NG

John Sands

Operating manual for the John Sands Sega SC3000 Personal Computer

BASIC LEVEL III

Operator’s Manual for the John Sands Sega
SC-3000 Personal Computer

John Sands
SEGA

TABLE OF CONTENTS

PREFACE -+vovveeerermeemarimiiineeaanannnnnninn, 92
, Chapter 1. How to Handle the Computer
T T R R R e ot 5
How to use the KEYBOARD -----revee 6
Specia] Key 12
Control Code +vvserrererrerriiiiiiiiiiineninnn 18
Chapter 2. Using the Computer -+« 22
Direct Mode (direct command) cereeeees 22
PRINT ccceevreeeeuttmimueeeaaineesneeennnnnennnn., 23
Operation of the four rules of arithmetic
...... 25
Operator .. 27
How to use (,) and (;) in PRINT
statement 33
Chapter 3. How to Program ------eeeeeee- 34
LET, Variables «ccceeoeeerrrrreeeeemmmonnn.. 35
String variables crceererrreriiiiiiieieiiiin... 39
CLS’ LIST, NEW ceveeeeiiiiiiiiiiinnn., 40
INPUT, GOTQO cevevrerrreemmiiiiiiiiinnnnnn, 44
END, STOP coveeveeeerreiiiiiiiiinnnnnnnnnnn.. 47
FOR — TO, NEXT, STEP +-sserveeeeuneen 48
IF — THEN, GOSUB +evterererrueueennnnn. 51

Table of Relative Operators ===+ 54
GOSUB’ RETURN cooeeveeemmenenannnnnn, 54
ON GOTQ secerererrrrerceneracieneeennneannn. 57
(01827570 2 A 58
ON GOSUB veeerereeemenmianinininnnannnns, 61
READ, DATA, RESTORE ---eeeevne. 62
DIM (Array) «--eeeeeessvemeannneeennnnne. 64
ERASE ccoveveeremimiiiiiiiiiiiiiinineans, 68
DELETE cccceeeeremmiiiiiiiiinaiiiinnnn., 68
AUTQO cvevvreeeeeniiiiiiiiiis s 69
RENUM coeeeveermemnmiiiiiiiiiennnn.... 70
SAVE, LOAD, VERIFY «tceeeeeeeecerenns 71
REM oo 74
CONSOLE cevevererereenniiiiiieniiinnennnnn., 74
Chapter 4. Functions -c--ceeeseeeececennnn 77
RND - ccciionies oo s sunmovsva s sossnnanenss 77
INT e 78
Character String Function -r--eeeeeeees 80
ASC (0") woovveeiiei e 80
(0]5 12 T O 82
LEFT$, RIGHT& MID$’ 83

LEN cooe 84

TIMES cceeceeeemmmmniiiiiiiin, 87
SPC , TAB +eeeeeereememinmiinniiniiniinn, 88
INKEY$ ceovremrrerreiiieiiniieii, 90
FRE .. 91
PRINTER Control Command «+--------- 92
LLIST .. 92
LPRINT 93
HCOPY 93
Chapter 5. GraphiCS 94
SCREEN 95
COLOR 97
LINE .. 101
BLINE .. 102
PAINT .. 102
CIRCLE 104
BCIRCLE 108
PSET .. 109
PRESET 110
POSITION 110
PATTERN 113
How to draw Patterns ----ooeeeeeeeeee 116
MAG .. 118

SPRITE 120

Chapter 6. Mathematical Function-2--- 123

SIN etc. 125
SGN ... 130
LOG ... 131
SQR ... 132
HEX$.. 133
INP ... 134
DEF FN 134
BEEP .. 137
SOUND 138
OUT ... 139
POKE’ PEEK’ CALL 140
VPEEK 147
STICK (n) 149
STRIG (l’l) 149
APPENDIX 151
Variables and Arrays 151
Constant 152
Character Code 154
Character set 156
Table of Command Statement -+ 157
ERROR MESSAGE 162
Sample program 166

Published by

John Sands Electronics

Division of John Sands Limited
6 Bay Street Port Melbourne
Victoria 3207 Australia
Telephone (03) 645 3333
Telex AA 34206

First Edition 1983

Copyright © 1983 Sega Enterprises Ltd. All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of Sega Enterprises Ltd.
through John Sands Electronics.

BASIC LEVEL III TEXT

PREFACE

-

The computer has now reached a level at which anyone can handle it with ease.

What is a computer, then?

Lets’s compare computers to stereos.

COMPUTER STE
)
N Player/ @)
=
i i cassette | ——
External

i

|

|

|

|

| =) =

‘ &
memory. 1

|

|

|

|

I

I

© Amplifier

\—{ (CPU)

Information is processed internally. f

L Microphone ’———‘

Information (voice, music)
is entered from the outside.

KEYBOARD

Information (program) is
entered from the outside.

—I TV Monitor =

Visually check
CPU processing.

| speaer |

Check CPU processing

|
I
|
|
|
|
I
|
I
|
[
I by listening.

—-2-

The above figure shows the computer mechanism. When information (program) is entered
from the outside, results are displayed on the TV screen.

Although there are various kinds of program languages available, the BASIC language is
the most common language for personal computers.

Some of the things we can do by using the BASIC language are:

1) Computing

2) Filing of statements and data.

3) Drawing of patterns and graphics.
4) Enjoying games and music.

It is to your advantage to become familiar with the BASIC language so that you will be
able to get the most out of your computer.

The term “language” sounds difficult, however, the BASIC language does not have too many
commands to be remembered. You can write programs using only a few of these commands,

and as you become more confident you can begin using more commands.

Firstly, operate the keys while referring to the text. You will probably find some errors.
Do not worry about errors, persevere, and continue to operate the keys.

—-3-

Very soon, you will find that the computer will become a most easy—going and reliable
friend.

Chaptér 1. How to Handle the Computer

’First, read the instruction leaflet contained in the SC — 3000 unit.

1. Be sure that switch box is connected to the TV. (Where a TV with video input is used,
directly connect the computer to the video input terminal and audio terminal).

2. Provide a switch box near the computer and select the TV channel, CH 3 or CH 4.

3. Select the proper channel shift switch of the computer, either CH 3 or CH 4, whichever

is unoccupied.

4. Insert the BASIC cartridge correctly.

5. After connections are complete, check the cable connections.
If cable connections are correct, turn the TV power on.

Then, also turn the computer power on.

How to Use the KEYBOARD

The KEYBOARD has keys on which letters, numerics, Dieresis characters (foreign language)
and symbols are written.

Some keys have 4 characters or displays.

Example :

Key layout and spacing are the same as in typewriters.
So, you can push the keys with your fingers easily.
Try to press the keys first.

= 12 E
Push keys of and then

Now, you should have 12 displayed on the screen. If you press keys by themselves the lower
left characters or symbols written on the keys will be displayed on the screen.

To display on the screen characters and symbols other than the above, use [SHIFT key,
GRAPH | key or [DIER’S] key.

When [SHIFT | key is held down and then the

screen.

key is pressed ! appears on the

GOTO

GDSUB RETURN || SCREEN

POSITION COLOR LINE PSET SAVE" LOAD" VERIFY" AUTO RUN
& EI g xd N ()
8 LA sreac] || powen| (155

READ

RESTORE

INPUT

DIM

FOR

O
U

l U

LG

@o

CHR $(STR $(TIME §

LEFT $(|[RIGHT s(|[MID s(SIN (COS (TAN (RAD (PRINT
ASC(VAL(soRt LOG (ABS (INT (SGN (RND (
So||| ool oof||| <

ENG
GRAPH DIER s

SPACE KEY

|
|

CURSOR
B <~ CURSOR

B is blinking in the upper left portion of the screen. This is called the CURSOR and shows
the position Where characters and symbols which were entered from the keys are displayed.

To move the CURSOR, use the 4 light grey keys with arrows on them.
The type of the CURSOR varies depending on respective modes.
Alphanumeric mode
Dieresis mode

Graphic mode *

Press [ENG/DIER'S] or [GRAPH] keys which are in the lower left hand side of the

KEYBOARD.

The CURSOR will change. To return the CURSOR to the original position from graphic

mode, press the [GRAPH | key again.

To display on the screen the characters and symbols which are written on the key surface,

there are five methods available.

2 SHIFT
+
Alphanumerics / | GRAPH
. 1 A .
1 Alphanumerics Dieresis
5 SHIFT GRAPH
j =R
GRAPH A &«
Alphanumerics Dieresis

SHIFT
+

Alphanumerics

}

Alphanumerics 1 Z Dieresis

SHIFT | (Shift key)

Right and left [SHIFT keys work the same way. While holding down a [SHIFT

key,
when the key with numerics is hit, the symbol to the top left of the key is

entered.

While holding down the key, when an alphabetic character key is hit, a small
letter is entered.

GRAPH] (Graphic key)
This is used to input graphic symbols. The CURSOR shifts to *.

Graphic symbols may be used together with the HIFT | key.

ENG
DIER’S

This is used when entering dieresis.

Dieresis character can be typed while the Dier’s key is held down.

SPACE| key (This allows space between characters and symbols)

AuBuC

When the space key is

pressed once, the CURSOR
moves to provide space
corresponding to a character.

The elongated key (in the bottom row) is the space key which inputs space(s) between
characters and symbols.

In computers, space is also handled as information, as in the case of characters.

Input various characters using previously mentioned keys.

Special Keys

Now, you notice that the screen is full of characters and symbols which were previously
entered by keys.

.

It’s no use leaving unwanted characters and symbols on the screen.
We can clear the whole screen, using the following key.

HOME/CLR] (Home/Clear)

When this key is pressed, characters on the screen are erased and the CURSOR returns to
the upper left “home” position. Use this key whenever you want to clear the screen.

When [HOME/CLR] key is pressed while holding down the [SHIFT] key, the screen will

remain uncleared but the CURSOR returns to the home position.

(Carriage Return) or (Return)

In computers, even if characters are on the screen these are not stored inside the computer
until the key is pressed.

Input any character and press the key. You notice a Syntax Error displayed on the
screen.

Instructions for computers need to be written a certain way.
This is called the computer Syntax. If this Syntax is wrong, errors will occur.

For errors, refer to the error message table in the appendix.

INS/DEL | (Insert/Delete)
The [INS/DEL | key is used when deleting or adding characters one by one.
INS (Insert) refers to the addition of characters.

DEL (Delete) refers to the deletion of characters.

When [E] is typed by mistake instead of
[D] the CURSOR will move backward by one character if the [INS/DEL

key is pressed, and then character E is erased. Here, press D and a correction has been made
to A B C D.
Press [INS/DEL] key, and the CURSOR

moves to the left by one space.

Press key D.

D enters.

Now, let’s put any character in between the B and C of A B C D.
Bring the CURSOR over the C of A B C D.

While holding down the [SHIFT] key, press the [INS/DEL key.
You notice that the CURSOR blinks quicker than before. Input any character.

The character which was entered just now enters after B and C D moves to the right by one
character space.

Move the CURSOR above C.

— Press [SHIFT | key and key.

" Press the CURSOR key and move the CURSOR to
the right.

When the insert mode is used, as many characters as required can be entered (while the
CURSOR is blinking quickly).

When returning the insert mode to the original state :

1. Press key.

2. Press a CURSOR control key, (one of the light grey keys with arrows).
3. Press [SHIFT + INS/DEL | key.

By pressing either one of the above keys, the normal condition is restored. When the program
is corrected, the MEMORY inside cannot be rewritten unless the key is pressed.
Confirm this by actually operating the keys.

FUNC (Function)

This key allows you to enter many of the common BASIC words with a single keystroke.

GOTO The key has GOTO written on the upper part of it.
Each key has alphabetic characters written on it.

This is a command statement used in BASIC. While holding down the [FUNC
key, hit any key with a word above it, and the command statement written on
the upper part of the key is entered.

This is a useful feature when typing in programs.

(Y/BREAK]| (Screen shift/break)

,This is used for stopping programs during program run.

The screen will change when | {] /BREAK]| key is pressed while holding down the [SHIFT
key, by pressing the keys again the screen will change back.

This is used for changing the screen, as the computer has two screens. One screen is text
screen for entering programs, and the other, graphic screen for displaying graphics.

{)J/BREAK

{) ®» This is used to shift screens.
Use this while holding down [SHIFT | key.

This is because the computer has 2 screens as mentioned above.

BREAK ® This is used for stopping program run while they are running.

CTRL | (Control)

Movement for which explanation is given below can be executed when the character key
shown in the control key table is hit, while pressing the [CTRL] key.

|CONTROL CODE]

Key operation | PRINT CHR$ (Value) Functions
+ PRINT CHRS$ (1) ; NULL No character
C B BREAK Stops program run
E 5 Clears Characters after CURSOR
G 7 BELL Makes “beep” sound
H 8 DEL Deletes characters
I 9 HT Horizontal TAB
J 10 LF Line feed
K 11 HM Returns CURSOR to home position
L 12 CL Clears screen
M 13 CR Carriage Return
N 14 Dieresis <> Alphanumeric shift
0 15) Screen shift, text <> graphic

Key operation

PRINT CHRS$ (Value)

Functions

P 16 Standard character size
Q 17 Character size, horizontally 2 times as large
(graphic) (Screen 2)

R 18 INS (Insert)

S 19 Key input (A~Z) no shift, capital letter

T 20 Key input (a~z) no shift, small letter

U 21 Clears lines and returns CURSOR to left head

\4 22 Normal mode

W 23 GRAPH key input graphic mode <> alphabetic
character shift

X 24 Click sound ON <> OFF shift

— 28 ® CURSOR movement

- 29 4@ CURSOR movement

- 30 4 CURSOR movement

- 31 § CURSOR movement

When the control code is used in the program, input PRINT CHRS.

_19__

R p——

RESET | (Reset)

During program run, or when problems appear on the screen, the screen returns to the
situation as it was when the power was turned on within about 1 or 2 seconds after

pressing the [RESET] key.

When pressing this key, the computer stops processing and the size of the MEMORY which
has not been used is displayed.

XXX Bytes Free

Even if the key is pressed, programs which were entered will remain in the memory.

Now that you know how to use the keyboard, you should now be able to put any symbol
on the dark grey keys onto the screen.

10 SCREEN 2,2:CLS
20 LINE (50,50)-(150,150) .5
90 GOTO 90

RUN RUN tells the computer to do what the program says.

(For @, press O in the top row. O is used for numeral O)

After typing one line, press the key. Entered programs are stored in the computer
and the CURSOR moves on to the line below.
Although using the keys may be difficult, try to hit character keys carefully one by one.

This program 10 SCREEN 2,2 [CR]
will continuously 20 CLS
put a box on the 30 LINE (80,100)—(150,170),C, BF
screen changing 40 C=C+1
the color of 50 IF C=16 THEN Cc=0 [CR]
the box. 60 GOTO 20
RUN [CR]

To stop it push

() /BREAK

Chapter 2. Using the Computer

DJRECT MODE (Direct Command)
This is to show you how to make the computer work without writing a program.

Let’s try to print something on the screen.

HOME/CLR] [B][A|[S]I[1][c] [sPACE] [T][E][SI[T]

BASIC TEST
? Syntax Error

Ready
]

On the screen, the above will be displayed.

ERROR is displayed because the computer cannot understand the command which was
entered. Now, you want the computer to write BASIC TEST on the screen. To do this,

give the computer a command to [PRINT] the character which was entered.

»

The command for “write” is expressed as .
”

2
[P] [R] [N (7] M [B] [A][S] (1] [€] [SPACE] [T][E][S][T] []

PRINT statement is a command statement for display on the screen.

X To get the quotation mark " press this key while holding down a shift key.

PRINT"BASIC TEST" =— Characters entered by the keys.

BASIC TEST Characters which were output by PRINT
Ready statement.
i

Hopefully this time, no ERROR will be displayed because the computer understood what
it was supposed to do.

/
7

When printing characters and symbols, use the PRINT statement.

When telling the computer to print characters and symbols by PRINT statements, be sure
to put " (double quotation marks) at the start and ‘end of what you want printed.

Now, PRINT your name. Use alphabetic characters or Dieresis characters. All the numerics,
symbols and graphic symbols can also be entered in " " .

Spaces in " " are printed too.

/—> Press the space key once. (In this case, press it 5 times.)

PIRIIONT "Ly BIRAISI M [T EIEIE

[T T O I Y BASIC oty TEST

Ready
fil

This means space for one character.

PRINT statement is a command statement very often used in programming to show what
‘the computer has been doing.

For numbers and equations the above quotation marks are unnecessary.
eg. PRINT 3,3 % 4.
Now, try printing in a different way.

? Can be used instead of PRINT.
6

Ready

G

We gave the computer a command to calculate 2 + 4 and then PRINT the answer.

Let the computer display the calculation results also by a PRINT statement.

Symbol ? is a shortened form of PRINT statement. This is true of most personal computers.
OPERATION OF THE FOUR RULES OF ARITHMETIC.

In computing, some of the symbols used are different from those normally used.

Symbol used in the computer

. Addition
Subtraction
Multiplication
Division
Raising to Power

*
/
AN

Normal
Symbols
Plus .. +
MINUS creerrrrrrrrerrneesneernenneennnens _
Asterisk *
Slagh creeerrererreriee e e -
.. X"

A symbol used in computing is called OPERATOR.

Other than the operator, parentheses () (brackets) are also used in numerical expressions.
RELATIVE OPERATOR is used for the comparison of numeric values (numeric magnitude).

The following table summarizes the above. Be sure to read the table before application.

Operator

Where usable
Symbol | Numeric | String Description Priority
variable | variable

A O X Power (0 A 0 =1)
. + O X Code + 2
o
= - @) X Code —
’g % O X Multiplication 3
2 / O X Division
‘qE‘S MOD O X Residual 4
= + O @) Addition (Character combination
'é.‘. in case of string variables)

- O X Subtraction

* () is given the first priority.
* Where more than 2 operators with the same priority are used, the left side operator
takes precedence.
* An addition symbol “+” used for string variables shows a linkage.
(Example) “AB” + “C” = “ABC”
Arithmetic operation is decimalized.
(Example) : Even with values of 0.01, no cancelling in digit occurs.
Logical operation is binary.
Arithmetic operation : Decimal 12 digit calculation, 11 digit display.

Notice symbol [+ in the lower right—hand side of the KEYBOARD.
This is a graphic symbol and unusable for calculations.

Let* try calculating again.

Addition

?7+8 |CR]
15
Ready

PRINTS5 %6
[]30

Where the answer is positive (plus), symbol + is omitted, resulting in one
empty character space.

PRINT10/3
3.3333333333

. PRINT

For PRINT, [FUNC] key and * .. | can alsobe used to make it easier.
- 0

?INT((3/\4)+0.1)means(3x3><3><3)
81

Operation functions allow highly accurate decimal calcualations with 11 digit display.

271000000%10000

10000000000 11 digits

?10/3
3.3333333333 10th decimal place

For numbers greater or smaller than the above, the scientific notation system is used.

?71938000000%k10000000
1.938E+16 (1.938x101%%)

Calculation priority

?76+2%4

In calculations in which two numerical expressions are contained, are the calculations done
from the beginning position ? Priority applies to the four rules of arithmetic.
Priority is as shown in the table of operators.

Let’s run through an example again.

?76+2%4
14

Note that calculation for multiplication is done first.
For calculating addition first, use ().

2(6+2)%4
32

When addition, subtraction, multiplication and division are involved in the formula in one
line, use () for the expression to be calculated first. () can be multiply used more than
once in an equation, but brackets and braces as in mathematics are not used.

Only parentheses are used.

@ o o 0
?3*%((8+6)/(4—-2))
21

Calculations of the above example are done in the order of the sequence number given.
If the priority is the same, calculation starts from the left side expression.

When using parentheses, the number of the left side parentheses and that of the right side
parentheses need to be the same. If the number is not the same, errors will occur. Be sure
to check the number of parentheses.

ANOTHER WAY TO USE THE PRINT STATEMENT.

At the beginning of this chapter we printed letters or symbols enclosed by " " . When this is
used in the calculation formula, what will happen ?

Be sure to insert this.
?"2+3=";2+3
2+3= 5

Previously, only the answer was displayed. But this time, the equation was also displayed.

The upper formula of the above is the combination of two statements. " 9+3 "= was
ha‘ndled as characters and not as a calculation formula. Thus, it is displayed as it is. After

breaking by ; (semicolon), the statement thereafter was handled as a formula of 2+3, and
thus, the answer was displayed.

Another example :

?"243=",2+3
2+3= 5

Ready
&

The answer is given far apart on the screen. When a comma, (,) is used, the answer
displayed is found in the position 20 digits away from the end of the screen.

When using PRINT statement, pleasing displays can be obtained by properly using semicolon
and comma.

How to use (,) and (;) in PRINT statement.

P R I N T "'A" :“B“;"C";“D“;"Enr;“m

RUN
ABCDEF

nonon_noy L]

PRINT "A""8"."c" 'D","E","F"
B

o

So far, you have learned how to make the computer do arithmetic.

Notice that the equal (=) symbols which is normally used in mathematics is not displayed

in the calculation formula. In computers, symbols are used in a different way. This will be
explained in the next chapter, How to Program.

Chapter 3. How to Program

Let’s generate programs by using BASIC. Programs which were entered from the
KEYBOARD are stored into the MEMORY inside the computer.

The computer works from the smallest line number to the greatest line number. After line
number, there are statements to let the computer know how to perform its task.

LET

(Example)

1o [LET RAEE

20 [JEIO [BIEIBE

3o [EIT [cJEAIHBE]
40 [PIRIINI[T]

50 [EIN[D]

O] |O] |O (@] O
] | | o]]

34

[RIVI(N]

Ready
=

A new statement RUN is displayed. This is a command statement to make the
computer do whatever the program tells it to.

LET , VARIABLES

LET (substitution statement) is a command statement used for giving a number value for

a variable.

10 LET A=3

The above A could be thought of as an empty box called A.

We call this box a variable. This expression doesn’t mean that A equals 3.
It means putting the number 3 in Box A. The LET statement is optional.
Therefore, the following can be entered.

10 A=3

For the following, LET is also omissible.

30 LET C=A+B

Symbol equals (=) doesn’t mean to be equal, but refers to putting a number in a certain
place.

A =5 Input 5 in A.
VARIABLE
A+B;—\ C=A+B
fo —A+B Input A+ B in C.
VARIABLE
/1 " 1\
- 1/_\
X = X + 1
VARIABLE VARIABLE
X=X+1

Substitute the result of
X + 1 for variable X.

I ABC ll(_\
7$ — 1 C$="ABC"
= "ABC
VARIABLE C Substitute string ABC in C$.
" DEF

/_7

Ilé——\

— 1 D$="DEF"
VARIABLE D BER Substitute DEF for D§.
" ABCDEF"
E$I ="ABC"+ "DEF" E$=C$ +DS$
VARIABLE Substitute ABC + DEF for E$.
Substitution statement can be used as follows.

X=X+1

This is not true mathematically, but generally used in the substitution statement.

Example

10 CLS
d 20 X=X+1
30 PRINT X
40 GOTO 20 < Line No.
RUN
1 2 3 4 5 6 7 8...

Numbers consecutively appear every other character.

X starts with 0.

(0) (0)
With X=X+ 1,1 is substituted for the left side X. e,

After jumping from line No. 40 to No. 20, RUN returns to X = X + 1 and with 1 added to
X, the left side X becomes 2. In computers, the above—mentioned applications are often
adopted.

String variables

Attach $ (dollar) mark to string variables.

10 A=3

20 B=5

30 C=A+B

40 M$= "ANSWER '__ represents space
50 PRINT M$;C

RUN

ANSWER 8

Ready

i

— N "
40 M$=TANSWER _ . Provide one empty character space by the
space key.

In this way, a character string " ANSWER " was entered in box M§$.

For a character string, the left and right side of the character needs to be enclosed by double
quotation marks ("). If this is not done errors will occur. Numerics or graphic symbols can
be used for string variables. Furthermore, two string variables can be connected.

10 A$=”I n

20 Bg=" A‘I\—/IJL:> Provide one character space.
30 C$="A BOY'"

40 PRINT AS+BS$S+cC$

50 END

RUN

I AM A BOY

Ready

@
CLS, LIST, NEW

Various statements are available for BASIC. At the time of RUN » Programs remaining on

the screen may be confusing. If a command for screen erasure is entered in the beginning of
a program in advance, all displays on the screen are erased at the time of RUN.

Input new statements in the current program.

CLS

5 CLS <« command to erase screen display.

Enter line No. 5 CLS below the program which was previoulsy entered, in a place where
there is no writing.

Program input from line No. 1 to 65535 is possible. If programs are generated with closely
arrayed line numbers (e.g. 1, 2, 3,), additions between programs which were previously
entered are impossible. Therefore, it is common practice to go up by 10 for each line number
so that lines can be put in between other lines without difficulty. Where programs are
entered up to line No. 100 (going up by 10), even if unused line numbers such as 25 and 55
are entered after line No. 100, these numbers can be rearranged by the computer internally.
Lets check the outcome of the entering of the above-mentioned 5 CLS.

LIST

Enter |HOME/CLR LIST

5 CLS

10 A$="1 1

20 B$="AM "

30 C$="A BOY"

40 PRINT A$+BS$S+CS$
50 END

Note that line No. 5 is entered at the beginning. Now, start run.

. I AM A BOY
Ready

]

\
]
LIST is a command statement to make the computer display programs which were entered.
How to use LIST is as follows. |

|

LIST commands are used as follows :

LIST Displays the entire contents of programs.
LIST LINE NO. Only one line is displayed.
LIST LINE NO. — LINE NO. Line No. to line No. is displayed.

LIST LINE NO. — The content of programs after line No. is
displayed.

LIST — LINE NO. This displays from the beginning of the program
to line No.

The content of the program displayed by LIST statement can be rewritten using the CURSOR.

LIST 30
30 Cc$="A BOY"

Move the CURSOR to the place above B and input M. Subsequently, input AN and press
. After rewriting the content of the program, be sure to press the key. If

you forget to press the key, the content of MEMORY does not change even if

characters on the screen do. When the key is pressed during the list display, the

list display is halted. For immediate correction of the program, press the [BREAK] key.
When the [SPACE] key is pressed during LIST display, the display restarts.

NEW

When entering a new program after finishing one program, if the preceding program remains
intact in the MEMORY, the new program may not work normally.

43

The program which was previously entered cannot be erased by CLS statement from the
inside of the MEMORY. To erase programs, input NEW and press }

* Let’s display LIST.

LIST

Ready
i

Nothing is displayed. All programs were deleted from the MEMORY. From explanations given
so far, you have learnt something about computer programs. While entering programs, errors
in typing and statements may occur until you become familiar with programming. When
starting RUN with such errors remaining, execution stops at the line No. which has such
errors. This sort of an error is called a BUG. As you know, BUG refers to insects. So, this

is called a worm—eating problem. Thus, correction of this is called DEBUG. Although BUG
finding is easy with a short program, it is not so with a lengthy program. So, be careful

when entering programs.

INPUT, GOTO

Let’s write calculation programs.

In the calculation program written at the beginning, the values of variables were set in the
program, so numbers to be calculated had to be corrected each time.

» Let’s write calculation programs which are consecutively usable.

10 CLS

20 INPUT A

30 INPUT B

40 C=A+B

50 PRINT C |

60 GOTO 20 ——— Line No. to which execution jumps.

RUN

P
? @ (WAITING FOR INPUT A) — INPUT 4)

. ? B (WAITING FOR INPUT B) [5] — INPUT 5
9
28
2 B
15

Here, press [BREAK | key.

BREAK |IN 20 RUN was stopped at

Ready line No. 20.

-)

N—

GOTO

When computer’s operation flow encounters GOTO statements, RUN unconditionally jumps
to the assigned line No. This program returns to line No. 20 from line No. 60 and restarts
from INPUT A. This sort of program is repeated endlessly and thus it’s called an infinite
loop. The only way the program is stopped is by the key.

When the program flow encounters INPUT statement, values are entered in variables from
the KEYBOARD and the flow is halted until the key is pressed.

. INPUT statement is also applicable to string variables. Comments enclosed by " " can also
be displayed, as in PRINT statements.

(NEW A

10 CLS

20 INPUT "NAME ?2_ " ;A S
30 PRINT AS

40 END

RUN

NAME ? HANAKO <« Input character
HANAKO

Ready

=)

END, STOP

END informs you of the program end.
STOP halts program flow.

CONT

This is used when restarting the program which was interrupted by STOP statement and

the [BREAK | key.

10 X=X+1
20 PRINT X
30 GOTO 10

Run this program, and halt run during operation by the [BREAK] key.
Break in 20
CONT

In this way, the program restarts from the position the program was halted.

FOR — TO, NEXT, STEP

These are used to make the computer do its work repeatedly for a specific number of times.

«

10 CLS

20 FOR N=0 TO 9
30 PRINT N Repeats 10 times.

’ 40 NEXT N
50 END

FOR — TO is used together with NEXT as a pair. In this program, N increases one by one
from 0 to 9.

10 CLS

20 FOR N=0 TO 20 STEP 2

30 PRINT N;

40 NEXT N

50 END

RUN

0 2 4 6 8 10 12 14 16 18 20

With step 2, increases from 0 to 20 take place by an increment of 2.

The — (minus) symbol can also be used for STEP. Let’s change line No. 20.

20 FOR N=20 TO O STEP-2
RUN

20 18 16 14 12 10 8 6 4 2 O

»

From 20, decreases take place by an increment of 2. In this way, STEP is used when increasing
or decreasing a specific number at one time. @~ FOR — NEXT statements can be nested.

10 CLS

20 FOR A= TO 9 —

30 FOR B=1 TO 9 — A loop
40 PRINT A%XB,; B loop

50 NEXT B =t

60 PRINT
70 NEXT A

The multiple use of FOR — NEXT statement is called “nesting”. Multiple nesting up to 16
levels is possible. If the specified nesting is exceeded, nesting errors will occur.

Variables such as FOR I = 1 TO N can also be used.

10 CLS
20 FOR N=1 TO 20 1

30 FOR M=1 TO N ——— N Group
40 PRINT"O"; M Group
50 NEXT M] Correct way of usage

60 PRINT
70 NEXT N

Cautions for nesting

FOR N=1 TO 20 —

FOR M=1 TO 10 ...]
NEXT N | Incorrect way of usage
NEXT M

FOR, NEXT groups cannot be intersected.

IF — THEN, GOSUB

Program flow sequentially proceeds from the side with the smallest number. When reaching
a given situation, let’s try to change the flow.

(“ACCEPTABLE” OR “UNACCEPTABLE” PROGRAM)

10 CLS

20 INPUT "SCORE" ; A

30 IF A>=65 THEN GOSUB 100
40 IF A<=65 THEN GOSUB 200
50 GOTO 20

1700 PRINT "ACCEPTABLE"

17170 RETURN

200 PRINT "UNACCEPTABLE"

210 RETURN

IF — THEN is a command to analyze a situation. The above program analyzes the SCORE
entered by INPUT statement, evaluating by IF statement and changes the program flow.
If the score entered is more than 65 points, the program goes to line No. 100 by GOSUB
statement. If it is less than 65 points, operation goes to line No. 200.

I'F A>=65 THEN GOSUB 100

This statement means : IF A is greater than 65, THEN, jump to the subroutine beginning
at line No. 100 and return.

Following IF — THEN, statements other than line No. can also be used.

—-52-—

(Omissible)
. | F~THEN >GOTO LINE NO. (Jumps to the assigned line No.)
| F~~THEN GOSUB LINE NO. (Jumps to the assigned line No.)
| F~THEN PRINT" xxx" (Enters on the screen)

|l F~THEN END (Ends program)
IF~THEN STOP (Stops program run)
| F~THEN BEEP . (Produces sound)

To analyze a situation, use relative operators shown in the table below.

Table of Relative Operators

- Symbol Description
) % = Equal to (—1 for true, 0 for false)
g <> Not equal to (—1 for true, 0 for false)
g > Greater than (—1 for true, 0 for false)
E < Less than (—1 for true, 0 for false)
% >= Greater than or equal to (—1 for true, 0 for false)
a <= Less than or equal to (—1 for true, 0 for false)
- NOT Logical denial
@% AND | Logical product
'go ’g OR Logical sum
= o XOR Exclusive OR

GOSUB, RETURN

The preceding program had a GOSUB statement. With GOTO statements, the program only
goes to the assigned line No. GOSUB statement, however, is used together with RETURN
statement. After jumping to the assigned No., operation returns to the line following
GOSUB statement by RETURN statement.

20 INPUT A
30 IF A>=65 THEN GOSUB 100

40 I F A<65 THEN GOSUB 200 - J
50 GOTO 20 <
100 PRINT " ACCEPTABLE" J

110 RETURN
200 PRINT "UNACCEPTABLE"
210 RETURN -

| I

S |

When using GOSUB statement, errors will occur if you forget to enter RETURN STATEMENT.

After operation’s returning by the RETURN statement, the program proceeds from the line
following GOSUB. So, change the program flow again as in the case of line No. 50.

Where the program branches midway through, a flow chart is prepared so that the
program flow can be easily understood.

(START)

SCORE INPUT

SCORE 2 65

SCORE 2 65 ACCEPTABLE

SCORE < 65
DISPLAY OF
UNACCEPTABLE

In the flow chart, the flow proceeds from the top downwards. The flow changes by the
situation analyzing statement. When generating complicated programs, the flow can be
clearly understood by preparing the flow chart.

ON GOTO
ON GOTO statement is used similiar to the conditional statement.

ON A GOTO 100,200,300

Where variable A is 1, the program jumps to line No. 100.

Where variable A is 2, it jumps to line No. 200.

The values of variables corresponding to the number of line No. following GOTO
statement can be used.

(For A, input values 1~3)

10 INPUT "ORDER" ; A

20 ON A GOTO 100,200,300
100 PRINT "COFFEE" :GOTO 10
200 PRINT "CAKE" :GOTO 1¢C

300 PRINT "MILK" :GOTO 10
~ (COLON)

More than 2 command statements can be entered in one line (multi-statement). When
entering more than one independent statement in one line, break them by : (colon).

RUN Key input
oroen (1]

. COFFEE
ORDER
CAKE
ORDER
MILK
ORDER
Ready
=

ON GOSUB is also used in the same way. Before giving you an explanation, let’s use the
new command statements.

CURSOR

_Previously, at the time of RUN, you had displays only on the left side of the screen. If
programming is done so as to have displays in specific positions on the screen, you can see
displays more easily. The CURSOR statement is a statement to define the display positions.

(x:\O ,y=0)

x —
0123 18 37
. T
: \ (x=37, y=0)
\
Il
12 IR A
\ |
23 x| | | _)&\
x=0, y=23) (x=37, y=23)

TEXT SCREEN

The text screen on which the program is written consists of 912 locations formed by 38

digits X 24 lines.

CURSOR 18,12 :PRINT"A"

If you enter it directly without using line number, you will notice that character A is
displayed in the central position on the screen.

When using the CURSOR statement on the graphic screen:

0(x=0, y=0) 195 955 (x=255, y=0)
[}

10 SCREEN 2,2: CLS
20 CURSOR 125, 95: PRINT "A"

95 |- A

191 J (x=255, y=191)

(x=0, y=191)

x axis direction 0 ~ 255 (256 dots)
y axis direction 0 ~ 191 (192 dots)

The beginning position of characters you want to display is defined if coordinates are assigned
by the CURSOR statement.

ON GOSuUB

10 CLS

20 CURSOR 10,3:PRINT "MENU"

30 CURSOR 10,6:pPRINT"1, .. DRINK"
40 CURSOR 10,8:PRINT"2 FOOD"
50 CURSOR 10,1T0:PRINT"3 ., . . DESSERT"

60 CURSOR 10,13:|INPUT "ORDER";A

70 ON A GOSUB 100,200,300

80 GOTO 60
\

100 CURSOR 10,16:PRINT" "

110 CURSOR 10.16:PRINT" COFFEE. . . $3.00 "

120 RETURN

200 CURSOR 10,16:PRINT" "

210 CURSOR 10 ,16:PRINT"CAKE. .. $2.00

220 RETURN

300 CURSOR 10,16:PRINT" !

310 CURSOR 10,16:PRINT" MELON. . . $250 "

320 RETURN

rErase previous display.

61

ON GOSUB is a form varied from the program with GOTO.
Although only the CURSOR statements are used, displays are in the central positions.
So, you can notice displays more easily. When using GOSUB, don’t forget to enter

RETURN.

READ, DATA, RESTORE
Data previously entered in the program can be read by READ Statement.

10 READ A,B.,C,D
20 PRINT A+B+C+D
100 DATA 1,2,3,4
RUN

10

Ready

i
“The numeric values of DATA were added to display the result.

You can also enter string variables by using READ and DATA statements.

When encountering READ statement, the program flow reads the DATA
statement first wherever the statement may be.

10 READ A$., B$,C$,D$
20 PRINT A$+BS+C$+DS$
30 DATA S, E

40 PRINT

50 DATA G

60 DATA A

RUN Provides space for one line.
SEGA

Ready
i

Where string variables were used, even if numerics are entered in DATA, these numerics
are handled as characters and unusable in mathematical calculations.

The number of DATA and that of READ statement variables need to be the same.

When the number of DATA is more than that read, only the DATA corresponding to the
variables of READ statement will be displayed.

Where the variables of READ statement exceed the DATA, errors will occur.

When the same data is used repeatedly from the beginning, use RESTORE statement.

RESTORE
10 READ A,B,C,D
20 DATA 1,2,3,4
30 RESTORE
40 READ E < Reads the beginning data 1.
50 PRINT A+B+C+D+E
RUN
11
DIM (array)

“1 — Dimensional Array
In the previous program, variables A, B, C and D were used for the DATA. As the
number of DATA increases, it becomes more troublesome to set variables one by one.

e

In such a case, arrays are used.

DIM A (5) < Value in () is called a subscript. This means that six variables
A(0), A(1), A(2), A(3), A(4) and A(5) were dimensioned.

String variables can also be dimensioned.

10 CLS

20 DIM A$(5),B(5)

30 FOR I=0 TO 5

40 READ A$(CI),B (1)

50 PRINT A$CI1),BC(I)

60 PRINT <« To provide one line space
70 NEXTI

100 DATA COFFEE, 250, MILK, 150, CAKE, 200
110 DATA TEA, 280, TOAST, 180, BREAD , 100

Although DIMA § (5) was entered, READ statement refers to A $ (1). This is because
I is the one used in FOR I=0 to 5. Thus, while I changes from 0 to 5, DATA is read.

In READ statement, DATA alternatively array string variables and numeric values since
A$ and B are consecutively read.

Let’s experiment to array the DATA.
2 — Dimensional Array

In 2 — Dimensional array, subscripts in () are divided into two parts, for example,
DIMA (9, 9).

Multiplication Table

10 CLS

20 DIM A(C9,9)
30 FOR J=1 TO 9
40 FOR K=1 TO 9
50 A(J,K)=J%K
60 PRINT ACJ,K);
70 NEXT K

h 80 PRINT <« To change line
90 NEXT J
RUN

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
. 4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

3 — Dimensional Array

DIM A(5,5,5)

Array declaration is possible up to 3—Dimensions. If no array declaration is given by
DIM statement, the subscript with the maximum value of 10 is automatically applicable

to the declaration.

ERASE

This is used to make array declaration invalid during program run.

-

When 100 ERASE is entered, all the arrays in the program will become invalid.
Where array name such as 100 ERASE A, B$ is entered, the array will become invalid.
DELETE

DELETE statement is used to delete unwanted lines when correcting programs.

DELETE 180—-220 » (comma) may be used instead of — sign.
Line numbers 180 —220 are deleted by the above.

DELETE —250 Deletes programs from the beginning to line No. 250.

DELETE 600— Deletes all numbers from No. 600 onwards.

DELETE 100 Deletes line No.100 only.

68.

So far, some of the BASIC statements have been used. ~When programming, be sure to enter
the line number. The following shows the statement which automatically generates the line
number.

-

AUTO
Enter AUTO without line No.

10 [CR]

20

Line numbers are automatically generated by STEP 10.

AUTO 100

110

Note that the line numbers are displayed starting from No. 100 by STEP 10.

AUTO,10,20

(Starting line No. and STEP number)
; 10 IC R |
30

50
Each time key is pressed, line No. is displayed by STEP 20.

RENUM (Renumber)

When line numbers are too closely arranged while the program is entered and line numbers
are added, RENUM is used to renumber line Nos.

RENUM

Line numbers are renumbered from the beginning of the program in the

order of 10, 20, 30 and so on.

- RENUM 100

Correction is made by renumbering with step 10 starting fromline No. 100.

RENUM 3(|)O , 200

New No. Previous No.

"The program is renumbered by step 10 starting from the previous line No. 200 which is to
be renumbered as line No. 300

RENUM 300, 200, 50

Step assignment

Renumbering with step 50 starts from line No. 300.

SAVE, LOAD, VERIFY

SAVE

SAVE allows the recording of generated programs, data, etc. in the cassette tape.

Enter the file name.

s
SAVE"xxxx !

Saving —Start <= When display is on the screen, press the recording
button of the audio cassette.

Saving, End “~ This refers to the end of the recording. At this
time the cassette is to be stopped.

Use the file name so that the program content is easily understandable.

For naming, use no more than 16 characters. If you have a cassette deck available, use it.
If the cassette deck has a counter provided, write the counter number on the cassette tape
label.

VERIFY

Whether or not SAVE was done accurately is checked by the VERIFY statement.
Rewind the tape, input and press the play button. If accurately saved,
VERIFY OK will be displayed. If VERIFY OK is not displayed, repeat SAVE from
the beginning.

LOAD
Shift the program data in the cassette tape to the computer.

Program name.

LOAD " x x x !

Loading Start < Press play button.
Found " x x x "
Loading End < Stop cassette.
When using your cassette deck, writing or reading may be impossible depending on the
sound level.
This does not mean computer trouble but sometimes results from cassette deck performance.

Try to change the levels of sound volume and quality. If writing is still impossible, use a
cassette deck compatible with the computer.

For connection to the cassette tape recorder, use the mini—plug available on the
market.

SC — 3000 side Cassette recorder side
IN And LOAD, VERIFY <« Earphone (EAR)

ouT <« SAVE > Microphone (MIC)

REM

When generating programs, it is convenient to prepare the remark statement in advance so
that details of the program or subroutine can easily be understood by looking at the

program list later.

170 REM xXx CALCULATION X X x
20 CLsS

30 PRINT 2+3

l

The REM statement in the program is ignored and not executed.

CONSOLE

This assigns the scroll range of the text screen, ON/OFF of click sound as well as the

shifting from capitals to small letters or vice versa.

Scroll range assignment

v L C S

40 x - CONSOLE 5,15, 0, 1
VY V ; Upper limit of scroll (0~ 22)

L : Length of scroll (2~24)

4

HH C; Presence of click sound 0:
Scroll range (from 5th to 15th lines) Not present
Where the sum of V and L exceeds 23, 1:

errors occur. Present
S; Size of Alphanumerics 0 :
94 - Capital w/o shift
1:

Small w/o shift

The screen is divided by lines 0~23 in the direction of y.

The numbers after CONSOLE show the starting and ending lines of scroll. If the
scroll range is assigned as shown in the above example, the CURSOR moves within
the range between the 5th and 15th lines. Set the CURSOR moving range to 0~-23.
If the highest number of the set range is 24 or more, errors will occur.

The scroll length can be from 2 to 24 (the upper limit set number).

The third numeric of CONSOLE,, 0, refers to whether or not the CURSOR is set so as
to produce a click sound at the time the key was pressed.

“ 0; No sound
1; Makes sound

The 4th numeric of CONSOLE,,, 1 defines the capital or small alphabetical characters.

0; Capital letters w/o shift
1; Small letters w/o shift

For omitting the 4 numerics, input only (,). The CONSOLE statement can be cleared
by the RESET key.

76

Chapter 4. Functions

In the function group, there are mathematical functions and string functions. Be sure to
remember functions which are frequently used.

RND (Random number)
This function is used to have the values of variables generated at random. This is
frequently used, being useful in simulating dice rolls, and irregularly moving games and
targets.

RND (1) Random numbers between zero and one.

RND (0) The previous random number will be given.

RND (= 1) Random number generation pattern is reset.

Let’s generate random numbers.

10 FOR N=0 TO 10
20 R=RND (1)
30 PRINT R

40 NEXT N
RUN

.2380546294

.7041382496

.4925371138
l

Numbers from 0 to 1 are generated at random. These are random numbers. If numbers
which appear next are predictable, these cannot be called random numbers. What is
interesting is that until you cast dice you can’t tell what the result will be. Decimal
fractions are not practical.

The random numbers are arranged as follows to allow you to use them more easily.

INT (n) (integer)
INT functions convert real decimal numbers into integers.

. 2INT(314)

3 <« Decimal numbers are erased.

Ready

DICE

10 FOR N=0 TO 20

20 S=INTCRNDC1)%6)
30 PRINT S;

40 NEXT N

RUN

3 5 0 4 1 B O e

Decimal points have disappeared. While 0 exists, 6 doesn’t.
This is not applicable for dice. Let’s correct it.

To eliminate 0 and insure
20 S=INT(CRNDC1)%6)+1 necessary numbers.
L

— The number wanted.

Now, this time, numbers from 1 to 6 appear. Try in different ways by changing
numerals.

Program for rounding to the nearest whole number.

10 INPUT A <« Value with decimal fractions
20 PRINT INT(A+0.5)
30 GOTO 10

This is the program in which decimal fractions are rounded to the nearest whole number.
The program is applicable to various calculations. Be sure to keep this in mind.

CHARACTER STRING FUNCTION
More explanation about string variables is given here.

String variables are also called character string variables.
In other text books, the term of string variables is used.

Let’s see how characters are handled in computers.

ASC ("N") (ASCIH Functions)

ASCII refers to American Standard Code Information Interchange which with numbered
characters and symbols allows computers to process information with ease.

Now, let’s try this one.

. ?ASC("A") (Run by direct mode)
65
Ready

The above number 65 represents A. When using ASC statements, enclose the character in
()by n "asin(”A").
Now try to enter a symbol in (), instead of A.

”

? ASC ("1") Now, 33 is displayed.

In the inside of the computer, characters and symbols on the KEYBOARD are entered,
corresponding to numbers from No. 32 to No. 255. Unlike humans, computers are
unable to understand characters as they are. In computers, all characters are handled
as numerics. Thus, characters are classifiable on an understanding that A (65) precedes
B (66). Even if more than two characters enclosed in () are entered as in ? ASC
("BA") the computer checks only the first character and displays the numeric.

Let’s try another one.

1T0 INPUT AS
20 Q=ASC(AS$)
30 PRINT Q
40 GOTO 10

After RUN, when characters and symbols are entered, corresponding code numbers are

displayed.

CHR $

This is the opposite of ASC statement and gives control functions for variables and
characters.

?CHRS$ (65)

A

In the ASCII code, A was represented by 65.
Lets’s look at the characters entered in the computer.

10 FOR M=32 TO 255
20 PRINT CHRS$ (M) ;
30 NEXT M

RUN

Characters and symbols printed on KEYBOARD are displayed in rows. These are
characters and symbols contained in the computer.

Look at the character set. Notice that codes displayed on the code table and the screen
are the same.

LEFT$, RIGHTS, MIDS$

. These are functions which take out part of the characters from the lengthy character

strings.

10 A$ ="COFFEE COCOA MILK"
20 M$= LEFTS$(AS, 6)
30 PRINT M$ t__(String up to the 6th character from the left)

RUN
COFFEE

Take out the character string up to the 6th character in A $ (space is also counted) and
substitute it in M'$ so that these are displayed on the screen.

10 AS$ ="COFFEE COCOA MILK"

20 MS$ = RIGHTS$ (AS$, 4)

30 PRINT M$ f

FEEEh String up to the 4th character from the right.

MILK

Now, take out characters from the 4th character from the right up to the end.

10 AS$ ="COFFEE COCOA MILK"

” 20 M$=MID$ (A$, 8 5)
30 PRINT M$
RUN No. of characters to be taken out.

COCOA Starting point

Take out 5 characters starting from the 8th character from the left of the character

string.
LEN (length)
LEN (A$) will give you the counted character numbers of A$. Also in this case,

characters include all, even the space enclosed by" ". In " ", even if characters
consist of space only, these spaces are treated as characters.

10 A$ ="SEGA PERSONAL COMPUTER"
N 20 PRINT LENCAS$)
RUN

22

LEN gives you the character numbers including spaces.

The following way of use isalso possible.

10 AS$="sk%k%%kkkxkkkxk!
20 FOR I=1 TO .LENCAS$)
30 PRINT LEFTS$(AS, 1)
40 NEXT 1

RUN

*

* %

* %

% %k k

2

s sk 5k % % %k >k k %k Xk

STR$, VAL

These convert values into string variables or convert numeric string used as string
variables into values.

STR§

10 A=1:B=3

20 D$=STRE$(A)+STRS$ (B)
30 D=A+B

40 PRINT D$,D

RUN

1 3 4 <« Result of line No. 30
Result of line No. 20

When STR $ (A) is entered, numerics convert into characters.

In the addition of characters, characters are in a row but no calculation answer is
displayed.

VAL

VAL functions have features quite opposite to STR$ and convert character string
numerics into values.

10 A$="12345"

20 B$S="11111"

30 C$=A%$+BS$ < Addition of character string

40 C=VAL(CAS$)+VAL(BS$) <« Addition of values
50 PRINT C£§

60 PRINT C

RUN
1234511111 <« Character string
23456 < Numeral value

TIME $§

The computer has built—in clock functions provided inside.
The clock is an accurate digital quartz clock with a quartz oscillation mechanism.

When the computer power switch is turned on, the clock starts to work in increments
of 1 second from that moment on.

When the power is turned on, the display is as follows :

00:00:00
-87-—

After a specific time elapse, the time elapsed is displayed.

. PRINT TIMES$ [CR]

00:12:32 << Time after power switch was turned on.

When it is used as a clock, the following applies.

170 TIMES$ ="08:15:00" Current time (" hour : minute :

20 CURSOR 15,15:PRINT TIMES$ second ")
30 GOTO 20

Once the time is entered, it will remain set until the key is pressed or the
power is turned off.

SPC (space), TAB (tabulation)
These are used in PRINT statement.

SPC functions assign spaces between characters.

10 PRINT"ABC";SPC(10);"Xxyz"
RUN

ABC L aiy XYZ

10 spaces
If characters are within the range assigned by SPC, these will be deleted.

TAB FN (function) assignment defines that at which character No., counting from the
screen end, the tabulation position is to be displayed.

10 PRINT TAB(5);"ABC"
RUN

Lorararars ABC

Spaces corresponding to 5 characters.

In the case of TAB FN, even if characters exist between the assigned tabulation positions,

these characters are not deleted. This function is used in PRINT statements. So be
sure to keep this in mind.

INKEY $

This statement is to check which one of the keys for characters or numerics was
pressed. Like in games, it is useful to move some kind of patterns by the KEYBOARD.

10 X$=INKEYS$

20 IF X$="" THEN 10
30 PRINT X§;

40 GOTO 10

Line No. 20 checks to see whether a key has been pressed.

Where nothing is entered, X$ value is referred to as null string. In this case, nothing
is displayed and execution is endlessly repeated between line No. 10 and 20 (referred to
as infinite loop). When any key is pressed, the key value is substituted in X$ and
displayed by line No. 30. In order to get out of this infinite loop, add the following.

25 IF X$="z2" THEN 100
100 PRINT"END" :END

Y

Then, when the Z key is pressed, program ends.
Example Operation can be started by , .

_90__

10 DIM D (29)

20 CLS

30 X=18: Y=20

40 D(29)=—-1:D(28)=1:D (0) =0

50 K$=INKEY$

60 IF K$ =" "THEN K =0: GOTO 90
70 K = ASC (K $)

80 IF K >29 THEN K =0

9 X =X +D (K)

100 IF X<0 THEN X =0

110 IF X >33 THEN X = 33

120 CURSOR X , Y: PRINT " [+] "
130 GOTO 50

FRE

As programs are entered, the remaining memory decreases. FRE FN (function) is used
to determine how much space is left in the computer’s memory.

Example

PRINT FRE
” 8300

This means that additional programs of up to 8300 BYTES can still be entered.
PRINTER CONTROL COMMAND

LLIST

Print the program list on PRINTER.

The command statement is uscd in the same manner as in the LIST.

LLIST < Prints the whole program.
LLIST Line No. < Prints assigned line numbers.
LLIST Line No. — Line No.

- LL1ST — Line No.

LLIST Line No. —

LPRINT

This causes the computer to print the content of the PRINT statement on the PRINTER.

-

O How to apply the command statement is the same as in the PRINT statement.

LPRINT A prints the content of A on the PRINTER.

10 INPUT A,B
20 C=A+B

30 LPRINT C
40 GOTO 10
RUN

C value is printed on the PRINTER.

HCOPY

Characters and symbols displayed on the TV screen are printed on the PRINTER by this
command. The PRINTER can print numerics, capital and small letters, and ASCII Code
symbols. Graphic mode symbols and Dieresis characters cannot be printed.

Chapter 5. Graphics

Let’'s use graphics

»

The SC—3000 has two screens available to the user, the text screen and the graphics screen.

The text screen cannot display graphics other than graphic characters, and cannot
show more than two colors at a time.

The graphic screen can have all fifteen colors displayed at the same time, and can use
commands such as LINE, CIRCLE and PAINT to draw shapes on the screen.

The graphic screen is made up of a grid of dots. We have to be able to describe the
position on the screen that we wish to plot. We do this by first giving a number
between 0—255, this is how far across the screen. We then give a number between
0—191, which is how far down the screen.

eg. PSET will set a single dot in the color that you choose.
~ To set a dot in the middle of the screen we go half way across (127 is halfway
across the screen) and halfway down (95 is halfway down the screen).

We would have to put:
PSET(127,95) 8

To make the computer do this we will enter a short program.

This is the color red.

This selects the graphic screen. 10 SCREEN 2,2:CLS
This sets the dot. 20 PSET(127,95),8
This is to stop the program 30 GOTO 30

from finishing and returning to the text screen.

SCREEN
SCREEN statement selects the writing screen and display screen.
If the screen is used only for the text, SCREEN assignment is unnecessary.

The SCREEN statement is used when displaying characters and graphics on the
screen.

_95__

Selects the graphic screen.
Stops the program from finishing and going back to the text screen.

10 SCREEN 2,2:cCLS
20 GOTO 20

Push the [BREAK] key to stop the program.

SCREEN Writing screen , Display screen

N —~)
%k

{1 : Text screen
* 2 Graphic screen

Assignment of Assignment of
writing screen display screen

< DISPLAY

PRINT 1
/

or \
drawing 2
for CLS, etc.

Graphic screen

-

COLOR

The color command allows you to select colors for the different parts of the display.

Text screen (screen on which program is entered)

(Screen 1)
The writing color assigns colors for characters, etc.
In the example, characters are in black and the background 1s in blue.

(Example)
Color for writing
COLOR 1,5
Color for background

Graphic screen (displayed by graphic statement)

(Screen 2)
The writing color refers to the following:
Character color by PRINT statement.
Color for lines or dots by LINE and PSET statements.
LINE,
Painting color by PAINT statement.

THE BACKGROUND COLOR

A range must be given for the background color. The corners of a box containing the area
to have the background color are given.

eg. [— Writing color black
’ [Backdrop color blue
COLOR1,8,(0,0)—(255,191),4
l L Bottom right of screen

Top left of screen

Background color red

This will put the color red on the whole screen, with blue as the backdrop (the very top and
bottom of the screen) color.

COLOR 1,8 . (0,0) - (127,191), 4

This will put the color red on the left half of the screen, leaving the right half unchanged.

Y

0 255

RED

(127 , 191)

191
COLOR 1,8, (10,10) — (50,50), 4

This will put the color red in the box with the corners (10, 10) and (50, 50).

0 255

Example

10 CLS 40 FOR 1=0 TO
: 20 FOR C=0 TO 50 NEXT 1 ,C
30 COLOR 1,¢C
Colors on the screen consecutively change.
Color No. Color Color No. Color
0 Transparent 9 Light red
1 Black 10 Deep yellow
2 Green 11 Light yellow
3 Light green 12 Dark green
4 Dark blue 13 Magenta
5 Light blue 14 Gray
6 Dark red 15 White
~ 7 Cyan
8 Red

300

LINE

Line statement causes the computer to draw lines after SCREEN 2,2 are entered.

0 255
The graphic screen has a coordinate with

0 - 225 (256 dots) in the x direction and
one with 0 - 191 (192 dots) in the y

direction.

The LINE statement causes the computer to draw lines by assigning coordinates between
2 points.

Screen examples

(1) LINE(50,50) — (200, 50) .1 Black color assignment

(2)LINE(50,100) — (200,150), 8 Red color assignment

-101-

BLINE

BLINE statement functions erase lines and the box drawn by LINE statements. It is used
in"the same way as the LINE statement except that color assignment is unnecessary.

10 SCREEN2,2:CLS

20 LINE(50,50)—-(200,50),1

30 FOR I=0 TO 300:NEXT I <« Takes time
40 BLINE(50,50)—-(200,50)

50 GOTO 50

For erasing the box the same applies. However, when drawing a box smaller than the
drawn box by BLINE, the color of the particular portion disappears. The BLINE
statement is used to erase all the graphics previously drawn or part thereof.

PAINT

Paint screen portions separated by LINE statement or CIRCLE statement.

-102-

PAINT (x ,y) , color

Paint portions enclosed by coordinate

lines where painting starts from.

Paint the entire periphery.

Box drawn by line and BF
statements.

-103-

10 SCREEN 2,2:CLS
Draws a blue line 20 LINE(C100,10)—(10,180)
Draws a red line 30 LINE(90,5)—-(90,190), 8
Draws a green line 40 LINE(5,80)—(150,80), 2
PAINT area in middle 50 PAINT(80,50), 1
with color black 60 GOTO 60

, b

CIRCLE

Now, let’s draw circles. Line drawings or the CIRCLE inside can be painted.
Various values enter the CIRCLE statement. So, when entering values, refer to the
text until you become familiar with the statement.

1) 2) 3 | 4)) , 6) (7
Coordinate, Radius, Color, Ratio, Start Point, End Point
CIRCLE (125,95), 50 5 , 1 , 0 1 BF

’ ’

Explanation of examples

(1) Coordinate x=125, y=95 (255 (max.) in the x direction.
191 (max.) in the y direction.)

(2) Radius Radius from the center
(3) Color 0~15
(4) Ratio at 1 True roundness

Less than 1 Ellipse (long sideways)
Greater than 1 Ellipse (longitudinally long)

(5) Start point Position where printing starts from.
(Enter numerics between 0~1 with decimal fractions.)
(6) End point position where printing ends.

(7) When BF is not assigned, only a circumference is drawn. When
B is assigned, lines can be drawn inside also.
When BF is assigned, the assigned color is used for painting
part or the whole of the circle.

-1056—

0.75 0.75
S No BF assignment

N
\

N No line

End point 1 i
pomt 1L 0 Start point

0.5 §tart point O

/ Clockwise drawing

0.25

Ratio 0.5

End point

0.5 B assignment

BF assignment Ratio 2

0.25 Start point

Draws a blue
circle

Draws a red
eclipse

Draws an open
circle

Draws a closed
partial circle

Draws a filled
partial circle

Draws a filled
complete circle

10 SCREEN 2,2:CLS

20 CIRCLE(130,100),30,4

30 GOTO 30

10 SCREEN 2,2:CLS

20 CIRCLE(127,95),30, 8,

30 GOTO 30

10 SCREEN 2,2:CLS

20 CIRCLE(127,95),30,8,1,0, .75
30 GOTO 30

10 SCREEN 2,2:CLS

20 CIRCLE(127,95),30,8,1,0,.75,8
30 GOTO 30

10 SCREEN 2,2:CLS

20 CIRCLE(127,95),30,8,1,0,.75,BF
30 GOTO 30

10 SCREEN 2,2:CLS

20 CIRCLEC(127,95),30, 8, , BF

30 GOTO 30

=107 -

BCIRCLE

BCIRCLE is used when erasing circles drawn by CIRCLE statements. In this case, color
assignment is disregarded and CIRCLE is drawn in the same color as the background,
so CIRCLE becomes unnoticeable.

Let’s add the following program to the previous program.

10 SCREEN 2,2:CLS
20 FOR R=10 TO 50 STEP 10
30 CIRCLE(125,95),R, 8
Draws & 40 NEXT R
erases 50 FOR R=10 TO 50 STEP 10
circles. 60 BCIRCLE(125,95),R, 1,
70 NEXT R
80 GOTO 10

10 SCREEN 2,2:CLS
. Draws a 20 LINE(20,20)—(240,170),6,BF

circle 30 BCIRCLE(128,96),30,,,,,BF
inside 40 GOTO 40
a box

-108—

PSET

This statement allows setting of dots in the specified position on the screen.

v !
PSET(x ,y), 61 Coordinates color

By consecutively varying coordinates, straight lines
and curves can be drawn.

10 SCREEN 2,2:cCLS

20 X=0:Yy=95:E=1

30 PSET(X ,Y), 8 A dot can be generated.
40 X=X+1:Y=Y+E

50 IF Y=120 THEN E=-—1

556 | F Y=85 THEN E=1

60 IF X=250 THEN END

70 GOTO 30

PSET allows setting of dots and the generation of graphs by using mathematical functions.

-109—-

PRESET

PRESET erases dots, counterworking to PSET. Application is the same as in PSET
except that PRESET plays the role to erase dots instead of generating them.

Coordinates

PRESET (x,y)

POSITION

The upper left position of the coordinates is 0. When coordinates are
assigned by POSITION statements, the assigned position becomes the center

which is x=0, y=0.
X =0 X =100

X y y
axis axis
POSITIONC100,80)0,0

. Yy =80

; Axial direction of x 4

Axial direction of y

)
Numeric values following coordinate symbols define the increase directions of x axis and y
axis.

Increase with

1 assignment (y)
With 0 Assignment,

x values increase to the —\

right and y values increase

downward. Increase with 1 (x =0,y =0)| Increase with 0
With 1 assignment, x values assignment (x) assignment (x)
increase to the left, and

y values increase upward.

Where x and y assignments are
combined, the value increases in the
directions of x axis and y axis can be
varied.

Increase with C
assignment (y)

Normally the screen is set at POSITION (0,0),0,0.
When the reset button is pressed it will return to this.

-111-

10 SCREEN 2,2:CLS

20 POSITIONC(C125,95),

30 FOR N=0 TO 50
40 PSET(X,Y) 1
50 X=X+1:Y=Y+1
60 NEXT N

1,1

x =125

NIRW
1)

The combined use of POSITION statements and PSET permits Fn (function) graph drawing.

10
20
30
40
50
60

SCREEN 2,2:CLS
POSITION(100,50),0,0
FOR N=-10 TO 1 STEP.1

X=N*20+120:Y=SIN(N)*%50+45

PSET (X,Y),1
NEXT N

—100

155
—50 ['/ : \

0,

PATTERN

Using PATTERN statements, characters and graphic characters can be generated.
Let’s rewrite the text mode characters.

PATTERN C# Character code (32—255 or &H20—&HFF),
”Character—$tring expression”
"Character—string expression”

(hexadecimal)

LEFT |, RIGHT

LEFT RIGHT LEFT | RIGHT
01111 0000
1000| 1000
1001 1000
1010 1000
1100| 1000
1000| 1000
0111 0000
0000 0O0OO

O N 0w O > © 00 N
O O W W W W mw O

~—— 6 dots —|

<—"" 8 dots —

Black location = 1, White location = 0

-113-

L .

Let’s assign the above graphic characters to the space key.

20 PATTERNC #&H20 , "708898A8C8887000"
RUN

Now, press the space key. You notice that “0” is displayed. This is because “0” was

printed in the space. Push the [RESET] button to return the character to its normal

pattern. As above, characters can be easily generated. Pattern characters to be displayed
on the graphic screen are also printed in the same manner.

Make sure that application procedures are properly understood.
C# oo Text mode assignment

Character code: In the case of hexadecimal

numerals, input numerics from &H
20 to &HFF. In the case of

decimal numerals, input numerics
from 32 to 255.

Character string expression:

Characters and patterns can be
drawn by painting 8 x 8 dots in
black.

Assign 1 and 0 for respective
columns, with black dots
assigned as 1 and white dots as 0.

becomes 01110000. This is separted from

the center into two portions and then converted into
hexadecimal numerals.

S# - Assignment of graphic screen
Sprite name: Numbers from 0 to 255 are assigned.
Character string: Entering to be same as the text mode.

LEFT RIGHT
| 0000|0001 0|1
HH 0000|0011 03
0000|0111 0!7
0000|1111 ol|F
0001|1111 1|F
0011|1111 3|F
0111|1111 71F
I 171111111 F\F
L

8 dots)J,

10 SCREEN 2,2:CLS
20 PATTERNS#0,"0103070F1F3F7FFF"

30 SPRITE 0,(10,0),0,1
RUN

4 — This mark is displayed or SCREEN 2.

0111 is 7 and 0000 is O and this results in “70”.

Try to generate characters as per the above.

HOW TO DRAW PATTERNS

To begin with, divide graph sheets into 8x8 locations and paint a dot (location) to generate
a pattern.

The painted location is assigned as I and the blank one,as 0. Arrange 0 and | numerals
beside locations. Divide the eight numerals in a row into two equal parts from the

center, each part being four digits.

The four digit numerals represent binary numerals.

-116—

These are converted into hexadecimal numerals of two digits.

Refer to the comparison table of decimal binary and hexadecimal numerals.

»

The eight sets of numerics converted into hexadecimal numerals are substituted in as
character string variables. In this way characters are expressed by 8 X 6.

Decimal Binary Hexadecimal Decimal Binary Hexadecimal
Numerals Numerals Numerals Numerals Numerals Numerals

0 0000 0 9 1001 9

1 0001 1 10 (Carry) 1010 A

2 0010 (Carry)| 2 11 1011 B

3 0011 3 12 1100 C

4 0100 4 13 1101 D

5 0101 5 14 1110 E

6 0110 6 15 1111 F

7 0111 7 16 10000 10 (Carry)
8 1000 8

-117-

MAG

The MAG statement assigns the magnitude of graphic characters to be drawn on sprite
planés by PATTERN statement.

!‘— 8 bit -‘1

1 bit=1 dot
MAG O 8 bit

Four of MAG 0 are combined to

draw the pattern.

MAG 2

MAG 3

8 dots £0

16 dots
32 bit

|'* 8 dots —

-

16 dots _—
I: 8— 32 bit

2 bit X 2 bit is deemed as 1 dot.

A

#2

Patterns are drawn by combining
four MAG 2.

#1

#3

-119-

In MAG 0, patterns are drawn within 8x8 dot locations with 1 bit as 1 dot.

In MAG 1, patterns can be drawn within 16x16 dot locations by combining four locations,
1.€., #0~3, #4~4#7,. . . ., #252~#255.

In MAG 2, patterns are drawn within 8x8 dot locations with 2 bit X 2 bit as one dot.
The bit number is 16 bit x 16 bit.

In MAG 3, patterns can be drawn by combining four locations as-assigned in MAG 2.
In this case, the bit number will be 32 bit x 32 bit.

SPRITE

MAG statement, PATTERN statement and SPRITE statement are absolutely necessary when
using sprite functions.

0~31 Coordinate
SPRITE Graphic screen No., (x,y), Sprite name, Color

« There are 32 graphic screens (0~31) and the SPRITE statement assigns the number
of the graphic screen on which the sprite is to be drawn.

Graphic screen No. 0 takes the foremost position and as the number increases, the graphic
screen’s position becomes progressively more and more in the background. When graphic
screens are intersected, the one with a smaller number takes precedence. Coordinates used

are 0~255 (x) and 0~191 (y). The upper left coordinates define the position assigned by
the PATTERN statement.

255

P i
Y il
191 /J

SPRITE name refers to the S# name defined by the PATTERN statement. If there are
clearances in a pattern drawn by the PATTERN statement, the screen behind the preceding

one will be seen through the clearance. Taking advantage of this situation, deep and solid
_ patterns can be generated.

-121-

. O : Graphic screen

“ S#31

Graphic screen S#0~- S#31

TV screen

Note: At the maximum, 4 patterns of the graphic screen can be displayed on the horizontal
line. Where more than 4 patterns are in a row horizontally, the 4 patterns which
have the highest priority will be displayed.

Chapter 6. Mathematical Function — 2

The computer excels in calculations. Various functions including trigonometric function are
built into the computer in order to increase the calculation function.

ABS (X)
Function: Gives absolute value of expression X
Form: ABS (X)

How touse: pPRINT ABS(-5) [CR] 5
PRINT ABS(3%(-6) [CR] 18

RAD
Function: Angular degrees are converted into radians.
Form: RAD (X)

How to use: 0°, 15°, 30°, 45° and 60° are converted into radians.

10 FORI=0 TO 60 STEP 15
20 X=RADC(CI)
30 PRINT"RAD (" ;1 ;"°)=":X

-123-

DEG

Function:
Form:

How to use:

Pl

Function:
Form :
How to use:

40 NEXT 1

RUN

RAD(0°)=0
RAD(15°)=.2617993878
RAD(30°)=.5235987756

Radians are converted into degrees.
DEG (X) X refers to radian.
PRINT DEG (0.26) 14.896902673

The ratio of the circumference of a circle to its diameter is defined.

PRINT PI (3.1415926536)

SIN (Sine)

Function:
Form:

How to use:

10 INPUT"RADIUS" ;A

20 s=AN2%P1I

30 PRINT"AREA OF CIRCLE";S
RUN

RADIUS 5

AREA OF CIRCLE 78.539816333

Defines the values of trigonometric function and sine.
SIN (X) Argument (X) refers to radian.

10 FOR TH=0 TO 90 STEP 30
20 S=SIN(CRAD(CTH))

30 PRINT TH;TAB(10) ;S

40 NEXT TH

RUN

0 0

30 . b

60 .86602540379
90 1

-125-

COS (Cosine)
Function:

Form:
How to use:

TAN (Tangen

Function:
Form:
How to use:

Defines the values of trigonometric function and cosine.
COS (X) Argument (X) radian

10 FOR X=0 TO 90 STEP 30
20 A=COS(RAD (X))

30 PRINT X;TAB(10);A

40 NEXT X

RUN

0 1

30 .86602540379
60 .50000000001
90 0

t)

Defines the values of trigonometric function and sine.
TAN (X) Argument (X) refers to radian.

10 INPUT "DEGREE" ;A
20 X=TAN(CRADCA))

. 830 PRINT"TANC";A; ")=";X
RUN
DEGREE 30
TAN(30°)= .577350269109

ASN (Arc Sine)

Function: Obtains the 0 value (degree) of SIN 0
Form: ASN (X) (where X is —1~1)
How to use:

10 X=ASNC(.5)
20 Y=DEG(X)
30 PRINT Y

RUN
30

ACS (Arc cosine)

Function: Obtains the 0 value (degree) of COS 0
Form: ACS (X) (Where X is —1~1)
How to use:

10 X=ACS(—-1)
20 Y=DEG(X)
30 PRINT Y
RUN

180

ATN (Arc Tangent)

Function: Obtains the value of the arc tangent.
Form: ATN (X) . .
How to use: Values to be obtained range between — o to E}

10 X=ATN (1)
20 PRINT X
RUN
.7853981634

LTW

Function: Obtains common logarithm with 2 as a base.
Form: LTW (X)
How to use: Same as in LOG.

LGT
Function: Obtains the common logarithm of the value with 10 as a base.
Form: LGT (X)

How to use: Obtains the common logarithm of 10, 100 and 1,000.

10 N=1
20 N=Nx10
30 X=LGT(N)

40 PRINT"LGT(";N;")=";X
50 IF N<1000 THEN 20
RUN

LGT(10)=1
LGT(100)=2
LGT(1000)=3

-129-

EXP

Function:
Form:

How to use:

SGN (Sign)

Function:

~

Form:
How to use:

Obtains raising to power of the natural logarithm with e as a base.
EXP(X)

e' .e? . and e® are obtained respectively.

10 FOR I=1 TO 3

20 X=EXP(I)

30 PRINT"EXP(";I;")";X
40 NEXT 1

RUN
EXP(1)=2.7182818284
EXP(2)=7.3890560987
EXP(3)=20.085536923

SGN Fn assigns value signs.

When x value is negative. -1
" 0 - . . = 0
" positive 1
SGN (X)

-130-

10 FOR I=-2 TO 2
20 N=SGNCCI)

30 PRINT"SGN(":;[;")=":N
: 40 NEXT I
RUN

SGN(—2)=-1
SGN(—=1)=-1
SGN(O0)=0

SGN(C1)=1

SGN(2)=1
LOG
Function: Obtains the natural logarithm of value with e as a base.
Form: LOG (X)

How to use:

10 FOR J=1 TO 3

20 X=LOG(J) < Argument J is a positive value.
30 PRINT"LOG(";J;")=";X

40 NEXT J

SQR

Function:
Form:
How to use:

RUN
LOG(1)=2.67468532E—-11
LOG(2)= .69314718057
LOG(3)=1.0986122886

Obtains the square root of the value.
SQR (X)
/2 and /3 are obtained as follows.

10 INPUT"NUMERAL" ;A
20 X=SQR (A

30 PRINT"ROOT";A;"=";X
40 GOTO 10
RUN

NUMERAL 2
ROOT=1.4142135624
NUMERAL 3
ROOT=1.7320508076

HEX$

Function:
* Form:
How to use:

Decimal numerals are converted into hexadecimal numerals.

HEX$ (X)

Values convertible into hexadecimal numerals range from —32768~32767.
Values —10, —5, 0, 5, 10 and 15 are converted into hexadecimal numerals.

10 FOR S=—10 TO 15 STEP 5
20 X$=HEX$ (S)

30 PRINT S;"=";X$
40 NEXT S

RUN

—10=FFF6®6

—5=FFFB

0=0

5=5

10=A

1656=F

-133-

INP

Reads out the content of 1/O Areas. This function is the opposite of OUT.

Assigns I/0 port No. and reads out the data which is on the port.

How to apply:

10 A=INP(&HBE)
20 PRINT A
RUN

32

In line No. 10, the data of the I/O port No. BE (hexadecimal numerals) is read out to
variable A. In this case, the results may vary depending on the situation of the computer.
The 1/O port numbers which were defined in the system in advance are integers 0~255
(&HOO~&HFF). Situations of outside input devices including Joysticks can be recognised by

the above command.

DEF FN

This is a function which computer operting personnel define arbitrarily.

-134-

5 REM AREA OF CIRCLE
10 DEF FNS(R)=R*%R*%3.14159 The ratio of the

20 INPUT"RADIUS="3;A circumference of a

: 30 Z=FNS(A) circle to its diameter.
40 PRINT
50 PRINT"AREA="3;2Z
60 END
RUN

RADIUS=10
AREA=314.15

DEF FNS (R) =R R>3.14159

For the above formula, the right side expression can be defined as the function of the left
side expression FNS (R). When entering the radius, the Fn (function) which was defined by
line No. 30 is called for calculation.

(R) is only a dummy argument, the number returned will be a function of whatever number
or variable that is in the brackets when the function is called.

-135—

Frequency Table

SCALES fl f2 f3 f4 f5 f6
c 131 | 262 | 523 | 1047 | 2094
c* . Db 139 | 277 | 554 | 1109 | 2218
D 147 | 294 | 587 | 1175 | 2350
p¥ , ED 166 | 311 | 622 | 1245 | 2490
E 165 | 330 | 659 | 1319 | 2638
F 175 | 349 | 698 | 1397 | 2794
F# , Ggb 185 | 370 | 740 | 1480 | 2960
G 196 | 392 | 784 | 1568 | 3136
G* , AD 208 | 415 | 831 | 1661 | 3322
A 110 | 220 | 440 | 880 | 1760 | 3520
A* ., Bb| 117 | 233 | 466 | 932 | 1864

B 123 | 247 | 494 | 988 | 1976

-136-—

Frequency unit Hz.

BEEP
This is used for producing a short sound in programs.

BEEP Makes beep sound.
BEEP 0 Stops beep sound.
BEEP 1 Continues beep sound.
BEEP 2 Makes beep beep sound.

Example :

10 A$S="SEGA PERSONAL COMPUTER"

20 FOR 1=1 TO LEN(AS$)
30 PRINT MIDS(AS, 1 ,1)
40 BEEP

50 FOR J=0 TO 100:NEXT
60 END

J o

SOUND

SC—3000 has a synthesizing function.
v Example

SOUND 1,1000,15

L Sound volume
Frequency

Channel
Sound of 1000 Hz is produced.

(Channel)

Only one sound is produced from one channel. Six channel assignments (0~-5) are |
possible. (Sound up to treble chord can be produced.)

0 : Silences noise.

| Example SOUND 0

| 1~3: Sound from 110 Hz is produced.
4 © Selection of white noise.

}) 5 © Selection of synchronous noise.

(Frequency)
When channels 1~ 3 are assigned, frequency (Hz.) is entered.
When channel 4 or 5 is assigned :
© 0~2: Frequencies of 3 defined steps are assigned.
3 ! Frequency is assigned by channel 3.

(Sound Volume)

O : Silences noise.
1 ¢ Minimum sound volume.
1

15 ! Maximun sound volume.

By the above, effect (sound) for games, etc. can be produced, and melodies can be
heard in accordance with the following table.

ouT
Data is output to the output port by this statement.

The output port No. is defined in the system in advance to output data to the outside.

-139-

Output port numbers are integers from 0 to 255 (& HOO & HFF).

VDP data register &H BE
. Command register &H BF
Sound generator &H 7F

POKE, PEEK, CALL

Programs when entered by BASIC are memorized in the MEMORY in their respective order.
In addtion, data and the machine language can be printed in the specific memory.

POKE Address Data
POKE command POKE &H 9000, 65

The address covers from &H 8000 (—32768) to &HFFFF.

DATA are integers from 0 to 255.

Note that the address varies depending on the used quantity of MEMORY, BASIC
version and types.

-140-

PEEK Function

Address
Read out command A = PEEK (&H9000)

Reads out the content of assigned address memory.

Main memory map

&HO0O00O A

S BASIC ROM (exclusively for read out)

Area F POKE command is unusable.
&H7FFF
&H8000)
. TEXT RAM (Area)
S Area (At the actual capacity of 32k
Byte)

&HFFFF

DATA conversion program

10 REM k)% DATA CONVERSION
20 INPUT "DATA=";D

-141-

30 IF D=>256 THEN GOTO 20
40 POKE&H9000,D
50 A=PEEK(&H9000)
70 B$=CHRS$ (A)
80 PRINT A;"=";B$
90 GOTO 20
RUN
DATA=65
65=A
DATA=M

In this program, entered values are converted into symbols.
When exceeding 256, the value should be entered again.

No symbol output means that there is no symbol corresponding to the value available.

CALL

This calls the address printed by the machine language.
Differing from the BASIC language, the machine language should be mastered separately

from the former (BASIC).

142~

The incorrect use of the machine language may damage the program. So take care.
You could learn the machine language at some other opportune time.

VPOKE ADDRESS ASCII DATA (Text mode)

x — (0~255)
y
. O (" Address
&H3C00 ¢ &HO0000
(Sideways) (Longitudinal) y
40 digits X 24 columns
= 960 bytes l
TEXT MODE GRAPHIC MODE
Ordinary text mode screen 256 dots x 192 dots/8
38 columns sideways (Sideways) (Longitudinal)
= 6144 bytes
23 191
SCREEN 1 SCREEN 2

Part of VRAM MAP

-143-

The address calculations on the text screen are carried out as follows.

Address (text) =y * 40+ x + &H3C00
» where (x = 0--39, y = 0~23)

For the data to be sent, the ASCII code of the corresponding character is applicable
(0~-255 in decimal numerals and 0- &HFF in hexadecimal numerals).

Note : As shown in the left figure above, the horizontal axis is deviated by
2 columns as compared to the ordinary text screen. Thus, the display
position defined by CURSOR statement deviates from that defined by
VPOKE, by about 2 locations in the horizontal direction.

(See page 146.)

VPOKE ADDRESS, DATA (For graphic screen)
Graphic address calculations are carried out as follows.

Graphic address = INT (y/ 8) %256+ INT (x/8)% 8+7y MOD 8

where (y is 0~191 , x is 0~ 255)
The address derived from the above calculations is the beginning address of 8 bits (dots)
in the assigned horizontal direction. The assigned address is the x—INT (x /8) bit
location counting from the left of the beginning address.

-144-

The data to be sent are hexadecimal or decimal numerals displayed by the bit pattern in

a horizonal row.

Example

S e &H93(147)

Similarly, the color table address for graphic color assignment is derived from the addition
of &H 2000 to the above address. The data to be sent are natural numbers (0--255) of 1B
(1 Byte). The upper 4 bits of these numbers converted into binary data are the assigned
color number, and the lower 4 bits, the background color number. (The addresses of the
graphic pattern generator table and color table respectively corresponds at 1 : 1).

Graphic color table address

=INT (y/8) %256+ INT (x/8) %8
+y MOD 8 + &H2000

Where yis 0~191
x 180~ 255

Color data = Assigned color No. * 16+ background color No.
(0~15) (0~15)

—145-

SCREEN

DISPLAY SCREEN

| 40 digits in horizontal direction - x
Y 373839
)
o 1) < Ordinary CURSOR
24 digits movement range
in
longitudinal
direction

22[
23

~146-

VPEEK

Use VPEEK with reference to VPOKE address. Program to read the content of the
pattern generator table in VRAM.

Example
10 AD=&H1800+&H31:*k8 : REM The beginning address
20 FOR A=AD TO AD+7 of REM "1" pattern
30 DA=VPEEK(A)
40 PRINT HEXS$(DA)
50 NEXT A

20
60 1
20
20
20
20
70 1
00

[NN NN [P PN D Y

-147-

VRAM MAP
VRAM (16K bytes))

& HOO000

Graphic 2 mode

Pattern generator Text display :

table

(6144 bytes) Text mode
/ Pattern generator table

& H1800 Note 1 (2048 bytes)
& H2000 Graphic 2 mode

color table Graphic display :

(6144 bytes)
Sprite generator table

& H3800 :

Graphic 2 Mode (768 bytes) (2048 bytes)

pattern name table
& H3B0OO ; :

Sprite attribute (128 bytes)

table

(Empty)
& H3C00 Text mode pattern
name table (960 bytes)
(Empty)

—-148—

Note : The contents of the table for 2K Bytes of &H 1800 &H 1FFF varies
depending on the display mode (text/graphic).

” The table contents of the mode on the unselected side is SAVEed in
the MEMORY (RAM).

STICK (n) (Value to be obtained)

Top

Parameter : 1 = Joystick 1
2 = Joystick 2

Left 7 3 Right

STRIG (n) Bottom

(Value to be obtained)

. off

: Trigger (left) ON

: Trigger (right) ON

: Trigger (left, right) ON

—

. Joystick 1
2 : Joystick 2

Parameter :

wWw N = O

STICK, STRIG
Program to find out the situation of connected JOYSTICK.

10 REM JOY STICK TEST
- 20 B$="SHOOT" cCLS
30 P1=STICK(1):P2=STICK(2)

60 CURSOR 1,10:PRINT"PLAYER 1";F18$
70 CURSOR 1,15:PRINT"PLAYER 2";F2§%
80 GOTO 20

40 S1=STRIG(1):82=STRIG(2)

50 F1$:I|II:F2$:IIII

60 I F P1=1 THEN F1$="UP "

70 I F P1=3 THEN F1$="RIGHT "

80 I F P1=5 THEN F1$="DOWN !

90 IF P1=7 THEN F1$="LEFT "

100 IF P2=1 THEN F2$="uUP !

110 I F P2=3 THEN F2$="RIGHT"

120 I F P2=5 THEN F2$="DOWN "

130 I F P2=7 THEN F2$="LEFT "

140 IF S1>0 THEN F1$=F1$8+B$+STRINGSE(S1) |
150 IF $2>0 THEN F2$=F2$+BE+STRING$ (S2) |
1

1

1

APPENDIX
Variables and Arrays

(Numeric variables - A, B, e Z, AA, AB, oo 77
A0, A1 e A9

Numeric array --o-oo-e- (Subscript, -) Up to 3 — DIM
A (15), B (5, 5), AC (3, 3, 3)

String variables --+-+----- A$, ABS,A1$

String array e (Subscript, e) Up to 3 — DIM

AS$ (15), B$ (5, 5), ACS$ (3, 3, 3)

e For variable names, the first character is an alphabetic character and then
after, alphabetic characters or numerics. Although any number of characters
is acceptable, separation is made by the beginning 2 characters.

¢ The names of variables and arrays may be the same.

(Range of numeric variables and arrays)

+9.9999999999E-2909
l
+9.9999999999E+ 909

-1561-

(Range of string variables and array)

Character length 0~ 31

»

CONSTANT

Numeric constant
Integer form
Decimal form

Exponent form
Hexadecimal form

String constant

Example 3, =2, 99926768
Example 0.2, .3, —5.3, 86.0
Example 3, E99, —6E3, 0.3E+5, 4E—82

&H Hexadecimal valug -+ 0000~FFFF
Example &H 64 - same as 100
&HFFFF -oeeeee same as —1

Use double quotation to indicate " enclosed by "

Example "ABC" — Character ABC
" " — — Character NULL
L LI | | — Character "
"A3" "64" — Character A3 " 64

-152—

Contents

Limitation

Characters taken into the inside from the screen.

256 characters

Character numbers usable for actual text image by
reserved words converted from line buffer.

256 characters

Character numbers which can be handled as character
string.

255 characters

Level number such as operator priority, etc.

32 levels

Area for string operation

300 characters

FOR ~- NEXT nesting level number

16 levels

GOSUB, RETURN nesting level number

8 levels

-163-

[e[o]=]a|r]2]>[B[x][>[~][=[*][[<]¥]
O = &N O S W © N O DO - N O T O
® O W W O O ® W WX S ;OO D O
T

(@] <[afofefulu]o[z][-[-][x][-][2]z]0]
< WO O N 0O OO - N M O © N O O

H © © © © © © KR N N KNNKRKNRKR

Q

(@)

Sl lel-[~[e]<]e]e[~[e][a][--[v]r]a]e]

o

] W O O = N M S OO N 0O DO = N M

= S & © O O O MO0 WD D O © © ©

Q

x | _
all—|- ﬁTo %_&v_(w)i*Tﬁ,_‘. _

5| [&]-]- | | DEE

) N O T W ON 0O DO - N M S O © N

I¥] o ™o ®m @ mm M ®m T T YT

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

>>

><

>

> | >

i[>t [>o

mll m:‘m<‘m>

[Z>! Zil rnr‘rn\

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

;‘\l_,

|’>

o>

0| 0|o-

C>|'Ol’o:!0'

C<

e

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
AN
212
213
214
215
216
217
218
219
220
221
222

223 | |

e[[= []o[o]sm]z [\ [o]w]=]c]c]c

—-155-

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

e[THD[Gl#[e[e[o] [[[[]

|

\Uu

B

<<

<

9/A|B|C |DJ|E |F

T

4 [N A

t

a

C

A1Q

C|S

D|T|d

FV

G| W|lglw
H|{X|h

3
4

5
6
7

<L ¥

> | N|Nin

%

)

L CONTROL CODE

 N—

| CHARACTER SET|

—156—

[Command, Statement and Built in function]

. | Command

No Command Functions

1 LIST Displays programs on screen.

2 LLIST Prints programs on PRINTER.

3 SAVE Records programs on cassette tapes

4 VERIFY Compares programs in MEMORY and those recorded
on cassette tapes.

5 LOAD Loads cassette tape programs on MEMORY.

6 RUN Runs programs.

7 CONT Continues discontinued programs.

8 NEW Clears variables and programs.

9 DELETE Clears programs partially.

10 AUTO Generates line numbers automatically.

11 RENUM Renumbers line numbers.

=157 -

STATEMENT

NO.| Statement Functions
1, | REM Comment
2 | STOP Stops programs. Continuable by CONT.
3 END Completes program run.
4 LET Input substitution. LET omittable.
5 PRINT or ? Displays on display.
6 LPRINT or L?| Prints on Printer.
7 INPUT Input from key.
8 READ Reads data from “DATA” statements.
9 DATA Shows data to be read from “READ” statements.
Assigns positions of “DATA” statement to be read from “READ”
10 RESTORE stategmenlzs.
11 DIM Declares arrays.
12 ERASE Clears declared array.
13 DEF FN Defines user function,
14 GOTO Branches to assigned address.
15 GOSUB Go to subroutine.
16 RETURN Returns from subroutine.
17 ON-GOTO Selects line numbers to be branched.
N ON-GOSUB Selects line numbers to be branched.
18 FOE-TO- Repeats statements between FOR and NEXT for a set number of
STEP- times. STEP omissible.
19 NEXT Assigns positions of repeating by “FOR” statement.

-1568—

NO. | Statement Functions

20 | IF-THEN Conditional branch.

21 | CONSOLE Assigns the ranges of screen scroll, click sound and character set.
22 | CLS Clears screen.

23 | SCREEN Shifts the screen.

24 | COLOR Color assignment.

25 | PATTERN Changes character sprite PATTERN.

26 | CURSOR Assigns display positions.

27 | POSITION Assigns coordinates:

28 | PSET Displays dots.

29 | PRESET Erases by dots.

30 | LINE Draws lines.

31 | BLINE Erases by lines.

32 | CIRCLE Draws circles.

33 | BCIRCLE Erases by circles.

34 | PAINT Paints enclosed extent.

35 | SPRITE Assigns sprite position, color and pattern.
36 | MAG Assigns sprite magnitude.

37 | SOUND Produces effective sound.

38 | BEEP Produces beep sound.

39 | HCOPY Prints text on screen on to printer.

40 | CALL Branches to machine language subroutine.
41 | POKE Writes in memory.

42 | OUT Outputs to output port.

43 | VPOKE Writes data in video RAM.

-159-

FUNCTION

NO.| Function Functions
1 1 ABS(x) Finds the absolute value of x.
2 | RND(x) Generates random numbers
3 | SIN(x) Finds the sine of x.
4 | COS(x) Finds the cosine of x.
5 | TAN(x) Finds the tangent of x.
6 | ASN(x) Finds the arc sine of X.
7 | ACS(x) Finds the arc cosine of X.
8 | ATN(x) Finds the arc tangent of X.
9 | LOG(x) Finds the natural logarithm of x.
10 | LGT(x) Finds the common logarithm of X.
11 | LTW(x) Finds the logarithm of x. with 2 as a base.
12 | EXP(x) Finds e
13 | RAD(x) Converts degrees into radians.
14 | DEG(x) Converts radians into degrees.
15 | PI Specifies the ratio of the circumference of a circle to its diameter.
16 | SQR(x) Finds the square root of x.
17 | INT(x) Finds the greatest integer not exceeding x.
18 | SGN(x) Specifies the positive and negative codes of x.
19 | ASC(s) Specifies the first code of character-string s by numeric values.
20 | LEN(s) Specifies the number of character-string s.
21 | VAL(s) Converts character-string s into numeric values.
22 | CRH$(x) Specifies the corresponding character and functions of x.

-160—

NO. | Function Functions

23 | HEX$(x) Specifies the hexadecimal number character-string.

. Checks whether or not key was pressed. When key is pressed, the

24 | INKEYS(x) character is given. (Null) if it is not pressed.
Substitutes the character-string covering from the left of the

25 | LEFT$(s.x) character—string s to x places.g ¢

26 | RIGHTS (s,x) Substitutes t.he character-string covering from the right of the
character-string s to x places.
Substitutes the character-string of length v from the x places of

27 | MID$(s.x.y) the left of the character-string. +y is omissible and in this case,
substitutes from x place character to the end character.

28 | STR$(x) Converts x into the character-string which indicates x.

29 | TIME$ Determines the time of the inside clock.

30 | PEEK(x) Specifies the content of the x address of memory.

31 | INP(x) Specifies the input content of input port.

32 | FRE Specifies memory area space for users.

33 | SPC(x) Used by print statement. Provides space.

34 | TAB(x) Used by print statement. Assigns display positions.

35 | STICK(n) Shows the n direction of joysticks.

36 | STRIG(n) Shows the trigger button condition of joystick n.

37 | VPEEK(x) Specifies the content of VRAM x address.

-161—

ERROR MESSAGE
1. Display Format

(1) When Command or Statement was directly entered, errors occurred:

? Message | error

(2) When errors occur during text run;

? [Message | error in [line No.]

(3) When error due to Input Statement is found in key Input Data:

? | Message I

-162-

MESSAGE

DESCRIPTION

System

System error due to Basic Interpreter Program.
Generally this occurrence is impossible.

N—formula too Complex

Numeric values are too complicated.

S—formula too Complex

Character-String is too complicated.

Overflow

Values and operation results exceed permissible range.

Division by Zero

The denominator in division is 0.

Function Parameter

Function parameter is unusual.

String too long

The length of Character-String exceeds 255.

Stack overflow

Excessive use of parentheses (). Patterns to PAINT are
too complicated. User define function calls itself.

Out of memory

Memory is insufficient. Text. Variable. Array.

Number of Subscripts

Number of subscripts is unusual.

Value of Subscript

Value of subscript is improper.

Syntax

Syntax Error

Command Parameter

Command Parameter is unusal.

Line number over

In AUTO or RENUM, line No. Exceeds 65535.

Illegal line number

Line No. is improper.

Line image too long

Line image is too long, (RENUM, etc.)

Undefined line number

Line No. is undefined. (RENUM, GOTO, GOSUB,
IF-THEN, RESTORE, RUN)

Type mismatch

L

The type of substituting side and that of substituted side
do not match. (Values, strings)

-163—

MESSAGE

DESCRIPTION

Out of DATA

Reading by READ Statement was attempted but DATA
of DATA statement is unavailable.

RETURN without GOSUB

RETURN statement was executed without GOSUB.

GOSUB nesting

GOSUB nesting exeeded 4 levels.

NEXT without FOR

For statement corresponding to NEXT is not available.

FOR nesting

FOR~NEXT nesting exceeded 4 levels.

Statement Parameter

Statement parameter is unusual.

Can’t continue

Can’t continue by CONT statement.

FOR variable name

FOR statement loop variable is not numeric variable.
(Character string or array)

Array name

DIM statement parameter is not in array.

Redimensioned array

Dual array difinition was attempted.

Undefined Array

Erase of undefined array was attempted.

No Program

SAVE was attempted despite unavailability of program
in text.

Memory writing

Memory writing error (At the time of LOAD)

Device not ready

Printer is not connected or in trouble.

Undefined Function

Undefined user function was called.

Verifying

Errors in comparison with tape programs.

Illegal direct

Direct statement run is impossible.

MESSAGE DESCRIPTION
Redo from start INPUT DATA of input statement is unusual.
Redo input from the start.
“Extra ignored INPUT DATA of input statement is unusual. Extra data
was entered. Extra data was ignored.
Unprintable Errors other than the above. J

-165—

10

50
100
110
120
130
140
200
210
220

SAMPLE PROGRAM

CHECKERED PAINT

SCREEN 2 ,2:CLS 230
X=10: Y=10 : XX=250 : YY=190 240
REM VERTICAL LINE 250
FOR I=1 TO 12 300
LINE (X, Y)=(X, YY) 1 310
X=X+ 20 320
NEXT | 330
REM HORIZONTAL LINE 340
X=0 350

FOR I=1 TO 10

-166—

LINE(X ,Y)= (XX ,Y) 51
Y=Y+20

NEXT |

REM PAINT

A=RND (1) %240

B=RND (1) *185

C=RND (1) *k 15

PAINT (A ,B) , C

GOTO 300

LINE

10 SCREEN2,2:CLS:COLOR, 15

15 FOR =0TO30

20 A=INTC(CRNDC(C1)%16)

30 B=INT(RND(1)%128):C=INT(RNDC1)%96)

40 =INT(RND(1)%256):E=INT(RND(1)%192)
55 NEXTI

100 GOTO 10

LINEBF

10 SCREEN 2,2:CLS

20 A=INTC(RNDC(C1T)%16)

30 B=INT(RND(1)%128):C=INT(RNDC(C1)%96)
40 D=INT(RND(1)%256):E=INT(RNDC1)%192)
50 LINE(B,C)-(D,E),A,BF

100 GOTO 20

CIRCLE 1

10
20
30
40
50
60

SCREEN2,2:CLS:COLOR15

FOR R=1T096
C=INT(RNDC(C1)%16)
CIRCLE(C128,96),R,C,1,0,1,
NEXT R

GOTO 20

CIRCLE 2

10
20
30
40
50
60

SCREEN2,2:CLS:COLOR15

FOR R=1T096 STEP 5
C=INT(RND(C1)%16)
CIRCLE(C128,96),R,C,1,0,1,
NEXT R

PAINT(CO,0),5

-168—

CIRCLE 3

10 SCREEN2,2:CLS

20 X=INTC(CRND(1)%256)

30 Y=INTC(RNDC1)%192)

40 C=INT(CRNDC(C1)*%16)

50 R=INT(RNDC1)%20)

60 CIRCLE(X,Y),R,C,1,0,1
70 GOTO 20

BCIRCLE

10 SCREEN2,2:CLS:COLOR15S5

20 FOR R=1T096 STEP 10

30 C=INTC(RND(1)%16)

40 CIRCLE(128,96),R,C,1,0,1
50 NEXT R

60 FOR 1=91 TO 1 STEP-10

70 BCIRCLE(128,96):1,,1,0,1
80 NEXTI

100 GOTO 20

-169—

Sprite Sample Program

1
1
1
1
1
1
1
1
1

10
20
30
40
50
60
70
80
90
00
10
20
30
40
50
60
70
80

200
210
220

M=1
SCREEN 2,2:CL
MAG M:C=RND (1
CURSOR 10,10
FOR Y=0 TO 19
PATTERN S#o0,"
PATTERN S##1,"
PATTERN S#£2,"
PATTERN S#3,"
Y1T=Y:GOSUB 20
PATTERN S#o0,"
PATTERN S#1,"
PATTERN S#®2,"
PATTERN S#3,"
Y1=Y+2:GOSUB
NEXT Y
M=M+2:1F M>3
GOTO 20
SPRITE 0, (120
SPRITE 0, (120
RETURN

0O0O193F3C1CODOF78B
OCOFOFOFO0O7031BO0O7
OOCCFE9E9CD878EC
TAFAF8FOEC7C3800

0

O0193F3C1CODOFI1B
2C2FOFO0O71B1FOEOO
OOCCFE9E9CDS878EF
1T8F8F8F8F0606C70

200

THEN M=1

-170-

S
) k1 3+1

PRINT CHRS$(17); "MAG"
1 STEP 4

n

n

n

» M

PAINT

10 SCREEN2,2:CLS

20 FOR I=0 TO 255 STEP 16
30 LINECI,O0)=C1,191):NEXTI
40 FOR 1=0 TO 191 STEP 16

50 LINECO, 1)=-(255,1):NEXTI

60 C=INTC(CRNDC(C1)%16)

70 X=INT(RND(1)%256):Y=INT(RNDC1)%k192)
80 PAINT(X,Y),C

90 GOTO 60

END

-171-

John Sands®

