SNASM68K Console Notes

Overseas Customers

We are only able to supply power supplies for 240V S50Hz operation so you will need to
obtain a 9V 1A PSU if you are outside the UK. The unit has an internal bridge rectifier
so the polarity of the PSU is unimportant.

Installation

If you haven’t used SNASM before you should follow the standard instructions for
installing the PC hardware and software.

Whenever connecting the cable or changing any switch positions it is important that
power is disconnected from both the target systems and Console interface.

CAREFULLY plug the small, black interface unit into the target interfaces 68000 socket
making sure that the notches on both sockets are aligned (Pin 1 is marked on the casc
of the black interface unit). Severe damage to both devices can result from incorrect
orientation.

Connect the ribbon cable between the main unit and the interface unit. Plug the SCSI
cable into both the PC and the Console interface. Then, with any RAM or EPROM that
may occupy the lower 4Mb on the target deactivated or removed, and the main units
from panel switch set to ‘1’ connect the power supply to the main unit and then to the
target interface. =~ When the target is turned on the write-prot light on the main unit
should light for about a second then go off. The main unit should then have active,
pwr-on and dc-pwr LEDs all lit and you should be able to communicate with it from the
PC using the link test utility (LTU.EXE).

This unit contains 1Mb of static RAM for EPROM cartridge emulation, and 32K of
battery backed RAM, the top 1K of which is used by the link software. The main 1Mb
of RAM can be mapped in on any 1Mb boundary. The static RAM is mapped at $200000
and cannot be moved (Panther users see note below).

Whilst the processor is running code in the units internal EPROMs the main RAM is
write enabled and the write-prot LED on the front of the unit is extinguished. Whilst
user code is being run from the main RAM this RAM is write protected and the write-
prot LED lights up.

If the front panel switch is used to de-activate the main unit you will be able to use
the target machine as if the interface wasn’t connected. When the switch is moved to
the enable position the target machine will have to be reset to start the SCSI software.

There is a .file on the SNASMZ80+UTILS disk called startup.68k which should be placed
in your program before any other code. This piece of code sets up the 68000 vectors to
point at either handlers within your code or to error handlers in the Console
interface’s ROM depending on the value of the Keep Traps variable which you should
set at the start of your code. The file called except.68k contains the definitions of the
exception labels which in the finished product are wusually placed at all the same
address and a piece of code is usually placed there to cause a reboot. If you want to use
any interrupts in your program remove the label for this exception from this list.
Panther users do not need this extra disk and can ignore this information.

There are some services provided by the software in the interface which can be called
from within your code to give you further control over the debugging environment.

The entry point for these is 16 bytes into the interface workspace so you need to do a
jsr to the base address plus 16 bytes to use these services.

DO holds the service number. Registers are as below
Service 0 - Handle more exceptions
D1 - vector number at which to start

D2 - number of vectors to change

This causes further exceptions to switch execution to the SCSI software. The following
piece of code causes allows you to enter the SCSI software by patching traps 1-F.

moveq. #0, dO ; user service 0
move.l ##33,d1 ; start at offset 33 (trapl)
move.1 415,42 ; set 15 vectors
jsr $208000+16 ;$c00000+16 on Panther
bne Error ;zero flag set on success

;could also check for dO set to O

Service: 1 - Change status register marks

D1 - low word=ExSROrMask
high word=ExSRAnd Mark
D2 - low word=TpSROrMask

high word=TpSRAndMask
At SCSI software uses two words designated ExSRAndMask and ExSROrMask
respectively. On entry to the exception handler routine these are ‘anded’ and ‘ored’
with the status register, thus allowing manipulation of the sr at that point by setting
these flags prior to an exception. Similarly there are two words designated
TpSRAndMask and TpSROrMask which perform the same function upon the execution
of a trapO.

By default all these variables are initialised on entry to the downloader to ensure that
when the downloader is invoked all interupts are switched off.

When you come to produce an image of your finished product you should set the
KeepTraps variable false and assemble your code with the pure binary mode wet
which will give you a binary image of the final ROM.

The lower eight bytes of the memory map are moved into the SSP and PC at reset when
the code is in ROM so you should set up these and also, whilst testing you should
ensure .that the initial values of these registers are set using the REGS directive as
shown in the SNASM manual.

Configuration File

The file snbug658.cf? (where ? is the target number, usually 7) contains information
on which areas of memory can be read and written without causing problems. You
should edit this file to contain the memory ranges for all of the target machines ROM
and RAM areas. There is more information on this in the manual in the section on the
debugger.

DIP_Switches

A 1-4 Start 1Mb address of main RAM (1->A23,4->A20)
5-8 End 1Mb address of main RAM (1->A23, 4->A20)

If switched 4 and 8 are moved to the up position the main RAM will reside at 1Mb so
the unit can be operated with target RAM or EPROM in the lower 1IMb with the main
unit enabled. Be very careful when using the facility, to setup the switched and
insert the cartridge before powering up either device.
B -3 SCSI ID (7 by default)
-5 Unused
Power on reset (On by default)
Enable IO block (On by default)
Unused

[o=JE e QI SN

The default positions of the switches are:-

A
B

All on (Ram at 0 for 1Mb)
All on (SCSI'ID = 7)

Off

On

On

Off

'
N W o

00O\ Ao

780 Notes

The Z80 assembler is fully functional but does not currently support
linking.

The syntax is mostly the same as the 68000 assembler so read the manual for
information on pseudo ops, macros, etc. here are some exceptions:

Local labels start with an at (@) but the /I switch changes this to a $
Both $ and * can be used to represent the current PC value.

Hex numbers are denoted by a trailing H and binary by a trailing B.
You can instead prefix hex numbers with a hash éb)

Extras:
You can abbreviate EX AF,AF to EXAF, JR NZ to JNZ
PUSH and POP can take multiple registers
You can omit the initial A in ADD,ADC and SBC
Opt hd64180+ turns on the extra 64180 instructions.
Note:
DB and DW are the only define bytes/words directives

To assemble PROG.Z80 to a pure binary file you would use :-
snasmz80 /p prog.z80,z80prog.bin

For a list of Z80 switches and options to snasmz80 with any options.

