY YOURSELF

CHAPTER ONE

~-:. Sprites and Graphics

HOW TO WORK IN BINARY, HEXADECIMAL AND DECIMAL

All data in a computer is stored as groups of bits. A bit stands for Binary
digit (a “@”’ or *‘1°’). Because of the limitations of conventional elec-
tronics, the only practical representation of information uses two state
logic (the representation of the state ““@’’ or ‘‘1°’). The two states of
logic circuits are ““on’’ and ’’off’’. These are represented by “‘0’’ and
717’ respectively, this is termed, ‘‘Binary Logic.”” As a result, virtually
all information stored today in home micros is in the form of a group
of 8 bits. A group of 8 bits is called byte. A group of 4 bits is called
a nibble.

Figure 1.1
1 NIBBLE

1 BIT

1 BYTE

BINARY — DECIMAL

Representing a number in this 8-bit form is not quite straight forward,
and is extremely important that you grasp the principals, as this is us-
ed a lot in Sprite — work. The bits in a byte are numbered and named
as follows:

Figure 1.2 7 6 5 4 3 2 1)

LEAST SIGNIFICANT

MOST SIGNIFICANT
BIT BIT

Thle n;lmbering system may look a little bit stupid being -7, why isn’t
it 1-8?

The answer is quite straightforward, look at the number 180 (decimal).
‘180"’ represents:

1 X 100 = 100
+8 X 10 = 80
dx 1= 9
= 180
Note that 100 = 10° or 10 x 16 (also 10 squared)
10 = 10" or 10
1 = 10r 1 (any number to power 0=1)

also 10" = 1;10' = 10;190*> = 100 (lﬂx 10 x 10)'1@4 = 10,000
? 4 % ’ s

As I am sure you know decimal is to the base ten: all numbers are
repr.esented as base ten, but in binary numbers are represented in base
2 (binary = bi meaning two). Now back to the original question; why

%s the pumbering #-7 and not 1-8? Remember the numbering system
in decimal is:

104, 10, 102, 10", 10°

In binary it is the same:

28, 23,122, 2 328

Where 2° = 1 (Remember any number to power § = 1)

2 =2

2 =4 (2X2)

2 =8 (2X2X2)

24 = 16 2X2X2X2)

27 = 128

Look at the powers of 2.0, 1,2,3,47 (ie. 2°,2',2%,2°,2* 27)
which is @-7.

To recap

10° = 1 4 201= 51

10" = i0 AR i)
10> = 100 , 22 =4
10° = 1000 , 22 =8
10 = 10000 , 2* = 16
10° = 100000 , 2° = 32
10 = 1000000 , 2° = 64

19" = 10000000, 2' = 128

Before continuing note the difference between I and 1 as this will need
to be accurately copied in each program.

Try the following program 1.1

10 CLS
20 FOR A = 0 TO 7 : PRINT ““10 TO POWER;A;“=""; 10AA:NEXT A
30 FOR A = 0 TO 7 : PRINT “2 TO POWER”’; A; “= "’; 2AA:NEXT A

Ignore any extra decimal places, these are just small inaccuracies caus-
ed by the arithmetic unit in the computer (nothing serious!)

So now we can represent a number in binary.

Fig 1.3
A N LR A - e L
5 Dz g 1| e |1 0 0
7 TR MR SRR S 1 0

No doubt you are asking yourself, ‘“what is this ‘10110100’ that is

appearing in the byte’’? Well that is the number 188! (In binary not
decimal)

NOTE 10110100 Binary is NOT equal to 10 110 100 decimal

180 in decimal is shown as

1 X 100 = 100
+ 8 X 10 = 80
+ 0 X l.=- 0

= 180

which is equal to

1 x 10 = 109
+8 X 101' = 80
+0 x 10°= 0

= 180

10110100 in binary is shown as

1 x 128 = 128 (27)
+0

X 64 = 02
+1 X 32 = 32(29)
+1 X 16 = 16 (29
+B X 8= 0(2)
+1X 4= 4()
+0x 2= 0(Q)
+0 x 1 0 (2%

180 decimal

Therefore, 10110100 is equal to 180, understand?

There is another example: What is “@0@10101°’ binary in decimal?

Remember: The leftmost bit is the most significant = 27 = 128
The rightmost bit is the least significant = 2° = 1

and that 2= =8 2° = 64
=1 281=516 21 =128
Pik= 23 vi=~32

8

Therefore 00010101 =

B x 128 =0
+0 X 64 =0
+0 X 32 =0
+1 X 16 = 16
+hx 8=0
+1 X =4
+0x 2=20
+1 x 1=1
= 21 decimal

The following program allows you to enter an 8-digit binary number
and the decimal version is produced.

Program 1.2

10 INPUTENTER A BINARY # (LENGTH = 8)’’;B$

20 IF LEN (B$)< >8 THEN 10

30 DATA 128, 64, 32, 16, 8, 4, 2, 1

40 RESTORE: T=0:FOR A = 1 TO 8: READ B: IFMID$(B$,A,1)=*1""THEN
T=T+B

50 NEXT A

60 PRINT “DECIMAL="";T

LINE 10 The command input tells the computer to expect infor-
mation from the keyboard operator, this information
must be numeric, ie. @ and 1. Whatever is inserted in
quotation marks after the command will be displayed on
screen as a prompt, the information is then stored in a
memory location which is labeled by you, in this instance
we have chosen BS.

LINE 20

LINE 30

LINE 40

LINE 50

10

Checks the length to make sure if the information is the
required length ie. if the length of the information stored
in location B$ is less than, 8, or greater than 8 then go
back to line 10 and ask for the information again. If not
then go on to the next part of the program.

Holds the data to be read and used by the program in
sequence.

(see page 63-64 handbook). Restore. Tells the computer
if it has read a full line of data previously, that it can
go back and read a data line again from the beginning.
T =0 sets the value of variable T, to §. For A = 1to 8
sets the value of A to firstly 1, then 2 and so on up to
8. Read B sends the program to the data line, where it
reads the first piece of information (128) and loads it in-
to the location called B. Next the program says the com-
puter must look at aspecific part of the information stored
as B$ which would have been entered as a mixture of 8
zero’s and ones. This is done by using Mid BS$ (see page
83) where you must tell the computer where it must start
looking in the length of the string and where it must stop.
In this case it starts looking at A and as A=1 to 8, A
is first of all, 1, then it finishes looking there as the next
number is also a 1 which means it only wants one number.
therefore, IF the section we are looking for in B$ which
is the first number of the 8 that are there = ““1’’ then
the number stored in T which was @ is now to be added
to whatever is stored in B, which is at the moment 128
if not leave T as it is.

Next A sends the program back to the part of the pro-
gram where A was established, and as A was originally

1, it now becomes 2, and then continues along the line,
reading B, having already read the Ist piece of data it
goes to the next and replaces that new value in location
B. (64) It now looks again at the list of numbers in B$
and as A now is 2, looks at the second digit in the row
to see if that isa @ or a 1, if it is a 1 then the number
in B is added to the number in T. If it is a @, T stays as
it is. This will continue until A reaches 8, when there are

no more values left to be given to A, it continues to the
next line.

LINE 60 The computer displays whatever is between quotation
marks on screen, and displays whatever the ultimate
value is stored at T.

NOTE: It is very important that you get into the habit of showing all
preceding ““@”’ ’s in binary (eg. 00010161 not 19101).

EXERCISES

1.1 How many bites are there in a nibble?

1.2 How many nibbles in a byte?

1.3 What two digits are used in binary?

1.4 What is ““11111111”’ in decimal?

1.5 What is ‘‘00000000’° in decimal?

1.6 From the above two questions what are the minimum and
maximum number that an 8 bit byte can represent?

ANSWERS ON PAGE 36
Decimal — Binary

Now that you know how to convert Binary to Decimal, lets see how
decimal is changed to binary.

11

This is very simple indeed, as an example take the decimal number 49

to binary.

49 +2 = 24, remainder 1
|

[;4 +2 = 12, remainder (1}
|

LE+ 2 = 6, remainder 7]
|

l;+ 2 = 3, remainder 0
el

E 32 = 1, remainder 1
o

L 1522 = ag, remainder 1

1

The binary equivalent is 110001 (read right-most column from bottc_)m
to top), but remember 110@@1 is not correct as it contains only 6 digits,

therefore, pad out with “@”’ ’s — 00110001:

therefore 49 decimal = 00110001 binary. Easy!

The following program converts decimal binary.

PROGRAM 1.3

16 INPUT“ENTER A NUMBER (#-255):””;N:N =INT (N)
20 B$=“":N1=N:IF N <@ OR N >255 THEN 10

30 IF N1/2< =@ THEN 60

40 N$ =STR$(N1 MOD 2):N1 =INT(N1/2)

50 N$ = RIGHT$(NS,1):B$ = N$ + B$:GOTO 30

60 IF LEN (B$)< >8THENB$ = ‘0"’ + B$:GOTO 60

76 CLS:PRINT N;*“="";B$

12

LINE 10

LINE 26

LINE 30

LINE 46

LINE 50

The computer prints a prompt for you to enter a number
between @ and 255, and waits for that number to be in-
put. It sotes it as N. Then N = INT(N) rounds the
number up or down in case a percentage number is put
in ie. 11.75 would become 12.

Creates a location called B$ which at present must be left
empty, then NI=N creates another location holding the
same value as N. Then the line checks to make sure the
number that is entered in the required range ie. between
@ and 255, if not it goes back to line 10.

If the amount stored in NI when it is divided by 2 is less
than or equal to @ then cut out the rest of the program
and jump straight to line 60.

When data which is entered is stored in a box with a label
$ it is not stored as a number, just a digit, therefore, if
1 was stored in A$ and 2 was stored in B$, the result of
adding AS + BS$ would be 12 not 3. The statement STR$
reverses this situation, and enables information stored as
a number to be treated as a string, therefore, the opera-
tion in brackets is carried out first, which takes the
number stored in NI divides it by 2, and the MOD, means
that whatever the remainder is, is the amount required.

That amount is then stored as a string in N$ (See page
86). Next the number in NI is reduced by half, by dividing
by 2, making sure the number is whole.

Because the remainder in any calculation divided by 2 is
bound to be either @ or 1, N$ will carry one of these values
BS also carries the value of @, which is now added to the
value of N§, as the numbers are stored as strings B$ will

13

now become either @@ or 16 so you can see a binary
number is being formed, the program is now sent back
to line 30 where the process is repreated, and NI is con-
tinually halved until the amount is less than or equal to .

LINE 60 Checks to make sure the binary value is 8 digits long if
not another @ is added to the left hand side until it is.

LINE 76 Clears the screen in readiness for the final result. The
computer then displays the original decimal number
which was typed in and stored in N, then prints the =
then the binary conversion stored in BS.

ie. 255 = 11111111 or @ =00VVVOOOD

EXERCISES

1.7 convert 27 decimal to binary.
1.8 Convert 252 decimal to binary and back to decimal.

ANSWERS ON PAGE 36

USING HEXADECIMAL (or Hex)

As binary is to base 2, and decimal is to base ten, hexadecimal is to
base 16 (hexa — six, deci — 10, 16+ 6 =16 hexadecimal).

IN base 2 the digits @ and 1 are used,

in base 10 the digits 0,1,2,3,4,5,6,7,8, and 9 are used,
in base 16 the digits 01,2,3,4,5,6,7,8,9,A,B,C,D,E and F are used

14

CONVERSION CHART FIG 1.4

DECIMAL BINARY HEXADECIMAL
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 o111 7
8 1000 8
9 1001 9

10 1010 A
113 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

In he>f, a group of four bits (a nibble, remember?) is encoded as one
hex digit (refer Fig 1.4) also (refer P117) of operators manual).

This makes converting a binary number to a hexadecimal number easy,
as 1 byte of 8 bits is made up of 2 nibbles or 2 hex numbers. This is
done as follows, take the number 49 (decimal).

49 decimal = 00110001

15

@0110001 is broken down into 2 nibbles
@011 and 0001
now looking at Fig 1.4, 0011 = 3 hex
and 0001 = 1 hex
49 decimal = 00110001 binary = 31 hex

Another example, 215 decimal

215 decimal = 11010111 = 1101 0111

1101 = D hex
111 7 hex

215 decimal = 11010111 binary = D7 hex

As the above example shows, storing a number in hex form is actually
quite memory efficient requiring only 2 digits to store and number from
0-255.

The following program allows you to enter a number in decimal or hex
or binary and then that number is converted to the other two number
systems (eg. hex — decimal and binary). The Sega allows direct entry
of hexadecimal, this is done by prefixing the number with &H.

eg D7 hex = &HD7, FBhex = &HFB etc.

To convert Hex — decimal or Hex — binary, work in the opposite direc-
tion. eg. 6Bhex =>6Hex = @110, Bhex = 1011 =>@1101011 binary
which is equal to 107 decimal. :

16

PROGRAM 1.4

10 CLS

20 PRINT “IS DATA H)EX, D)ECIMAL OR B)INARY”
30 D$=INKEY$: IF D$=“"THEN 30

49 IF D$=““H”” THEN GOSUB 100:GOSUB 220:GOTO80
50 IF D$=““D”’THEN GOSUB 130:GOSUB 220:GOTO 8¢
60 IF D$ = “B”” THEN GOSUB 160:GOTO 80

70 GOTO 30
80 CLS:PRINT“HEX. .. .:”;HEX$(N),, DECIMAL:"’;N,,“BINARY:"’;B$
99 GOTO 20

100 INPUT““ENTER HEXADECIMAL # (&H00-&HFF)’’;N
110 IF N<&H@9 OR N>&HFF THEN 100

120 RETURN

130 INPUT““ENTER DECIMAL # (8-255)";N

140 IF N<® OR N>255 THEN 130

150 RETURN

160 INPUT“ENTER BINARY # (8DIGITS)”’;B$

1701F LEN(B$)< >8 THEN 160

180 DATA 128, 64, 32, 16, 8, 4, 2, 1

199 RESTORE: N=@:FOR A=1 TO 8:READ B:IF MIDS$(B$,A,l1)=1"THEN

N=N+B

200 NEXT A

210 RETURN

220 B$=‘"":N1=N

230 IF N1/2< =¢ THEN 260

240 N$=STR$(N1 MOD 2):N1 = INT (N1/2)

250 N$ = RIGHTS (NS$,1):B$=N$ + B$:GOTO 239

260 IF LEN (B$)<8 THEN B$=“0" + B$:GOTO 260

279 RETURN

LINE 30 INKEYS tells the computer to wait until a specified key
is pushed on the keyboard, (page 99). If no key is push-
ed it continues to wait on that line.

LINE 46 If the key pushed is ‘““H’’ (for hexidecimal) then the pro-
gram will jump to a subroutine which resides on line 100

17

LINE 50

LINE 60

LINE 70

LINE 86

LINE 96

LINE 160

LINE 119

LINE 120

18

(see page 54). When all the commands there are carried
out it will return the program to this line to carry out the
next command, which is to jump to another subroutine
on Line 220 and then to jump to line 8@.

If the key pushed is D (for decimal) the subroutines on
lines 130 then 220 are carried out before going on to Line
80.

If B is pressed (for binary) subroutine on Line 16 is ex-
ecuted before going on to Line 8@.

Should any other key be pressed the program returns to
line 3@ until one of the keys is pressed.

This line will only be executed once the calculations in
the subroutines have been carried out, as this is the line
which they all eventually return to. It clears the screen
before printing out the eventual values of the informa-
tion stored as variables N and BS.

Starts the program running again.

This is the subroutine which is executed when a number
is to be converted from hex into decimal and binary. The
screen will prompt for a value between & H@0 & Hff

which it will store as N.

Checks to see that the entry is within the required range
which is not less than or greater than those asked for.

Returns to line 40 where it then jumps to line 220.

LINE 226

LINE 130

LINE 140

LINE 150

LINE 166-
200

To continue the way the program runs we must now
follow on with explaining this line. B$ is created, with
a value NIL, and the Hex value of N, is copied into NI,
the routine which was explained in program 1-3 to con-
vert a decimal figure into binary is now performed on
the hex number held in NI. This program covers lines 230,
240, 250, 260, before returning to line 40 from line 274.

The fact that in this program the computer has a hex
number instead of a decimal number to work with and
continually halve, makes no difference. Because the com-
puter recognises these two methods of counting in exact-
ly the same way and is happy to calculate with either hex
values or decimal values entered.

Prints a prompt for and awaits the input of a figure bet-
ween 0-255, then stores that as value N.

Checks to make sure it is within the range, if it is the pro-
gram continues if not, the information is rejected and the
prompt is displayed again.

Returns the program to Line 50, where it then jumps to
line 220 where the same calculation is carried out as
above.

Performs the calculation as in 1.2 to convert binary to
decimal before returning and going direct to line 80.

To clarify line 84, now further, the Ist print statement tells the com-
puter to display everthing on that line which is between quotation marks,
with whatever is stored in the variable which is after the semi-colon
next too it. The two commas which divide the information inside the

19

sets of quotation marks means information will be displayed on cc
secutive lines. As mentioned before the computer will treat decimal
numbers the same as Hex, therefore, the value held as N, will be
displayed as hex when told to ie Hex$(n).

EXERCISES

1.9 Convert 91 decimal to hex to binary.

1.a Convert 10110110 to hex.

1.b Convert AB hex to binary to decimal.

1.c Write a small program to convert a hex number to decimal without
using a direct approach. In other words imagine that hex is not
directly convertable to decimal, ie the hex number is a string not
numerical.

Also incorporate error trapping — make sure data is in range
0-F. (HINT: Use the following line 10 DATA
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F and that if you are given a number
say 9B, the decimal equivalentis 9 X 16 + B, = 9 X 16 + 11
= 155 decimal).

ANSWERS ON PAGE 36

DESIGNING SPRITES AND GRAPHICS

You may be wondering what on earth binary, decimal and hex have
got to do with Sprites!

20

Well first of all a formal definition of a Sprite: A Sprite is an array
(or matrix) of 8 x 8 dots, these dots can be placed anywhere within
the matrix, therefore, defining a shape. This shape can be placed and
moved all over the screen without interferring with the background,
thus producing high-resolution movement. Sound like mumbo-jumbo?
Not to worry, all will become clear!

Remember what a Byte is? It’s a matrix of 8 bits by 1 bit.

FIG 1.5

1 BIT |

8 BITS

Now remember what I said a Sprite is, a matrix of 8 X 8 dots or bits.
In other words 1 byte X 8 bytes, or 8 bytes one after the other, placed
on top of each other.

Fig 1.6
$ 8 BITS

8 BITS

Now imagine we want to define a shape such as ¢ \!:' >’ (this is a
purely abitary shape, you can define many million more).

21

First we transcribe the shape onto an 8 X 8 matrix.

FIG 1.7
Okay so far?
Now where there is a ‘“ B ’’ this is
equal to a ““1”
Where thereis a *“ O ”’ this is equal
to a ‘““©0” thus getting the data into
binary.
FIG 1.8 BINARY DECIMAL HEX
Therefore 10011001 153 99
10111101 189 BD
g11111180 126 7E
00111100 60 3C
00111100 60 3C
00100100 36 24
01100110 102 66
01100110 102 66

(Refer to page 115 of the users handbook).
Now we have the information for the sprite, we must define it to the

computer. This is done using the pattern command. The format for
pattern is as follows:

22

SH ey sa R data....... »” -for sprites

/
\ CH .«)

i data....... -for user definable

PATTERN

graphics
(explained later)

At the moment we are concerned only with Sprites. In our case we want
to define sprite no.@ (these are 32 different sprite no. (8-31), this giving
us up to 32 different shapes which we can define ourselves, and it seems
fairly logical to start at sprite no. @). This is done as follows:

PATTERN S# 0, “99BD7E3C3C246666”’

The data inside the quotation marks is the data for the shape, which
we got from Fig 1.8, see all that hex data? Well all you do is join it

all together to define the ¢ ‘:!:’ > shape, and put it after a pattern
statement.

TO RECAP

PATTERN S#=SPRITENO, “..... HEXADECIMAL DATA..... 4
and in our case we want to create Sprite # @ therefore we get:
PATTERN S#0¢“..... HEXADECIMAL DATA..... i

and the data for the shape is 99BD7E3C3C246666 therefore
PATTERN S# 0, “99BD7E3C3C246666’

would define what we want

The number which follows the word PATTERN S#, can be any value
you choose, up to 255, therefore, it is merely your title which gives the

pattern a reference number which will later be assigned to a sprite to
be used in the program.

23

Now that we have defined our sprite we must be able to move it around
on the screen, define its colour etc. This is done using the sprite com-
mand (pretty obvious).

The parameters for the command are as follows:

Sprite 0-31 Pattern No, (x-coord, y-coord), Pattern No, Colour
generally the screen No, and the Sprite number are the same.

Example; SPRITE 0, (100,27), 0, 13

Would put pattern @ (the shape \:H:’ @ onto Sprite @ at co-ordinate
109,27 in a magenta colour.

NOTE: Sprites can only be used on the high-resolution screen (screen
2,2) and not on text screen (screen 1,1).

Now we have all this information let’s write a small program to move
a sprite.

10 SCREEN 2,2:CLS

20 PATTERNS# 0, “99BD7E3C3C246666"
30 FOR 1=0 TO 255

49 SPRITE 0,(1,96),0,13

50 NEXT I

60 GOTO 30

LINE 10 Previously we have only worked in the text screen. We
must now call the graphic screen (Drawing screen) using
screen 2,2:CLS to clear the screen.

LINE 20 Draws our little frog shape which we call pattern 0.

LINE 30 Sets the variable for I from 0 to 225.

24

LINE 40 Assigns our pattern to the sprite number @ and positions
it on the screen at I on the X axis which is currently @
and 96 down and Y axis which is halfway down the
screen.

LINE 50 Sends the program back and changes Y to 1, which then
moves on to line 30 changing the position of the Sprite
one place along the x axis, this continues until I =255,
which means our frog moves right across the screen.

LINE 60 Sends the program back to the beginning where it once
agains becomes @. To increase the speed of movement
across the screen you use the step command on Line 30 ie.

FOR I =0to 255 STEP 2 or STEP 3 and so on. Ideally
the step should be divisible into the maximum co-ordinate
ie.:255:

To move the Sprite up the screen instead of across, try changing line
30 to FOR I = @ to 191 and Line 40 to SPRITE @, (128,1),0,13.

Remember the co-ordinates for the X axis must not exceed 255 or For
the Y axis 151 which is the maximum resolution.

PRECEDENCE OF SPRITES

If two sprites pass over each other, which Sprite takes precedence? ie.
which one passes behind the other? Well try the following program.

PROGRAM 1.7

190 SCREEN 2,2:CLS

20 PATTERNS #0, ‘““99BD7E3C3C246666’:PATTERNS #1,
{‘FFFEEFFFFFFFFFFE’’

30 FOR I = 0 to 255

49 SPRITE 0, (1,96),0,1:SPRITE 1, (255-1,96),1,2
50 NEXT I
60 GOTO 30

LINE 60 Calls the graphic screen, and clears it.

LINE 20 Creates the Frog pattern @ and a block pattern 1.

LINE 30 Sets the value of variable I.

LINE 460 Assigns the frog to Sprite @ and the block to Sprite 1.

LINE 560 As the value of I increases the frog moves from left to
right. Because Sprites with lower title numbers are senior
to higher numbers the frog moves over the box, therefore,

Sprite @ is the most significant sprite, Sprite 31 is the least
significant sprite.

Try the Following alteration to Program 1.7:

20 PATTERNS#1,“99BD7E3C3C246666”:PATTERNS# 0, ‘FFFFFFFFFFFFFFFF”’

This time the box has precedence. This is because Sprite# @ has greater
priority over Sprites#1, and Sprite#1 has priority over Sprite#2 etc. . . .

It is extremely important that you understand the principle of priority
and precedence.
So to sum up:

SPRITE#D has priority over Sprite#1 has priorityA over Sprite#2 has

priority over Sprite#3 has priority over Sprite#4 Sprite#30 has
priority over Sprite#31.

UNDERSTAND? GOOD! (Read Page 121-122 Sega owners
Handbook).

26

MAGNIFICATION, LARGER SPRITES AND THE MAG
COMMAND

Once you have defined your sprite it is actually possible to double its
size by using the MAG command. Normally MAG is set to @, this
means, ‘“‘draw the sprite on the screen at normal size’’, but if you enter
MAG 2, you can double the size, try this program.

PROGRAM 1.8

10 SCREEN 2,2:CLS

20 PATTERNS# 0,“99BD7E3C3C246666”
30 MAG 2: FOR I = 0 TO 191

49 SPRITE @, (128,1),0,13

50 NEXT 1

60 GOTO 30

LINE 10 Call high resolution screen. Clear Screen.
LINE 26 DEFINE SPRITE 4.

LINE 36-58 Cause the Sprite to double in size, move Sprite# @, down
centre of screen.

LINE 60 Repeat movement.

See how big the Sprite is? It has actually doubled in size! Not bad is
it?! Try altering the MAG command in Line 30 to mag 0 to get back
to normal size and re-run program to contrast the difference.

Now you are probably wondering, ‘‘Okay we have MAG @ and MAG
2, but what has happened to MAG 1?”’. Well Mag 1 does exist and
so does another Mag, MAG3. These two enable you to create one large
sprite out of 4 little ones.

27

Basically it goes like this:

1 Draw out your image, roughly
2 Divide the image into four sectors
3 Draw four sprites out of the four sectors as follows:

FIGURE 1.9

SPRITE SPRITE
#0 #2

SPRITE SPRITE
#1 #3

4 Define all 4 sprites

5 Incorporate in program

Here is an example. I want to make a big alien, realizing this could
not be done in one sprite I decided to join 4 sprites together.

Firstly draw out a rough idea of what you want: FIGURE 1.A

FIGURE 1.A ” FIGURE 1.B ‘.

Now divide the little fellah into four areas FIGURE 1.B
The top left hand bit is turned into Sprite # 0

The bottom left hand bit is turned into Sprite #1

The top right hand bit is turned into Sprite #2

The bottom right hand bit is turned into Sprite #3

The following program defines all four sprites and turns it into a big
sprite.

28

10 SCREEN 2,2:CLS

20 PATTERNS # 0,“0003071F3F616D61”’

30 PATTERNS#1,““7F3F0D183078CCCC”’

40 PATTERNS#2,“‘00COEOFSFC86B686’

50 PATTERNS#3, “FEFCB0180C1E3333”

60 MAGL:FOR I = 0 TO 255:SPRITE ,(1,96),0,4:NEXT I:GOTTO 60

LINE 10 Call high resolution screen and clear screen.
LINE 20-50 Define all 4 sprites.

LINE 60 Set sprite size to 4 small size sprites joined together, and
move dark blue sprite across centre of screen, then repeat.

Notice how in line 60 there is only one sprite command, this is because
when the computer see’s the MAG 1 command it thinks, ‘‘Ah,-ha sprite
0 is actually sprites @,1,2 and 3 all joined trogether!”” (Well it doesn’t
actually say that, but words to that effect!). Now this also works for
all the sprites, as follow:

#) - #3 - called Sprite #0

#4 - #1 - called Sprite #4

#8 - #11 - called Sprite #8

#28 - #31 - called Sprite #28

Look at pp118-120, user handbook.

Remember how when you had a single Sprite, you could double it’s
size using the MAG 2 command, well you can do the same with 4 sprites

joined together using MAG 3, to find what it does alter line 6@ in pro-
gram 1.9 to MAG 3.

For other examples of sprites try the program on page 170 of the Users
handbook. Also look at the examples of Sprites on the second screen

29

of the ‘‘Basic Games Programming’’ tape. The first Sprite (the box)
is an example of Mag @, the red sprite that goes from bottom right to
top left is an example of Mag 1, and the blue sprite that rises to the
top of the screen, and then goes to the bottom right is an example of
MAG 3. The above part of the program lies between lines 250-350.

Once this page is over you are given a chance to design your own sprites
by using the next point of the program called ‘‘Create-a-sprite’’.

You first enter whether you want to define a sprite or a user-definable
graphic. What’s a user definable graphic (UDG)? I here you say. Well
a UDG is really a sprite to a certain extent in that you can define it,
but that is where the similarity ends. A sprite is designed on an 8 X
8 matrix, a UDG is on a 6 X 8 matrix, notice how a sprite doesn’t
leave a trail behind it well a udg does, there are 32 sprites and 256
UDG?’s, a Sprite can only be printed on the high resolution screen, a
UDG can go on either the text screen or the high-res screen, and final-
ly the entire character set (see page: 154, 155 users handbook) is nothing
more than a load of UDG’s, and this means that you can define your
own letters as you see fit, in exactly the same way as you would a Sprite.
The only difference is in the PATTERN command.

Remember when we define a sprite we used the following format:
PATTERN S#Sprite No,*“...... Hex Data 2

Well the only difference between the above format and that for the
defining of UDG’s is as follows:

PATTERN C#Character No, ““...... Hex Data 4

So lets take an example. look at page 155 of the Users handbook. Now
look at character No. 207, the pound sterling sign, ‘‘£”’, If you print
the character on the screen (by using PRINT CHR$(207)) you will see
it is not really a very accurate representation of the sign, so why not
redefine it? Well this is how it is done it is exactly the same as defining

30

a sprite just that you use a 6 X 8 matrix instead of an 8 X 8 matrix.
Also when it comes to defining a UDG that will be used on the text
screen. It is important to leave the bottom line free as well as the

rightmost column (see figure 1.C) free from any points ie. don’t define
these areas.

FIGURE 1.C

Leave this row free —

these two columns
cannot be used

EXERCISE

1.D Why is the bit #2 column, and the bottom line kept clear? ie. no
points are defined in these areas, they are left undefined. When might
these be defined?

ANSWERS ON PAGE 36

31

Okay back to the original idea, re-defining the pound sign.

FIGURE 1.D

= 48

=70
= 49
= 49
= F§

Now we string all the hex-data on the right of Figure 1.D together.
‘“304840704040F8”’

remember we want to define character # 207, thus we get:
PATTERN C#207,“304840704040F 800"’

We have now defined the pound sign, it is a much more accurate
representation. Look at page 113 of the User’s handbook.

If you are interested try the following program. The computer stores
the entire character set from address &H10C0O — &H17BF, when you
hit RESET or on power-up, the computer re-defines the entire character
set by referring to afore-mentioned addresses. (An address is just a
“box”’ of information. The SC3000 has 32767 such ‘‘boxes’’ which it
uses to run your programs, this area of memory is called the Read On-
ly memory (Rom).

It is important that you press RESET before running the program.

32

PROGRAM 1.A

10 CLS:Z= 32

20 FOR A = &H10CP TO &HI17BF STEP 8: FOR B=0 TO 7:N = PEEK (A + B:A$ ="’
30 NI =N:IF N/2< =0 THEN GOTO 50

40 N$ =STRS$(N1 MOD 2):N =INT(N/2):N$ = RIGHT$(NS$,1):A$ =N$ + A$:GOTO 30
50 IF LEN(AS$) < 8 THEN A$=0"+A$:GOTO 50

60 PRINT A$:NEXTB:PRINT CHRS$(Z):Z=7Z+ 1:NEXT A

LINE 10 Clear the screen, Set variable Z to 32.

LINE 20 Set variable A, from a start point of &HIOCO to &H17BF
in steps of 8. These steps represent the 8 bit gaps required
for the characters which are stored in this area of
memory. The value B from 0-7 is required as the
characters are made up of a 8 x 8 dot matrix. When the
computer is told to peek an address, it looks at that loca-
tion and reads the row of 8 bits which is there. A character
is made up of 8 rows of 8 bits. PEEK (A + B) tells the
computer to calculate A + B first, which in this case will
increase A by one each time B increases. This will increase
the ROM address &H10C@ to &H10C1, each time until
all eight of the 8 bits of information making up each
character have been read. This information is then stored
in N, which is converted into Binary using the previous-
ly explained program from example 1.2, from lines 30
to 50.

LINE 60 Prints out the binary for each byte of the character before
sending the program back to look for the next bit of the
character, when all eight lines of the binary for the first
character in memory are printed, print CHR$(Z), whilst
Z equals 32, will show that this is the start point of the
character set. By referring to page 154 of the Sega manual
you will see character number 33 is an exclamation mark!,

33

therefore, this will be the next character to be found in
memory and the next to be displayed in Binary form, as
the computer jumps back to the beginning of the line 20
with next A.

The program will show you how the computer stores the information.

When using the Sprite-Editor (called create-a-sprite), there is another
command not displayed. If you make a complete hash of a sprite whilst ’l
designing it, just press ‘R’ and all will be re-newed. When you have
finished press CR and the data will be processed, then press any key

and your sprite (or UDG) will be displayed.

LARGE CHARACTERS

When it comes to making headings in a program, it is always a good
idea to have large lettering. This can be accomplished by using CHR$
(17). As an example try the following program. (Note: this will only
work on the high-resolution screen).

PROGRAM 1.B

10 SCREEN 2,2:CLS

20 P$ =““SEGA SC3000.”

30 COLOR 4:CURSOR 40,49:PRINT CHR$(17);P$

49 COLOR 6:CURSOR 40,60:PRINT CHRS$(16);P$;P$ i
50 GOTO 50 '|

LINE 10 Call high-resolution screen, clear the screen.

LINE 20 Define P$, This is because in lines 30 and 49, P$ is printed
3 times, so instead of using ‘‘Sega SC3000.”’ 3 times, P$ is

defined, this is less labourious and easier on memory.

LINE 30 Print large P$ in blue.

LINE 44 Print small P$ twice in red.

It is absolutely essential that when you want to go back to normal size
print that you PRINT CHRS (16) first, or the printing will be kept at
double size. Look at the top two listings on page 19 of Sega Users
Handbook.

COLOUR

No games program is complete without a splash of colour. Try the
following program to see just how good the colour on the SC3000 is.

PROGRAM 1.C

10 SCREEN 2,2:CLS
20 FOR A=0 TO 191: LINE (4,A)-(255,A),RND(1)*15:NEXT A
30 GOTO 20

LINE 10 Call graphic screen, clear screen.

LINE 20 Draw lines across the screen from top to bottom in ran-
dom colour between @ and 15.

LINE 30 Back to 20 and start again.

The best description of colour is given on pp91-10@ of the handbook.
Just remember — when it comes to colour, use the right vivid colours,
in the right places — all the time, it can really add that professional
program look! Colour your sprites well, and have all the major features
in different colours.

EXERCISE:

1.E Create a single 8 x 8 Sprite of a ball and make it move from (9,0)
to (191,191) in a diagonal line, (make the ball light blue in colour).

L.F Create a large 16 x 16 sprite (MAG 1) of an alien and make it
shake! (and make it blue).

ANSWERS TO CHAPTER 1 EXERCISES:

1.1 4 bits to a nibble
1.2 2 nibbles in a byte

1.3 “1”” and @ (one and zero)
¥.4: 5255
1.5 0,Zero

1.6 Any interger in the range from 0-255

1.7 27 dec=00011011 BIN

1.8 252 dec = 11111100 BIN

1.9 91 dec=5Bhex = 01011011 BIN

1.LA 10110110 = B6 hex

1.B ABhex = 10101011 BIN = 171 dec

1.C 10 DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
20 RESTORE:INPUT““ENTER A HEX NUMBER(&H@0-&HFF)’:H$
30 IF LEN(HS$)< >2 THEN GOTO 20
40 FOR A=0 TO 15:READ D$:IF MID$(HS$,1,1) = D$ THEN GOTO 66
50 NEXT: PRINT “ERROR IN DATA’:END
60 RESTORE: FOR B=0 TO 15: READ D$: IF MID$(H$,2,1) = D$ THENGOTO 80
70 NEXT: PRINT“ERROR IN DATA’:END
80 T=A*16+B:PRINT H$;“="";T

1.D These are kept clear so as to stop characters next to one-another, and those above
and below touching. This makes the display much clearer. The only time they
would be defined is in descenders (eg, lower case ‘‘g’’, “‘y’’ etc they have “‘tails”’
which descend below the line).

1.LE 10 SCREEN 2,2:CLS:PATTERNS#,‘‘3C7TEFFFFFFFF7E3C”’
20 FOR A = @ TO 191: SPRITE 0, (A,A),9,5

1.LF 10 SCREEN 2,2:CLS:PATTERN S#‘..... Hex data...... »:PATTERNS

2 e i ":PATTERNS#2,“. ":PATTERNS#3,“. »”:REM PUT
YOUR OWN DATA IN.

20 MAG 1:SPRITE 0, (20,20),0,7:GOTO 20

36

CHAPTER TWO

Your S.C. 3000 has some of the best sound going! Most home micros
have the sound output (usually a loudspeaker) within the computer.
The S.C. 3000 has not. The main advantage of this is that when a
manufacturer makes a computer, the quality of the internal loudspeaker
is poor, thus leading to poor resolution of sound that is not steady,
and generally is fairly quiet. The S.C. 3000 pumps sound through your
T.V. Most T.V. manufacturers incorporate good quality speakers, and
you also have the added bonus of a secondary volume control.

BEEP

The S.C. 3000 has two ways of manipulating sound, the simplest of
which is BEEP.

The Beep command is followed by a number or no number. A full
description and sample program is given on page 137 of the User
manual.

SOUND

The next command, which is much more versatile, is the SOUND com-
mand. The parameters for sound are:

SOUND channel, frequency, volume

e.g. SOUND 1,1000,15 would cause a sound from channel 1 to be out
putted at a 1,000 HZ and a maximum volume.

A good run down of the sound command is given on pages 138,139
of the Users handbook.

37.

When you start on the sound effects of the ‘“‘Basic Games Programm-
ing Cassette’” you will hear the following:

An explosion, a Frogger jump, (this is the sound made by the frog when
it jumps in the game of Frogger), a ping, a scale (actually one channel
is getting higher, whilst the other is getting lower), and finally a really
weird one.

LINE 950 holds data for explosion, don’t worry about how this
works yet.

LINE 978 holds data for jump.
LINE 99 holds data for ping.

LINE 1018 holds data for scale (notice how one goes up and one goes
down).

LINE 1836 holds data for weird sound (this works by going through
all four channels of the synchronous sound channel
(channel 5)).

The next part of the program is ‘‘sound manipulation”’. This allows
complete control over all the sound channels. Here follow some exer-
cises to let you learn using the section on sound on cassette.

EXERCISES

2.1 Set Sound 1,110,15
Sound 2,111,15
Sound 3,112,15

Listen to that weird ‘‘droning’’ effect!

38

2:2. Hit ““R’’ to reset (not reset key). Now move up to chan-
nel 4, set it to 4,0,15. Now alter the tone (that is the cen-
tre number which at the moment is set to @) to 1, and
then 2, then 3. On channel 3 you should get a funny,
almost random buzz.

When the tone on channel 4 is set to 3, this is not the
tone at all. The tone is set by channel 3! This is how it
is done:-

Sound 4,3,15, Now go to channel 3. Press “‘C’’ (this
allows the step of the tone i.e. how high you go in a single
jump) and enter 20@. Move the cursor so that the cursor
is at “TONE’’ and hold down the ‘“t’’ key. Listen to the
way the noise increases, then press ‘“!”> and hear it

decrease.
2.3 As in 2.2 but instead of channel 4, use channel 5.
2.4 Just generally play around with the routine. You really

can create some very unusual sound effects.

Note: Channels 4 and 5 cannot be made to run simultaneous-
ly, although 1,2,3, and 4 can, as can 1,2,3, and 5.

Music and Sound Effects
Once you have mastered the sound command, try the following

programs:-

Program 2.1 Death March

10 DATA 1,3,1,2,1,1,1,3,4,2,3,1,3,2,1,1,1,2,0,1,1,6
20 FOR A =0to 18:READ B,C:SOUND 1,110 + (B*9),15: FORDE =@0T'O C*45:NEXT
DE: SOUND #: NEXT A

39

LINE 10 holds all the values relating to the frequency and the
length of each note to be played.

LINE 20 For A = 0 to 10 means the sound will change 11 times,
Read B,C will set B to the value of the first piece of data
i.e. 1, and C to the Second i.e. 3, so that SOUND 1 will
have a frequency level of 110 + 9 and a volume level 15.
That note will have a duration which is set by the number
of times the computer counts up what is held in the DE,
which is the time 3 x 45 = 135, as soon as that is com-
pleted, it turns the sound off and goes on to the next A
or next sound which will be the same frequency, as the
value B will be 1 again. However, C becomes 2, so the
duration will be shorter.

Program 2.2 A Little Ditty

10 DATA 0,3,2,3,4,3,5,5,0,6,5,3,4,3,5,3,7,5,2,6,5,3,9,3.5,7,1.5,7,4,

5,4,5,3,5,3,4,3,2,4,4,4,5,9

20 FOR A=0TO 21:READ B,C:SOUND 1,140 + (B*12),15:FOR DE
= 0 to C*I5:NEXT DE:SOUND @:NEXT A

Program 2.3 Random Tunes

160 DATA 319,379,239,319,379,239,319,379

20 DATA 179,358,284,179,358,284,179,358

30 DATA 319,426,253,319,426,253,319,426

49 DATA 338,426,284,338,426,284,338,426

50 DATA 284,379,451,284,379,251,284,379

60 DATA 301,379,253,301,379,253,301,379

100 A = INT(RND(1)*6) + 1

116 ON A GOSUB 1000,2000,3000,4000,5000,6000

120 FOR A=0 to 7:READ B: SOUND 1,B,15: FOR I = # TO
49:NEXT I,A:GOTO 100

40

1009 RESTORE 10 : RETURN
2000 RESTORE 20 : RETURN
3000 RESTORE 30 : RETURN
4009 RESTORE 40 : RETURN
5009 RESTORE 50 : RETURN
6000 RESTORE 60 : RETURN

LINES 10-60 Set data for tunes.

LINE 160 Set value of A to a random number between 1 and 6

LINE 114 On that number being = 1 gosub 100, if it is = 4, the
4th gosub address which is 4000, would be executed. This
would restore only the data in line 4,000.

LINE 126 A now becomes @ to 7 representing the 8 notes in each
data line. B becomes the first piece of data read, which
sets the frequency. I is the duration of each note, after
all eight notes, the tune is restored from a new location.

LINES 1000-

6000 are the Restore Subroutines for the tunes.

When the above program is run , a myriad of random tunes are played.

Program 2.4 — For all you Dukes of Hazzard Fans!

10 DATA 1,20,1,17,2,13,2,13,1,13,1,15,1,15,1,17,1,18,2,20,2,20,2,20
oA 7

20 FOR 1 = @ to 11:READ B,C: SOUND 1,120+ C*50,15:FOR T =
@ TO B*20:NEXT T:SOUND @:NEXT I

Program 2.5 — This one is for all those with a pet Kangaroo!

10 DATA 5,10,1.5,19,2.5,10,1.5,8,3.5,6,6,3,8,8,5,1,1.5,5,2.5,5,2.5,
8,1.5,6,3.5,5,10,6,5,10,1.5,10,2.5,10,1.5,10,1.5,8,3.5,6,6,3,8,8,5,1,1
.5,5,2.5,8,1,6,3.5,6,3.5,8,6

20 FOR1 = 0to 11:READ B,C: SOUND 1,120+ C*15,15:FOR DE =
9 TO B*10:NEXT DE:SOUND @:NEXT I

41

Program 2.6 — For Anyone with Aussie blood!

10 DATA 392,100,392,75,392,25,392,100,330,100,523,100,523,75,523,
25,494,100,440,100,392,100,392,50,392,50,440,100,392,50,392,50,
392,100,349,50,330,50,294,100,262,50,294,50,330,100,330,50,330,
50,294,100,294,50,294,50,262,50,294,50,330,50,262,50,220,50,247

11 DATA 50,262,100,196,100,262,50,330,50,392,100,349,50,330,50,294,
100,294,50,294,50,262,200

20 FOR1=1T@45:READB,C:SOUND 1,B,15:FORD E = ITOC:NEX

TDE:SOUND@:NEXT]1

30 SOUND@

CHAPTER THREE

Control

One you have designed your sprites and a colourful scenario for your
game, the next thing to do is control all those “‘things that will be in-
volved in the game. This usually means either using a joystic or the
keyboard. The first program in the control section of ‘‘Basic Games
Programming” includes the use of the keyboard. You control the sprite
“x” (red in colour), by using the ,— ! t — and keys, you move the
sprite and at the same time, create a kaleidoscope effect. When you
have finished, press “Q”’.

NOTE: do not go too near the edge as there is no error trapping within
the program, and if you do go over the edge, you will force an error
which would disrupt the program.

How To Use The Keyboard in Games:

Try this program. When you have entered it and run it, press the ar-
row keys on the right hand side of the keyboard.

Program 3.1

10 SCREEN 1,1:CLS

20 A$=INKEY$

30 IF A$ = CHR$(28)THENBS = “RIGHT”’:GOTO 80
40 IF A$ = CHRS$(29)THENBS$ = “LEFT”’:GOTO 8¢
50 IF A$ = CHR$(30)THENBS$ = ““UP”’:GOTO 80

60 IF A$ = CHR$(31)THENBS = “DOWN”’:GOTO 8¢
70 B$ = ““NOTHING”’

80 CURSOR 15,10:PRINT B$:GOTO 20

LINE 10 sets the program in the text screen and clears it.

43

LINE 20 tells the computer to check which key is pressed and put
the information in BS.

LINE 30 If the key which is pressed is the same key as CHR$(28),
which is the right arrow cursor key as indicated in Page
19 of the User Handbook, then put the word, ‘‘Right”’
in the B$, and jump to line 8@.

LINES 40-60 Check in the same way for the other three directional keys

being pushed and store the relative directional words in
BS.

LINE 70 Puts the word Nothing into B$.

LINE 80 Displays whatever is read as B$ centrally on Screen depen-
ding on which key, if any, has been pressed. See how it
works? Using this principle, by increasing and decreas-
ing the variables, it is possible to move things around the
screen.

Try the next program

PROGRAM 3.2

10 SCREEN 1,1:CLS
20 X=20:Y =12

39 A$ =INKEYS$

49 X =X-(A$ = CHR$(28)) + (A$ = CHR$(29))
50 Y = Y-(A$ = CHR$(31)) = (A$ = CHR$(30))
60 CURSOR X,Y:PRINT ‘““ @ ”:GOTO 30

LINE 10 Call text screen and clear it.

LINE 260 Set x and y coordinates to centre of text screen.

44

LINE 30 Load A$ with input from keyboard.

LINE 40 50 Increments/decrements x/y using Boolean logic (see
below).

LINE 60 Set print position to new x,y coordinates, print ‘“‘ @ ”’,
continue.

When you run the program, you will probably realise that you can go
off the edge of the screen, thus forcing a “‘statement parameter error’’
and stopping the program. The way to stop this happening is to set
some limits on the values of x and y. Look at page 146 of the User’s
Handbook. You will notice that the screen has 38 digits in the horizon-
tal direction (poition @ — 37), and 24 digits in the longitudinal direc-
tion (position @ — 23). By using this information we can set the limits
on x and y. Remember I said that the screen goes from @ — 39 in the
horizonal direction, and that is all. Any other values smaller than @
or greater than 39, would force an error. To prove this, enter the follow-
ing as a direct command.

CURSOR 40,10

You will get a “‘statement parameter error’’, now try

Cursor -2,0

You will get the same (look at the rundown of the cursor command
on pp 58-60 in the Users’ Handbook we are only really interested in
pp 58-59 at the moment), error as above. This is because the value of
X is greater than 39, in the first example, and less than @ in the second.

The same applied for the y coordinate, except the range is @-23.

45

Add the following lines to program 3.2 and you will get no errors.

42 IF x<@® THEN x = 0
44 1F x>36 THEN x = 36
52IF y<® THENy = 0
54 IF y>22 THEN y = 22

Boolean Logic
Remember how in lines 40 and 50 of program 3.2, we got the following;-

x =x-(A$ = CHR$(28)) + (A$ = CHR$(29))
y=y-(A$ = CHR$(31)) + (A$ = CHR$(30))

This is an example of Boolean logic (named after George Boole
(1815-1864)). The main facet of Boolean states:-

If something is true, the result is —1
If something is false, the result is @

If you do not understand this properly, then try the following program:-

Program 3.3

10 A$=“HELLO”
20 PRINT A$= “HELLO”

LINE 10 Let A$=“HELLO”

LINE 26 This is tricky bit. You are telling the computer to print,
the value of AS$ if it equals ‘““HELLO”’. If it is true, then
a result of -1 would be printed. If it is false, a result of
9 would be printed. Now we know that A$ = “HELLO”,
therefore the result of A$= “HELLO” is true and a
result of -1 is printed.

46

Now try this:-

Program 3.4

10 Z = 42
20 PRINT z = 69

In this short program, you set Z to 42, you then ask the computer if
Z is equal to 69, which it is not, therefore a @ is printed (look at page
54 of Users handbook).

Now you are probably asking yourself ‘“‘what on earth has all this got
to do with games control?”’ Look very closely at this situation. You
press down the ““—"’ key, this is equal to CHR$(28) (look at page 19
of Users Handbook) line 44 of program 3.2 says

x =x-(A$ = CHR$(28)) + (A$ = CHR$(29))

Now AS$ holds CHR$(28)because you are pressing down “‘—’ (look
at line 30)

If A$ = CHR$(28), which it does, then a result of -1 is returned.

You agree that A$ = CHR$(28), therefore it cannot equal CHR$(29),
therefore if asked, ‘“‘Does A$ = CHR$(29)’’, the computer reply will
be @ (false). Understand? If not just re-read this part on Boolean
algebra/logic.

Looking back at line 40, we get this:-

x=x-(ASCHRS$(28) + (A$ = CHR$(29))
l |

This is true This is False
AS$ does equal A$ does not equal
CHRS$(28) CHR$(29)

Therefore x=x-1 + @, the result is x=x+ 1 (when you subtract from

47

a negative number (in this case -1) it is the same as adding the positive
number e.g. 2- -4 is equal to 2 + 4 = 6.

So if you are holding down the ‘—” key, x will be added to by 1, the
result of which is to move the cursor position, to the right.

Now imagine holding down the ‘"’ key, A$ would equal CHR$(29),
looking at line 40 we would get:-

x = x- (A$=CHR$(28)) + (A$=CHR$(29))

| !

This is false This is true
A$ does not equal A$ does equal
CHR$(28) CHR$(29)

Therefore x Xx-0 + -1 N
Therefore x = z -1, because if you add a negative number, it is the
same as adding a positive number e.g. 6 + -2 is equal to 6 - 2 = 4.

I

So if you are holding down the ‘"’ key, x will be subtracted by 1,
the result of which is to move the cursor position to the left. Get it?
It’s not all that hard to understand once you have got the basic con-
cept. If would probably be better to re-read the subject. The same also

works for A$ = CHR$(30) and A$ =CHRS$(31) (‘‘t*” and “‘}”’ respec-
tively), except line 5@ comes into play:

Y = Y-(A$=CHR$(31)) + (A$ =CHR$(39))
| |

true (-1) if true (-1) if
A$ =CHRS$(31) A$ =CHRS$(39)

48

Problem 3.1

What would happen if A$ does not equal CHR$(28) or CHR$(29) or
CHR$(30) or CHR$(31)? ie. you don’t press “‘—",¢“ "7 <172 <¢|”??

If you understand all the above on control, you know 99% of control
using the keyboard!

Use of Joysticks

For true control, you need a joystick. The S.C. 3000 has the provision
for two joysticks. These are located on the left of the computer.

The second part of the control section of ‘‘Basic Games Programm-
ing”’ involves the use of a joystick placed in port 1.

By directing the joystick in any direction, you can get the sprite “‘x”’
to move and leave a trail behind it. If you press the left fire button,
you can erase dots by moving over the dots, and by pressing the right
fire button, you can paint an area.

Here is an example:-

Once you have completed the box,
and made sure it has no holes in its
boundary, move the sprite within
the box and press the right fire but-
ton. Voila! All filled in!

.B

.
.
.

START (A’
POINT

Note: It is absolutely necessary that the box is enclosed.
Problem 3.2 Why? (try it and find out)

Try the following program, and read page 149 of users’ Handbook.

49

Program 3.5

10 SCREEN 1,1:CLS
20 A=STICK (1)
3@ CURSOR 5,12:PRINT “VALUE OF STICK # 1:’;A:GOTO 20

Program 3.5

10 call text screen and clear screen.

20 look for which direction the joystick 1 is being pushed, and store
the relative value as A.

30 Prints on screen, whatever the value of A currently is, and continues
to check for a change of value. This program is useful to check how
sensitive the joystick you have actually is.

Program 3.5 deals with the actual stick, the next program deals with
the trigger.

Program 3.6

10 SCREEN 1,1:CLS
20 A=STRIG(1):CURSOR 5,12:PRINT‘“VALUE OF TRIG-
GERS:"’;A:GOTO 20

Program 3.6 works in exactly the same way as program 3.5, except it
reads the triggers and not the stick.

Try the following program. Use the joystick (in port 1), movea “‘ ®”’,
press the left fire to erase, the right fire to fill in with “e@”’.

Program 3.7
10 SCREEN 1,1:CLS
20 X=20:Y =12:A$=“@”
30 ON STICK (1) GOSUB 116,126,130,148,150,160,170,180

50

60 IF x<@® THEN x=0

70 IF x>36 THEN x=36

80 IF y<® THEN y=0

99 IF y >21 THEN y=21
109 CURSOR x,y:PRINT ¢ @ ”’:CURSOR x,y:PRINT A$:GOTO 30
110 y=y-1:RETURN

120 x=x+1:y=y-1:RETURN
130 x=x+ 1:RETURN

140 x=x+1:y=y+ 1:RETURN
150 y=y+ 1:RETURN

160 x=x-1:y=y+ 1:RETURN
170 x =x-1:RETURN

180 x=x-1:y =y-1:RETURN

LINE 20 stores values in x and y, and the graphic character of a
dot in A$. You may substitute this for any symbol from
the keyboard of your choice.

LINE 360 As per page 61-62 Users’ Handbook. This command tells
the computer to look at joystick 1, and gauges its posi-
tional value, taking that value it looks at the correspon-
ding figure in line as being the gosub address. So if the
joystick is in the position 4, it will GOSUB 140. Depen-
ding on the direction in which the joystick indicates, the
gosub routines will either increase of decrease the values
of x and y to reposition the dot’s screen coordinate
accordingly.

LINE 40 If the left hand trigger of joystick one is pushed (value
1), then a blank is to be inserted as A$, causing anything
else to be erased.

51

LINE 50 If the right hand trigger is pressed, a dot is loaded into
A$ again filling in the area on the screen.

LINE 60-9¢ Error trapping to ensure the movement stays within re-
quired boundaries.

LINE 166 Causes the dot to be printed at the x and y position on
screen, or to erase anything if the left joystick was pushed.

LINES 1160-
186 Variable movement calculations. All subroutines depen-
dant on line 34@.

If you understand the concept of Boolean logic, the above program
can be altered as follows:-

delete lines 119-180, and make line 30:

30 A=STICK(1):x=x—(A=2)—(A=3)—(A=4)+(A=6)+(A=T7)
+(A=8):y=y—(A=4)—(A=5-(A=6)+(A=8)—(A=1)-(A=2)

As you can see, the use of Boolean logic, greatly reduces the number
of lines needed, thus taking up less memory, and if you took a
benchtest (computer jargon for testing speeds of programs), you would
find that the program is faster.

Try the following program:-

Program 3.2

10 SCREEN2,2:CLS

20 A=500:B=0

30 SOUND 1,A,15

49 IF STRIG(1)=1 THEN A=A +20:IF A>1500 THEN A =1500
50 IF STRIG(1)=2 THEN A =A-20:IF A<118 THEN A=119

52

60 PSET(B,191-(A*.127)),1:B=B+ 1:IF B>255 THEN
CLS:B=0:GOTO 30
70 GOTO 30

LINE 10 Call high resolution screen and clear it.

LINE 20 Set original tone (A) to 50@, and first position on screen
(B) to 0.

LINE 30 Make a sound set by A.

LINE 40 If left trigger is pressed increase
sound, if A> 1500 then limit it to
1500. error
trapping
LINE 560 If right trigger is pressed decrease
sound, if A 110 then limit it to 11@.

LINE 60 Plot a point on the screen, the position of which is depen-
dant on A and B, increase B by 1, if B> 255 (i.e. off the

edge of the screen) then clear the screen, set B to @ and
repeat.

LINE 76 Repeat.

53

CHAPTER FOUR

Games Programming as an Art

Manipulating the Screen

This chapter will deal with manipulation of the text screen, the reason
for this is that the text screen is much easier to use than the high resolu-
tion screen, although I am sure that with a bit of ingenuity, you will
be able to use the high -res screen efficiently.

Firstly, a bit of technological knowledge. The S.C. 3090 contains a very
special chip called a Video Display processor (VDP). This chip was
created by Texas Instruments and its serial number is TI TMM9929A
(bit of a mouthfull!) The information on both the text screen, and high
resolution screens is stored in this chip. This is called Video Random
Access Memory (VRAM).

Now we know where the screen is stored, so how do we access it? Im-
agine you have a friend called Bert J. Smith. This is a bit of informa-
tion, okay? He lives at 100 Knot Close, Williamstown, Mars. This is
the address, okay? So if you wanted to store this information you might
write:

Smith, Bert J,; 180 Knot Close, Williamstown, Mars

Information Address

In the VRAM, the way to access or store information is identical. The
only difference is that the address is from &HO@009 to &H3FFF
(remember the &H means the numbers are hexidecimal), and the in-
formation is any number from &H@@ to &HFF. If you want to place

54

information in the video ram, you use the VPOKE command, which
literally means ‘‘shoving information into the VRAM”’. The informa-
tion for the text screen is held between address &H3C@0 and &H3FC@.
To try out the VPOKE command, do the following, clear the screen
(by using CLS).

VPOKE &H3C26,&H2A

You will get a ““*” in the top of the screen. What you have done is
shoved the information (&H2A, which is a “‘*’, look at page 156 of
Users’ Manual), into address &H3C26 (which is indeed the top right
of the text screen). Okay, so now we have stored that information in
VRAM, how do we get it out again? Well we can see it! It is that asterisk
in the top right! The proper way about it is by using the VPEEK com-
mand. Remember we put &H2A (which is 42 in decimal) into address
&H3C26, so in theory, if we VPEEK’ed &H3C26, we should get 42
in decimal) into address &H3C26, so in theory, if we VPEEK’ed
&H3C26, we should get 42 decimal (or &H24). So now enter:

PRINT VPEEK &H3C26

And what do you get? 42!! Voila. Try other values of address and in-
formation, and refer to pp 143-148. We are interested mostly, in the
left hand side of page 143 of the Users’ Handbook and the top of page
144. The next small part is to explain the wierd diagram on page 148
of the User’s Handbook.

Video Ram Map

A memory map is just a diagram showing what all the different ad-
dresses do. The diagram on page 148 is a map of the memory in the
VDP.

Address Range Description

&HO000 — &H17FF Holds data for contents of the High
Resolution Screen.

55

&H1800 — &HIFFF If text screen is being used, this region
holds data for characters to be used, i.e.
PATTERN command alters these contents.
If High-Res screen is being used, this region
holds the data for sprites, also altered by
PATTERN command.

&H2000 — &H37FF Holds the colours on the High-Res screen.

&H3800 — &H3AFF An extension of &H1800 — &HI1FFF (sort
of 1)

&H3B00 — &H3BFCO Holds x,y coordinates and colours of all the
sprites, altered by SPRITE command.

&H3CO0 — H&3FCO Holds data for contents of text screen, we
have already manipulated this screen
(remember we vpoked and vpeeked into
this area).

Use of Vpoke and Vpeek

Now you are probably wondering why anyone would want tc vpoke
onto the screen. I mean it is much easier to print by using cursor x,y
followed by a print statement. The reasons are very simple:-

1) BASIC is slow enough, but by Vpokeing and Vpeeking, you
can speed up the game a little bit. It is much quicker than us-
ing cursor and print.

As arule of thumb: If objects on the screen don’t move, print

them onto the screen. If an object does move, Vpoke them onto
the screen.

56

2) Imagine in a game of Pacman*, the only way to stop the little
man from going through a wall, is to look one square ahead.
If it is not a wall, then the man can continue in that direction.
If it is a wall he cannot get through. If you were Vpokeing the
man onto the screen, then you could Vpeek the next square
to see if it is a wall or not. On the other hand, if you were
printing on the screen, there would be no simple way of look-
ing one space ahead, thus making games writing impossible!
Let’s face it, if you don’t know what is surrounding your
man/ship/frog etc., how can you find out if you have eaten
a power pill, been muched by a ghost, hit a wall, whether the
bullet you shot has hit an alien or a base, whether your frog
has been eaten by a crocodile, been hit by a truck, or got home,
or whether Mario has been struck by a fire ball or picked up
a hammer, or whether your ship has run into a lander or mu-
tant, or picked up a humanoid? As I am sure you can see, the
ability to look around you is extremely important, and this can
only be done by Vpeek! (The above examples are taken from
Pacman*, Space Invader*, Frogger*, Donkey Kong* and
Defender *.

If Vokeing and Vpeeking seems a little complex, then the next thing
to do is to use x and y coordintes for your little man (or woman or
frog, or ship etc.,) then convert this to an address, then Vpeek that
address. This can be done very simply by using the following formula.
(This is for the text screen only).

Address (text screen) =Y *40 + x + &H3C00

Where x and y are the coordinates of your man etc., (This formula
is given on the top of page 144 of the users’ Handbook). An example
of this is given in the game of ‘“Maze Chase’’ in the ‘‘Basic Games
Programming’’ Program. It is probably best to play the game a couple
of times, before I describe how it works. If you have a joystick attach-
ed to port 1, then just use the stick to steer your man. If not, use the

* Registered Trade Marks

57

arrow keys. The baddie moves randomly (i.e. sometimes he may stay
where he is, other times he may move), but he always comes straight
for you! :

Things to remember:-

“O” = CHRS (235) = You

‘“@” = CHRS$ (236) = Home

‘“W” = CHRS$ (229) = Walls

““§8” = CHRS$ (253) = Baddie (CHRS$ (253) is originally ¢ |”’ but this
is redefined)

““x”” = CHRS (228) = You eat these

RUN DOWN OF GAME — MAZE CHASE

Begin by breaking into the ‘‘Basic Games Programming Cassette’’
(preferably once it is loaded in the computer, not with a hammer), by
pushing the break key, then give the command LIST 1699 — to show
the program. Control the scrolling action with the space bar.

LINE 1699 This line sets up the control of our characters movements
around the screen, and prints a prompt to find out
whether we will use keyboard control or joystick.

LINE 1708 Sets A$ as Inkey variable, if key Y is pushed, variable
J becomes 2 and the program jumps to joystick control
section from 1730 onward.

LINE 1716 If N is PUSHED J becomes 1 and Line 1730 will be ex-
ecuted as it will be true and the program jumps straight
to Line 1940 to commence the game controlled by the
keyboard.

58

LINE 1720

LINE 1944

LINE 1950

LINE 1969

LINE 1970

LINE 1980

LINE 1999

LINE 2000

LINE 2010

LINE 2620

Keeps the program scanning until a key is pushed.
Call text screen, clear screen.

Set titles for screen.

Redefine character 253 (see page 155 Users’ Handbook)
as a pattern (UDG) and set up on screen instructions.

Define pattern for the ‘“x”’. Print instructions.

Draws a small thick line representing a wall, sets variable
S to @. S will become the variable holding the Score.

At position one row across, 20 down display Score =

Sets A as a slowly reducing value from 35 to 30 and print
O which is representing you, at location 35 down 17
across, a sound like a footprint is then made, before the
line goes back and changes the position of o one to the
left as A is reduced in value, each change is accompanied
by the footprint sound. A$ is then defined as O Five
spaces away from the symbol which will chase us &, T=o0
to 10 causes a brief delay in each movement.

Produces the same action as Line 2000, using the two
characters in A$, making the appearance of a chase. The
delay is shorter, therefore the movement is quicker.

A$ appears to leave crosses behind as it moves across the
screen, by printing x in the vacated cursor positions.

59

LINE 2030

LINE 2040

LINE 26660

LINE 2070

LINE 2080

LINE 2099

60

The trail of x’s is increased by adding to the length of
AS$, seven times as the value of a decreases.

ONow appears on screen and moves over the trail of x’s,
the sound changes as we eat the dots which are
automatically erased. The value of S increases by 1 each
time we move and is printed out in the location next to
the word score on Screen. D stands for difficulty level,
and sets the number of blocks to be set out in the maze,
Score is reset to 0.

Awaits a key to be pushed to continue.

Creates two different small sound scales played together,
one increasing in tone, the other decreasing.

Builds a boundary wall all around the Screen with one
solid block printed across the top, 17 rows printed with
one block at the beginning of the line and one at the end.
ie. Print ‘M ------------—-- n’

and one solid line printed at the bottom.

(Refer Pg 134 Users’ Manual) this lines sets a
mathematical equation to randomly position the walls in-
side the playing area. We are defining this function as
Q. The A in brackets in this instance, is merely a dummy
argument and has no effect on the outcome. Once again
the calculations within brackets must be carried out first.
By referring to page 143 (Users’ Manual), you will see
&H3CPY is the location of the top left hand corner of
the text screen, the calculation will add to that hex ad-
dress value, a random number between @ and 1 multiplied

LINE 21600

LINE 2119

LINE 2120

by &H2D@. This hex address corresponds to the size of
the playing area, which is the full width we set for the
border (1 to 17) so 40 x 18 = 720, which is 2D@ in Hex.
The reason we must add 2 at the end of the calculation
is to stop blocks appearing outside the boundary. Because
the boundary was PRINTED on Screen as characters, and
because we can only display 38 characters across a line,
the balance must be allowed for. Therefore this calcula-
tion each time it is carried out, will produce a different
Hex Screen address, which will position a wall on the
playing area.

D sets the difficulty, it was previously 50, now it becomes
100, so 100 walls will be drawn to commence the game,

variable z, counts from @ to whatever the difficulty level
is.

Variable x is loaded with the calculation stored in Func-
tion Q (the random address). VPEEK tells the computer
to have a look to check whether it is less than or greater
than 32. This refers to character 32 (Page 15A) which is
an empty space. If not, then the space must be empty
and the program continues if there is anything there, the
computer goes back to the start of the line and chooses
another random location, as the NEXT command has not
yet been encountered, z will still be @ and we will still have
100 walls to place.

VPOKE puts into the screen location held in x, the
character numbered 229 (page 155) which is a wall. NEXT
send the computer back to For Z, which becomes 1 and
another location is chosen on line 2114.

61

LINE 2120

LINE 2150

LINE 2160

LINE 2179

LINE 2199

LINE 2200

LINE 2220

62

When all z’s are used up, the program continues and z
becomes @ or dummy argument, one more random loca-
tion is chosen, which providing it is empty, will on Line
2140, have character 236 representing ‘“‘HOME”’ in the
game, positioned on Screen.

x becomes a random value between 1 and 35 Y a number
between 1 and 18. Representing coordinates within the
playing area, P is then established as a Hex address us-
ing these random values. The coordinates are converted
to Hex using the standard calculation shown on Page 144
of Users’ Manual, the two is added to again put it inside
the playing area. P is checked to ensure it is empty i.e.
VPEEK (P +2).

Our character is then printed out at the chosen x y coor-
dinate. X and Y are then rounded to whole numbers.

2180 — Prints out the baddy shape at a different ran-
dom screen location (remember this shape has been
redefined).

D1 is loaded with a whole number = the difficulty level,
divided by 50, -1, this will give us level §,1,2, and so on
as the game progresses. This is then printed on screen for
information next to the current score, with 10 spaces
between.

Positions the instructions showing who is who at the bot-
tom of the screen.

Checks keyboard and joysticks for the command to start
the game by jumping to Line 1150.

LINE 2250

LINE 2266

LINE 2279

LINE 2280

LINE 2299

LINE 2366

LINE 2316

LINE 2320

Plays a chord to signal the start of the game and prints
a blank line to erase the ‘‘Push any Key’’ print.

The current Score and difficulty level are displayed.

To give our character a reasonable chance of survival,
the baddy is given only a 60-40 chance of moving. This
random choice will skip the baddy’s movement routine
if a number less than .4 is selected, slowing him down
sometimes.

This works out using Boolean logic, which direction the
baddie has to move to catch up with us. Firstly, a ‘‘x”’
is placed on the location of the baddy which is left as a
trail (remember z,w, are the baddies coordinates, and ‘I’
has been redefined as an x), then the coordinate x
(remembering X, y, positions our character), is compared
to the z coordinate of the baddie. If it is true that x is
greater than y, the result is -1, causing the y coordinate
to increase, causing the movement of the baddie to follow
and home in our characters position.

Performs the same calculation to track our y coordinate
compared to the baddies equivalent coordinate W.

Checks to see whether we have been caught, i.e. x and
zand y and w are the same. The death tune is played and
the program jumps to the final routine. If not, continue.

The new positions of us and the baddie are displayed.

Remember Lines 1700 and 1710, where the value of J was

63

LINE 2330

LINE 2349

LINE 2350

LINE 2366

LINE 2376-
2380

LINES 2396-
2420

64

established? If it is 2, then control is by joystijck, if it
is 1, then it is keyboard. So at line 2360, the keyboard
direction program is executed, at line 2460 the joystick
direction program.

When we have had our move, go back, alter the score
if we have picked up a point, and give the baddie a chance
to chase.

Prints the death line sequence, the final score S and screen
prompt to press any key.

Jumps to the inkey routine on Line 1060 to wait for a
key to be pushed, then once it is, recommences the game
from Lime 1940.

This is the keyboard movement subroutine, which looks
for a direction key being pushed to alter the value of x
and y. If no key is being pushed, the program immediately
returns and the baddie is allowed to move.

The Boolean logic equations for movement.

Should a key have been pressed causing the value of x
and y to increase, these will have so far only have been
stored in X1 and Y1, before we can put ourselves in the
new position on screen, we must check whether there is
already a wall there or a power cross, or our home. So
our new values of X1 and Y1 are converted to a hex screen
address as P two is added again and that location is peek
ed. If there is a wall there, the program returns to the

LINE 2438-
2449

LINE 2450

LINE 2468-

2480

LINE 2499

LINE 2500-

2519

LINE 2520

LINE 2530

baddies turn without x and y actually being added to. If
not, the current x, y position has a blank printed to erase
our current position, the new value of X1 and Y1 are
transferred into x, and y, and we reappear at that
location.

P is then checked again to see if our home or a power
cross was stored in that location, altering our score or
sending us to the victory routine.

Returns us to the baddies turn.

Uses Boolean logic to check the joystick ports to deter-
mine direction.

Jumps to the Peek routine to check direction Score and
home.

The victory tune, and congrats print.

Hit a key to go on.

Jump to Inkey loop, add 20 to score, go back to restart
game and increase difficulty level.

65

Address:

Binary:

Bit:

Boolean Logic/
Algebra:

Bug:

Byte:

Decimal:

Error Trapping:

66

Glossary

An area in memory. Data is stored in an address.

A system of counting in ‘‘1°’ and ‘“@’’, used by
all*"computersitiiBlie & 122sE and: " €02’ st are
represented in the computer by electrical im-
pulses, either on or off.

Binary digit, each bit represents a ‘“1’” or a ““‘@”’.
It is the smallest unit of memory.

A concept invented by E. Boole in the 19th cen-
tury. The concept states if something is true, let
the result be -1, if false, let the result be @.
Boolean logic is generally fast, and is good for
game use.

An error in a program.

Eight bits, or two nibbles, can take a value of
&HOO-&HFF (0-255).

A system of counting. Used in everyday life,
digits used are 0,1..... 9.

A method of limiting numbers or variables, so
as to detect an error, and rectify it. If an error
were to occurr, it would stop the program from
running, so if the error is detected and rectified,
the program will continue to function (read pp
162-165 of Users’ Handbook for a list of all
possible errors).

Graphic Screen:

Hex, Hexadecimal:

High Resolution
Screen:

Machine Code:

Map:

Nibble:

Parameter:

RAM:

Called up by using SCREEN 2,2 (or
SHIFT/break pressed together), made up of 256
dots by 192 dots (9-255, @-191).

A system of counting to base 16, digits used:
£ O%ck 2. s SO 05 EA L & “F”. Used in many
applications in programming.

See Graphic Screen.

The binary language that the computer
understands directly. The BASIC language is
converted into machinecode which the computer
then executes. In the case of the SC 3000, the
machine code used is Z-84 machine code.

As a road map shows house addresses, a memory
map shows memory addresses, an example of a
memory map is given on page 148 of the Users’
Handbook.

4 Bits. Can take a value of &H@?-&HOF (9-15).

The values which a command can take, e.g. the
PATTERN command has two parameters, the
first of which is a character no. or sprite no.
(ranging from @-255 or @-31 respectively), the se-
cond is 8 hexadecimal numbers.

Random Access Memory. Any memory into
which you can ‘‘read’’ (PEEK) data or ‘‘write’’
(POKE) data from/to. See VRAM.

ROM:

Sprite:

Text Screen:

UDG

68

Read Only Memory. Any memory in which in-
formation or instructions have been permanently
fixed. Usually contains the BASIC language and
other reference information.

A group of 8 x 8 dots, having 1 of 16 colours
and a set of coordinates. They are moved in-
dependantly of the background and can only ap-
pear on the High-Res Screen.

When computer is switched on, the text screen
is on. It can be called using SCREEN 1,1 and
is made up of 40 characters X 24 characters.

Similar to a sprite except is made up of 6 X 8
dots, and cannot be moved independantly of
background.

