
Dreamcast/
Dev.Box

System
Architecture

Last Update: 99/09/02 18:41

(Preliminary)

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

REVISION HISTORY
[1999]
9/2 ・ Modified terms: KATANA -> Dreamcast, SET5 -> Dev.Box (Revisions in green: Up to next release)

・ Distinction between HOLLY1 and HOLLY2 were unnecessary, and so combined as just HOLLY.
(Revisions in green: Up to next release)

8/23 ・ Corrected description of FNS and OCT settings in section 8.1.1.4.
・ Corrected description of FNS[9:0] in the register descriptions (channel data) in section 8.4.5.

3/10 ・ Added descriptions of register modification procedures in section 2.7.2.
2/4 ・ Corrected register addresses in section 8.4.1.1: 6930 -> 6920, 6950 -> 6930, etc. (Revisions in

green: Up to next release)
1/27
[1998]
11/25 ・ Corrected descriptions of revisions added to section 1.4 and 9.

・ Corrected description of parameters in the common data for the AICA register in section 8.4.5.
11/20 ・ Made additions to and corrected descriptions related to revisions in sections 1.4 and 9.

・ Added description for the STARTRENDER register (0x005F8014) in section 8.4.2.
・ Corrected a portion of the description of G2-related registers in section 8.4.1.4.
・ Made additions to and corrected supplementary descriptions for the mapping table in section 2.1.

11/10 ・ Corrected description and headings concerning section 4.2, "G2 Interface." (Revisions in green: Up
to next release)

・ Corrected description of G2-related registers in section 8.4.1.4. (Revisions in green: Up to next
release)

11/4 ・ Corrected description of Maple-related registers in section 8.4.1.2. (Revisions in green: Up to next
release)

10/30 ・ Corrected description concerning PVR-DMA registers in section 8.4.1.5. (Revisions in green: Up to
next release)

・ Corrected description in section 5, "User Interface" -- Described hard triggers again. (Revisions in
green: Up to next release)

10/15
10/13 ・ Corrected description in section 3.6.2.3, "VQ Textures," and Figs. 3-1 and 3-2.
9/30 ・ Corrected description in Section 1.4, "Dev.Box Board."

・ Changed description in section 9, "Bug List."
・ Added description to section 8.4.2 for the STARTRENDER Register (0x005F8014).

9/25
9/16 ・ Corrected description in section 1.1.5, "Expansion Devices."
8/31 ・ Corrected description in section 3.7.4.4.3, "Obj Control." bit 16-8 -> bit
8/28 ・ Added description in section 4.2.3, "RTC."

・ Corrected description in section 8.4.5, "AICA Registers," concerning channel data:PCMS, and
cutoff frequency (FLV) and common data: DLG.

・ Corrected description of external memory specifications in section 4.2.2.4, "Wave Memory
(AICA)."

・ Corrected portion of description in section 8.1.1, "Audio-related..."
・ Corrected description in section 3.4.5.3, "Modifier Volume Processing of Various Polygons."
・ Corrected table in section 3.5.1, "Sync Pulse Generator."

8/21 ・ Added and corrected a portion of text and figure in section 3.6.2.4, "MIPMAP Texture."
・ Added to and corrected ISP_FEED_CFG Register in section 8.4.2(0x005F8098).
・ Changed a portion of 3.4.3.1, "ISP Cache Size."
・ Changed a portion of 3.4.5.2, "Volume Mode."
・ Changed a portion of 3.4.11.2, "Y Scaler."
・ Changed Type A diagram in section 3.4.12, "Flicker-free Interlacing"

- 2 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

8/18 ・ Changed "ARC" to "SRC" in section 3.4.7.2.3, "Trilinear Filtering."
8/7
8/4 ・ Corrected a portion of ISP_FEED_CFG Register in section 8.4.2(0x005F8098).

・ Corrected a portion of display lists in sections 3.7.8 and 3.7.9.2.
・ Corrected a portion of section 3.4.3, Punch Through Polygons."

7/31
7/28 ・ Changed a portion of section 3.3, "Register Map (Graphics System)."
7/27 ・ Corrected a portion of Figs. 3-77 and 3-78 in section 3.7, "Display List Details."

・ Corrected a portion of FPU_PARAM_CFG Register (0x005F807C) in section 8.4.2.
7/14 ・ Corrected a portion of section 3.1.1.1.

・ Corrected a portion of the HOLY version table in section 1.4, "Dev.Box."
7/9 ・ Corrected all pages.

・ Changed "Opaqu" to "Opaque" in section 3.1.1.9, "Polygon List."
7/7 ・ Made "Expansion Devices" the term used consistently for external expansion devices that are

connected to the G2 Bus.
・ Added description to section 3.4.3, "Punch Through Polygons."
・ Corrected references in section 3.7.7, "Region Array Data Configuration."
・ Corrected explanation in section 4.2.5, "Expansion Devices."
・ Corrected SDRAM_CFG Register (0x005F80A8) in section 8.4.2.

7/1 ・ Deleted the hidden character portion of section 4.1.4, "System Codes."
・ Changed the underlining of the additional HOLLY2 specifications in section 3, "Graphics System,"

from a broken line to a wavy line.
・ Returned the setting for the portion of section 5.1.6 that was composed of hidden characters back to

normal characters.
6/30 ・ Submitted to Software Technology Development Group.
6/10 ・ Submitted to Software Technology Development Group.
5/26 ・ Submitted to Software Technology Development Group.
5/1 ・ Submitted to Software Technology Development Group.
4/21 ・ Submitted to Software Technology Development Group.
3/27 ・ Submitted to Software Technology Development Group.
2/24 ・ Submitted to Software Technology Development Group.
2/4 ・ Submitted to Software Technology Development Group.
1/30 ・ Submitted to Software Technology Development Group.
1/23 ・ Submitted to Software Technology Development Group.
12/16 ・ Submitted to Software Technology Development Group.
11/25 ・ Submitted to Software Technology Development Group.

- 3 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Table of Contents

Dreamcast/Dev.Box System Architecture..1
 REVISION HISTORY..2
§1 THE SYSTEM...9

§1.1 Overview..10

§1.2 System Architecture...10

§1.3 Block Diagram...12

§1.4 Dev.Box Board...15
§2 CPU AND PERIPHERAL MEMORY..16

§2.1 System Mapping..17
§2.1.1 Cache Access...19

§2.2 SH4..20
§2.2.1 Overview of the SH4...20
§2.2.2 CPU Bus Interface..21
§2.2.3 Initial Settings for the SH4...22

§2.3 System Memory...34
§2.3.1 System Memory Configuration and Control...34
§2.3.2 System Memory Initial Settings...34
§2.3.3 Access Procedure...36

§2.4 Register Map...37

§2.5 Single Access to Each Block..41

§2.6 DMA Transfers...42
§2.6.1 Overview of DMA Transfers...42
§2.6.2 Types of DMA..43
§2.6.3 GD-ROM Data Transfers...44
§2.6.4 Texture Data Transfers..47

§2.6.4.1 Direct Texture Transfers...47
§2.6.4.2 YUV Texture Transfer...55

§2.6.5 Display List Transfers..57
§2.6.5.1 Direct Display list DMA..57
§2.6.5.2 TA Input Display List Transfers..59
§2.6.5.3 Sort-DMA Transfer of α Polygon Parameters...61

§2.6.6 Wave Data Transfers...72
§2.6.7 ARM Data Transfers..77
§2.6.8 Peripheral Data Transfers...78
§2.6.9 Color Palette Transfers...80
§2.6.10 External Data Transfer..82

§2.7 Interrupts..83
§2.7.1 Overview...83
§2.7.2 Interrupt Settings and Access Procedures..84
§2.7.3 Notes Concerning Interrupts...89

§3 The Graphics System...90

§3.1 Overview..91
§3.1.1 Graphics Architecture..91

§3.1.1.1 Basic Polygons...91
§3.1.1.2 Coordinate System...92
§3.1.1.3 Display List..92
§3.1.1.4 Tile Partitioning and Surface Equations..92
§3.1.1.5 Block Diagram...94

- 4 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.1.6 Triangle Setup..95
§3.1.1.7 ISP(Image Synthesis Processor)...96
§3.1.1.8 TSP(Texture and Shading Processor)..96
§3.1.1.9 Polygon List...97

§3.1.2 Drawing Function Overview..98
§3.1.3 Display Function Overview..99

§3.2 Memory Map..99

§3.3 Register Map...100

§3.4 Drawing Function Details...102
§3.4.1 Background...102
§3.4.2 Translucent Polygon Sort..103

§3.4.2.1 Auto-sort Mode..103
§3.4.2.2 Pre-sort Mode..104

§3.4.3 Punch Through Polygons..104
§3.4.3.1 ISP Cache Size...104
§3.4.3.2 Relationship with Translucent Polygons..104

§3.4.4 Processing List Discarding..105
§3.4.5 Modifier Volume..107

§3.4.5.1 Inclusion and Exclusion Volumes..108
§3.4.5.2 Volume Modes..108
§3.4.5.3 Modifier Volume Processing for Various Polygons...109

§3.4.6 Flow of Texture Mapping and Shading Processing ...110
§3.4.6.1 Secondary Accumulation Buffer...111

§3.4.7 Texture Mapping ...112
§3.4.7.1 MIPMAP..112
§3.4.7.2 Texture Filtering..112

§3.4.7.2.1 Point Sampling ..113
§3.4.7.2.2 Bi-linear Filtering...114
§3.4.7.2.3 Tri-linear Filtering ...116
§3.4.7.2.4 Texture Super-Sampling...117

§3.4.7.3 Bump Mapping..118
§3.4.7.3.1 Bump Mapping Algorithm...119
§3.4.7.3.2 Bump Mapped + Textured Polygons...120

§3.4.8 Fog Processing...122
§3.4.8.1 Look-up Table Mode..122
§3.4.8.2 Per Vertex Mode..123

§3.4.9 Clipping...124
§3.4.9.1 Tile Clipping..124
§3.4.9.2 Pixel Clipping..126

§3.4.10 Drawing to a Texture Map...126
§3.4.11 X Scaler & Y Scaler ..127

§3.4.11.1 X Scaler..128
§3.4.11.2 Y Scaler...129

§3.4.12 Flicker-free Interlacing...129
§3.4.12.1 Type A...130
§3.4.12.2 Type B..131

§3.4.13 Strip Buffers..132
§3.4.14 Frame Buffer Drawing Data and Display Data..134

§3.5 Display Function Details..135
§3.5.1 Sync Pulse Generator...135
§3.5.2 Frame Buffer Settings...135

§3.6 Texture Definition...137
§3.6.1 Texture Pixel Format...138

§3.6.1.1 RGB Textures...138
§3.6.1.2 YUV Textures...138
§3.6.1.3 Bump Map Textures..139

- 5 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.1.4 Palette Textures..140
§3.6.2 Texture Formats..141

§3.6.2.1 Twiddled Format..141
§3.6.2.2 Non-Twiddled Format...143
§3.6.2.3 VQ Textures...144
§3.6.2.4 MIPMAP Texture..146

§3.6.3 Color Data Extension..149
§3.6.4 Texture Format Combinations...149
§3.6.5 Efficient Storage in Texture Memory..151

§3.7 Display List Details..152
§3.7.1 Polygon List Input..155

§3.7.1.1 TA Parameter Input Flow...157
§3.7.1.2 TA Register Settings for List Input...157
§3.7.1.3 Region Array Data Storage...159
§3.7.1.4 Object List Starting Address for Each List...161

§3.7.2 Tile Arrangement...163
§3.7.3 Tile Accelerator..164

§3.7.3.1 Strip Partitioning...164
§3.7.3.2 Tile Division...165
§3.7.3.3 Tile Clipping..166
§3.7.3.4 Object List Generation..166

§3.7.3.4.1 List Initialization Processing and List Continuation Processing...167
§3.7.3.4.2 Adding an OPB..170
§3.7.3.4.3 Processing When a Limit Address Is Exceeded...173

§3.7.3.5 ISP/TSP Parameter Generation..174
§3.7.4 Explanation of TA Parameters...175

§3.7.4.1 Control Parameter...175
§3.7.4.2 Global Parameter...177
§3.7.4.3 Vertex Parameter...178
§3.7.4.4 Parameter Control Word...179

§3.7.4.4.1 Para Control...179
§3.7.4.4.2 Group Control..180
§3.7.4.4.3 Obj Control..180

§3.7.5 Parameter Format...183
§3.7.5.1 Control Parameter Format..183
§3.7.5.2 Global Parameter Format...184
§3.7.5.3 Vertex Parameter Format..186

§3.7.6 Overview of TA Parameters...190
§3.7.6.1 Notes When Using the TA...190
§3.7.6.2 Parameter Combinations...191
§3.7.6.3 Parameter Input Example...191

§3.7.7 Region Array Data Configuration...196
§3.7.8 Object List Data Configuration..199
§3.7.9 ISP/TSP Parameter Data Configuration..201

§3.7.9.1 ISP/TSP Instruction Word...203
§3.7.9.2 TSP Instruction Word..207
§3.7.9.3 Texture Control Word..212

§3.8 Details on Miscellaneous Functions...214
§3.8.1 YUV-data Converter..214

§4 Peripheral Interface..217

§4.1 G1 Bus...218
§4.1.1 GD-ROM...218

§4.1.1.1 Register Map..218
§4.1.1.2 Access Methods..219
§4.1.1.3 Initial Settings..219
§4.1.1.4 Access Procedure...219

§4.1.2 System ROM...220

- 6 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.1.2.1 Access Methods..220
§4.1.2.2 System Initial Settings...220
§4.1.2.3 Access Procedure...220

§4.1.3 FLASH Memory...221
§4.1.3.1 System Initial Settings...221
§4.1.3.2 Access Procedure...221

§4.1.4 System Code...222
§4.1.4.1 Initial Setting...222
§4.1.4.2 Access Procedure...222

§4.2 G2 Interface...223
§4.2.1 Interface..223
§4.2.2 AICA..227

§4.2.2.1 Memory/Register Map...228
§4.2.2.2 Initial Settings..229
§4.2.2.3 Access Procedure...229
§4.2.2.4 Wave Memory..231

§4.2.3 RTC(Real Time Clock)..232
§4.2.3.1 Access Method...232

§4.2.4 MODEM..233
§4.2.4.1 Address Map..233
§4.2.4.2 Access Method...233

§4.2.4.2.1 ID...234
§4.2.4.2.2 Reset...234

§4.2.5 Expansion Devices..235
§5 User Interface...241

§5.1 Peripherals...242
§5.1.1 Overview...242
§5.1.2 Register Map...244
§5.1.3 Operating Sequence...245
§5.1.4 Access Procedure...247
§5.1.5 Example of Transmission and Reception Data..249
§5.1.6 Notes Regarding Access...250

§5.2 Control Pad..252

§5.3 Light Phaser Gun...252

§5.4 Backup (Option)...253

§5.5 Sound Recognition (Option)...253
§6 Peripheral Devices...254

§6.1 DVE (Digital Video Encoder)..255
§7 Debugger 257
§8 Appendix 259

§8.1 Technical Explanations..260
§8.1.1 Technical Explanation Concerning Audio..260

§8.1.1.1 Loop Control..260
§8.1.1.2 ADPCM..262
§8.1.1.3 AEG..265
§8.1.1.4 PG...266
§8.1.1.5 LFO..267
§8.1.1.6 Mixer..268
§8.1.1.7 FEG..270
§8.1.1.8 Audio DSP..271

§8.1.2 Reset Sequence..276
§8.1.3 Clock...282

§8.1.3.1 PLL...282

- 7 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.3.2 Clock Tree..282
§8.1.4 JTAG Interface..284

§8.1.4.1 SH4...284
§8.1.4.2 HOLLY...284
§8.1.4.3 AICA...284

§8.2 Individual Block Diagrams..284
§8.2.1 Detailed Block Diagram of Entire System...284
§8.2.2 CPU Subsystem (Including System Memory)...284
§8.2.3 HOLLY Subsystem..284
§8.2.4 GD-ROM Subsystem..284
§8.2.5 AICA Subsystem...284
§8.2.6 Digital Video Encoder Subsystem...284
§8.2.7 16Mbit SDRAM (16bit)..284
§8.2.8 64Mbit SGRAM (32bit)..284
§8.2.9 Power Supply..284

§8.3 Pin Assignments (with Descriptions of Pins) Pin Assignments for Each Chip................................284
§8.3.1 CPU..284
§8.3.2 HOLLY...284
§8.3.3 GD-ROM...284
§8.3.4 AICA..284
§8.3.5 Digital Video Encoder..284
§8.3.6 16Mbit SDRAM (16bit)..284
§8.3.7 64Mbit SGRAM (32bit)..284

§8.4 List of Registers...285
§8.4.1 System Bus Register...285

§8.4.1.1 System Registers..286
§8.4.1.2 Maple Peripheral Interface...298
§8.4.1.3 G1 Interface...308
§8.4.1.4 G2 Interface...319
§8.4.1.5 PowerVR Interface..329

§8.4.2 CORE Registers..340
§8.4.3 Tile Accelerator Registers...362
§8.4.4 GD-ROM Registers...367
§8.4.5 AICA Register..373

§8.5 List of Interrupts...389
§8.5.1 Interrupt Tree...389
§8.5.2 List of Interrupt Sources..390

§8.6 List of Input Parameters...394
§9 Bug List 402

- 8 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§1 THE SYSTEM

- 9 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§1.1 Overview
The Dreamcast system, based on the PowerVR Family core, includes a high-performance graphics system, a

64-channel audio system that is capable of various effects, and a 12x (max.) GD-ROM drive. In addition, the
Dreamcast system provides excellent cost performance.

In addition, in order to facilitate expansion into the network/internet business, the main unit of the
Dreamcast system is designed to accept a plug-in modem card.

This section provides an overview of the Dreamcast system. For further details on specific blocks, please
refer to the individual sections that correspond to those blocks later in this manual.

§1.2 System Architecture
The basic hardware specifications for the Dreamcast system are listed below.

•
CPU: Hitachi SH4 - 200MHz, super-scalar RISC processor, 360MIPS, 1.4GFLOPS

•
ASICs: Graphics: VL/NEC HOLLY - 100MHz; audio: Yamaha AICA - 22/25MHz

•
Polygon performance: 1 million polygons/sec (100-pixel triangles, opaque - 75%, translucent - 25%)

•
Polygon functions: Shadowing, trilinear mip-map, Fog, Z buffering, etc.

•
16MB system memory

•
8MB texture memory (can be expanded up to 16MB)

•
2MB audio memory (can be expanded up to a maximum of 8MB)

•
2MB system ROM

•
128K flash memory (for system code)

•
Audio function: 64ch PCM/ADPCM, 44.1kHz

•
4x to 12x CAV-type GD-ROM drive (128K of built-in buffer RAM)

•
Four game ports (peripheral ports)

•
RTC that permits battery backup

•
Supports NTSC/PAL and VGA video output

- 10 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

•
33.6kbps modem card (LINE jack) that operates off of 3.3V

The specifications for Dreamcast system options are listed below.

•
Supports light phaser gun, backup storage media, and voice recognition as peripheral devices that connect to a

game port.

•
Supports externally connected expansion devices.

- 11 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§1.3 Block Diagram
Fig. 1-1 shows a block diagram of the system.

×

Audio
(RTC)

AICA

-22/25
MHz

Audio
DAC/AMP

G2 bus
16bit @25MH z Ban d

Wave
 Memory

2MB
16Mbit SDRAM

16bit @
66MH z Ba n d

Graphic
&

Interface

HOLLY

-100MHz

Pixel-clock
13.5MHz

Texture Memory bus
4× 16bit @100MH z Ba n d

Texture
 Memory

8MB
16Mbit SDRAM

System
 Memory

16MB
64Mbit SDRAM

CPU

SH4
SH4-Core
-200MHz

External-Bus
-100MHz

Peripheral
4-Port

4x-12x
GD-ROM

Digital
Video

Encoder

System
ROM
2MB

Flash
Memory
128KB

MIDI

CPU bus
SDRAM/Mu lt iplex

64bit @100MH z Ba n d

G1 bus
(ATA & ROM)

MODEM
Unit

Ext.Device
etc...

etc...

or LINE

NTSC
PAL
VGA

SH4
Serial
Port

？

Fig. 1-1 System Block Diagram

- 12 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Overviews of each block and the primary devices are provided below.

CPU
The main CPU is a Hitachi SH4, which accepts a 33.3MHz clock signal from the system and, by means

of an internal PLL, operates at 1.8V/200Mhz internally and at 3.3V/100MHz for the external bus. The SH4
is primarily responsible for processing concerning the game sequence, AI, 3D calculations, and issuing 3D
graphics instructions. In addition, the SH4 also provides a general-purpose serial port with a FIFO buffer
for use by external I/O devices. The serial port uses start-stop synchronization, and supports a maximum
transfer speed of 1.5625Mbps.

Peripheral Memory
In order to make the best use of the performance capabilities of the SH4, SDRAM is used for the main

system memory, and is connected directly to the SH4. There are 16MB of main memory, the bus width is
64 bits, and the operating frequency is 100MHz. The (theoretical) maximum burst transfer speed is 800MB/
s. In addition, aside from DMA transfers from the graphics and the interface chip, this system memory is
used only by the SH4. 7ns chips or the equivalent are used for this memory.

The Dreamcast System also has 2MB of system ROM, where the operating system, boot routine, etc., are
stored.

There is also a 128K flash memory that is used to store system information, such as region information,
manufacturer code, etc.

Graphics System
A feature of the Dreamcast graphics system is high-performance 3D graphics, and can produce output in

a variety of video modes with 8-bit RGB data as the color information. The Dreamcast graphics core uses
the DMA transfer capability of the SH4 (the CPU) to retrieve display lists created by the SH4 in system
memory; the graphics core then uses these display lists to generate 3D images internally. Because the raster
algorithm is used for the drawing method, there is no need for a frame buffer in order to generate 3d
graphics; for texture mapping, textures are loaded in from dedicated texture memory. The standard graphics
memory in the Dreamcast System is 8MB, but this can be expanded to 16MB for development work.

The Dreamcast System supports video output for typical NTSC/PAL monitors as well as for VGA
monitors (such as personal computer displays). In addition to the stereo sound that is output from the audio
system, the Dreamcast system also outputs audio on a general-purpose RCA connector and an extended
VGA connector.

Audio System
The Dreamcast System can generate stereo output from the 64-channel PCM/ADPCM sound source that

is built into the audio chip, and also supports various effects through the sound CPU and DSP that are also
built into the chip. This output can also be mixed with sound data that is output from the GD-ROM. The
system and the sound CPU and DSP all share a common wave memory, which has a 2MB capacity in the
base system. (This capacity can be expanded to 8MB for development work.) The MIDI interface is also
supported for development work as the audio peripheral interface.

The GD-ROM drive that is built into the Dreamcast system is used to load sound data as well as data that
is used by the game software, etc. The GD-ROM drive supports various CD formats, and rotates according
to the CAV system. The data reading speed ranges from 4x to 12x. An ATAPI device is used for the drive.

The stereo sound that is generated by the audio system passes through an audio DAC/AMP, and is then
output on the RCA connector and extended VGA connector, along with the video output that is generated by
the graphics system.

User Interface
Sega's proprietary serial peripheral interface is used for the user interface devices, such as the control

pads. The main unit of the Dreamcast system supports up to four ports. In addition to control pads, these
ports also support connection with light phaser gun, backup storage media, etc. the maximum transfer rate
through these ports is 2Mbps.
Expansion Device

Debuggers for use in software development can be connected to the expansion connector as expansion
devices.

Communications System
The Dreamcast system supports a plug-in modem card. The communications speed of this modem is

- 13 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

33.6Kbps, and the modem includes a modular line jack.

Supplemental descriptions of the buses in relation to the hardware are provided below.

CPU bus
This bus connects the SH4, the CPU, to the 16MB system memory and to "HOLLY," the

graphics/interface core. Between the CPU and system memory, this is an SDRAM interface with a 64-bit
data width, and between the CPU and HOLLY, this is a 64-bit bus interface on which addresses and data are
multiplexed.

As mentioned on the previous page, the bus clock in both cases is 100MHz.

Texture memory bus
Supported by the HOLLY's internal PowerVR core, this is an SDRAM interface bus for texture memory,

which is memory that is used for drawing and display functions. The bus clock is 100MHz, and the bus
width is 64 bits (16 bits x 4).

Wave memory bus
This is an SDRAM interface bus for audio that is supported by AICA. The bus clock is 67.7MHz (2 x

33.8688MHz, which is supplied from the GD-ROM to AICA). The bus width is 16 bits.

G1 bus
The G1 bus is supported by HOLLY. The GD-ROM, system ROM, flash memory and other

asynchronous devices are connected to the G1 bus in parallel. The access method used on the G1 bus
differs according to the target device, with accesses to the GD-ROM device being different from accesses to
system ROM or flash memory. Access is based on the ATA standard, according to a protocol that supports
the ATA standard in part. One interrupt line from the GD-ROM is supported. Regarding data transfers,
DMA transfers are possible in the GD-ROM area.

This G1 bus also supports the loading of 8 bits of data (a country code) that are set on the board.

G2 bus
The G2 bus is supported by HOLLY. This bus supports the audio chip AICA, a modem, external

expansion devices, and other synchronous devices. The G2 bus is basically a PCI-like bus, with a bus clock
of 25MHz and a bus width of 16 bits. The bus supports three interrupt lines, one for each of the supported
devices listed above. Aside from the modem, DMA transfer is possible with the AICA and expansion
devices.

- 14 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§1.4 Dev.Box Board
This section describes the board settings and electrical aspects of the hardware.

• About the HOLLY revisions (=CLX: chipmaker code name)...
Each revision of Holly is the result of problems with chips or changes to the specifications.
The version can be identified by the SH4 (the CPU) by reading the revision register in the system bus

block and the CORE block.
The following table lists the three types of internal registers that are used to identify the chip in each

block. The register addresses shown in the table below are the addresses in the P2 9uncacheable) area of
the SH4. (Refer to section 2.1.)

0xA05F689C
bit7-0

(reg. SB_SBREV)

0xA05F7880
bit7-0

(reg. SB_G2ID)

0xA05F8004
bit15-0

(REVISION)

Chip currently
in use

0x01 0x12 0x0001 HOLLY1.0 / 1.1
(CLX1 1.0 / 1.1)

0x02 0x12 0x0001 HOLLY1.5/1.6
(CLX1 1.5/1.6)

0x08 0x12 0x0011 HOLLY ES2.2
(CLX2.2)

0x09 0x12 0x0011 HOLLY ES2.3
(CLX2.3)

0x0A 0x12 0x0011 HOLLY ES2.4/2.41
(CLX2.4/2.41)

0x0B 0x12 0x0011 HOLLY ES2.42
(CLX2.42)

There are different versions of Dev.Box for the different HOLLY versions, as described below:

Dev.Box
Ver. 5.05

Dev.Box
Ver. 5.16

Dev.Box
Ver. 5.22

Dev.Box
Ver. 5.23

Dev.Box
Ver. 5.24

HOLLY
ES1.1

HOLLY
ES1.6

HOLLY
ES2.2

HOLLY
ES2.3

HOLLY
ES2.4 ~

* Details on each HOLLY revision are provided in section 9.

• The drive capacity of all Maple-related pins on the HOLLY chip is 6mA (BFU C23).

• The withstand voltage for G1 devices connected to the HOLLY's G1 bus is 3.3V for the HOLLY1 and 5V
for the HOLLY2.

- 15 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2 CPU AND PERIPHERAL MEMORY

- 16 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

This section describes the main processor of the Dreamcast System and the system memory.

§2.1 System Mapping
Table 2-1 shows the memory map for physical addresses in the Dreamcast System. Refer to their respective

sections for details on individual functions.

Area Physical Address Type Function Size Access Note
0 0x00000000

0x0020000
0
0x0040000
0
0x005F680
0
0x005F6C0
0
0x005F700
0
0x005F740
0
0x005F780
0
0x005F7C0
0
0x005F800
0
0x0060000
0
0x0060080
0
0x0070000
0
0x0071000
0
0x0080000
0
0x0100000
0
0x0200000
0

- 0x001FFFFF
- 0x0021FFFF
- 0x005F67FF
- 0x005F69FF
- 0x005F6CFF
- 0x005F70FF
- 0x005F74FF
- 0x005F78FF
- 0x005F7CFF
- 0x005F9FFF
- 0x006007FF
- 0x006FFFFF
- 0x00707FFF
- 0x0071000B
- 0x00FFFFFF
- 0x01FFFFFF
-

0x03FFFFFF*

MPX System/Boot ROM
Flash Memory
Unassigned
System Control Reg.
Maple i/f Control Reg.
GD-ROM

G1 i/f Control Reg.
G2 i/f Control Reg.
PVR i/f Control Reg.
TA / PVR Core Reg.

MODEM
G2 (Reserved)
AICA- Sound Cntr. Reg.
AICA- RTC Cntr. Reg.

AICA- Wave Memory
Ext. Device
Image Area*

2MB
128KB

-
512B
256B
256B
256B
256B
256B
8KB
2KB

-
32KB
12B

2/8MB
16MB
32MB*

1/2/4/32
1/2/4/32

-
4
4

1/2
4
4
4

4/32
1
-
4
4
4

1/2/4/32

in G1 i/f
in G1 i/f
Reserved

in G1 i/f

in G2 i/f
in G2 i/f
in G2 i/f
in G2 i/f
in G2 i/f
in G2 i/f

1 0x04000000
0x0500000
0
0x0600000
0

- 0x04FFFFFF
- 0x05FFFFFF
-

0x07FFFFFF*

MPX Tex.Mem. 64bit Acc.
Tex.Mem. 32bit Acc.
Image Area*

8/16MB
8/16MB
32MB*

2/4/32
2/4/32

in TA/PVR
in TA/PVR

2 0x08000000 - 0x0BFFFFFF - Unassigned - -
3 0x0C000000

0x0D00000
0
0x0E00000

- 0x0CFFFFFF
- 0x0DFFFFFF
-

0x0FFFFFFF*

SDRAM System Memory
(Image)
Image Area*

16MB
16MB
32MB*

1/2/4/32 Work

- 17 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0
4 0x10000000

0x1080000
0
0x1100000
0
0x1200000
0

- 0x107FFFFF
- 0x10FFFFFF
- 0x11FFFFFF
-

0x13FFFFFF*

MPX TA FIFO Polygon Cnv.
TA FIFO YUV Conv.
Tex.Mem. 32/64bit Acc.
Image Area*

8MB
8MB
16MB
32MB*

32(w)
32(w)
32(w)

in TA block
in TA block

thru TA

5 0x14000000 - 0x17FFFFFF MPX Ext. Device 64MB 1/2/4/32 in G2 i/f
6 0x18000000 - 0x1BFFFFFF - Unassigned - - Reserved
7 0x1C000000 - 0x1FFFFFFF - (SH4 Internal area) - -

Notes:
- Locations marked with an asterisk in the above table indicate the address image for the first half of the
corresponding 64MB area, divided into 32MB sections. (Example: System Control Registers =
0x005F6800 ~ → 0x025F6800 ~)
In addition, the area from 0x02000000 to 0x021FFFFF does not contain the System/Boot ROM image, and
the area from 0x02200000 to 0x023FFFFF does not contain the flash memory image. Both are unused
areas.
Image areas other than those indicated by the "*" mark are not marked.
"Area" refers to the area divisions in the CPU, each of which is a block of 64MB of physical area.
"Access" shows the unit of access, in bytes. All accesses can basically be reads or writes, but those
locations where the "(w)" notation appears are write-only accesses.

Table 2-1 Physical Memory Map

- 18 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.1.1 Cache Access
Table 2-1 indicates the mapping of physical addresses in the system, which corresponds to an external

memory space that is addressed using the 29-bit (A[28:0]) addresses used by the SH4, the CPU. The
specification of actual addresses from the SH4 varies according to the SH4 cache access selection, and depends
on the contents of the upper three bits (A[31:29]) of the SH4 physical memory space (A[31:0]), as shown in
the table below.

A[31:29] Address Area Cache
000 0x00000000～0x1FFFFFFF P0 Cacheable
001 0x20000000～0x3FFFFFFF P0 Cacheable
010 0x40000000～0x5FFFFFFF P0 Cacheable
011 0x60000000～0x7FFFFFFF P0 Cacheable
100 0x80000000～0x9FFFFFFF P1 Cacheable
101 0xA0000000～0xAFFFFFFF P2 Non-Cacheable
110 0xC0000000～0xCFFFFFFF P3 Cacheable
111 0xE0000000～0xFFFFFFFF P4 Non-Cacheable(SH4 internal area)

Table 2-2 Cache Access

The following table shows the areas for which cache access is possible by the CPU.
The addresses shown in parentheses are an image area.

Address Device/Block Access
0x00000000～0x001FFFFF

(0x02000000 ～ 0x021FFFFF)
System/Boot ROM R/-

0x00200000～0x0021FFFF
(0x02200000 ～ 0x0221FFFF)

FLASH Memory R/-

0x0C000000～0x0CFFFFFF
(0x0E000000 ～ 0x0EFFFFFF)

System Memory R/W

0x10000000～0x107FFFFF
(0x12000000 ～ 0x127FFFFF)

Polygon Converter
[Thru TA FIFO]

-/W

0x10800000～0x10FFFFFF
(0x12800000 ～ 0x12FFFFFF)

YUV Converter
[Thru TA FIFO]

-/W

0x11000000～0x117FFFFF
(0x13000000 ～ 0x137FFFFF)

Texture Memory
[Thru TA FIFO]

-/W

0x04000000～0x047FFFFF
(0x06000000 ～ 0x067FFFFF)

Texture Memory-64bit Acc.
[Thru PVR i/f]

R/W

0x05000000～0x057FFFFF
(0x07000000 ～ 0x077FFFFF)

Texture Memory-32bit Acc.
[Thru PVR i/f]

R/W

0x01000000～0x01FFFFFF
(0x03000000 ～ 0x03FFFFFF)
, 0x14000000 ～ 0x17FFFFFF

G2 External area Depends on device

Table 2-3 Cache Accessible Area

Cautions concerning cache access are shown below.
・ When using a path through a TA FIFO for a cache access, set the write address on a 32-byte

boundary. (The data is written in the order that it was output to the FIFO.)
・ With the TA FIFO, if a writeback is generated before 32 bytes are collected, the data that is available

at that point is sent to the TA FIFO. Therefore, it is necessary to control writebacks when using a
cache via the TA FIFO.

Note that the areas other than the system boot ROM and the flash memory that are shown in the table above
can be accessed through the SH4's store queue function. For details, on the SH4 memory space and cache area,
and the store queue function, refer to the SH4 manual.

- 19 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.2 SH4
The CPU used in the Dreamcast system is the Hitachi SH4; in 3D game programming, this CPU is primarily

responsible for processing concerning the game sequence, AI, physical calculations, 3D conversion, etc. This
section explains the settings for the SH4 and its peripheral circuits.

§2.2.1 Overview of the SH4
Table 2-4 below lists the main features of the SH4.

Core
Instruction core 32-bit RISC, 16-bit instructions
Pipeline 5 stages
FPU Single/double precision IEEE754
Clock Internal: 200MHz; external: 100MHz (1/2, 1/3, 1/4);

peripheral clock: 50MHz
Performance 360MIPS (core), 1.4GFLOPS (matrix multiplier)
Super scalar ２
Cache I$: 8K; D$: 16K (direct mapping for both), index/RAM functions
Miscellaneous Capable of high-speed packet transfer through store queue function (32 bytes,

two channels)
Peripheral circuits
Arithmetic operations Matrix multiplier, 1/√
DMAC 4 channels, DDT (on Demand Data Transfer) for channel 0
Memory interface SDRAM, multiplex interface
MMU Page sizes: 1KB, 4KB, 64KB, 1MB
UBC Two break points
SCI Clock synchronization, start-stop synchronization serial interface
Timer 3 channels
RTC Real-time clock, alarm, calendar
Process and package
Power consumption 1.8W
Operating voltage External: 3.3V DC; internal: 1.8V DC
Process 0.25µm, 4-layer metal, 1.8V/3.3V
Package 256-pin BGA

Table 2-4 Features of the SH4

For details on the SH4, refer to the SH4 manuals (regarding hardware, programming, etc.).

- 20 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.2.2 CPU Bus Interface
The buses that connect the peripheral devices to the SH4 (the CPU buses) consist of a 26-bit address bus

(the SH4 uses 32-bit internal addressing) and a 64-bit data bus that permits byte access. The CPU buses
connect directly to the main system memory (SDRAM) and to the HOLLY chip, which is the
graphics/interface core.

The clock speed is 100MHz, with single accesses being 1/2/4 bytes and burst accesses being 32 bytes.
The SH4 uses two different bus protocols on the CPU buses, depending on the memory area that has been
mapped. One of the following two choices is selected, depending on memory area is to be accessed:

(1) Direct operation to SDRAM
(2) MPX operation to HOLLY

A "Direct operation to SDRAM" is an operation that is performed once the SH4 is directly connected to
SDRAM, the system memory. The address and data buses form the interface with SDRAM. Area 3 (of the
seven physical memory area divisions in the SH4) is used, and memory access is possible in bank active
mode. Note that this type of access does not use the upper address bits (A[25:17]).

An "MPX operation to HOLLY" is an operation that multiplexes the address and data on the 64-bit data
bus, and, in the Dreamcast System, is performed in all SH4 areas 0, 1, 4, and 5. Areas 0, 1, and 5 use 3 soft
waits (+ external waits), and area 4 uses 0 waits (+ external waits). The devices that are assigned to each
area are listed below (refer to Table 2-1):

(1) Area 0 = Accesses to system ROM, GD-ROM, AICA, and other peripheral devices, and the control
registers

(2) Area 1 = Accesses to texture memory
(3) Area 4 = Write accesses to the HOLLY TA area (FIFO, YUV converter), and to texture memory
(4) Area 5 = Area for expansion devices on the G2 bus

The graphics/interface core HOLLY is divided into three blocks: the Power VR core (CORE) block,
which is the graphics-related block; the Tile Accelerator (TA) block, which is used during data transfers to
the CORE; and the System Bus (SB) block, which is the interface block that handles data transfers among
all devices, including the graphics-related block. (Details on each of these blocks are provided in
subsequent sections.)

Each of these blocks is accessed from the SH4 through the interfaces listed below.

<System register interface>
This is the interface between the SH4 and the HOLLY's internal system registers; the root bus (the bus

that links all of the interfaces in the SB block) does not pass through this interface.
This interface uses no waits (5 clock operation) and only 4-byte access; the transfer speed is 80MB/s.

<Root bus interface>
This interface is used to access the root bus that carries data between peripheral devices. The number of

waits and the number accesses both depend on the target device of the access, but basically accesses are
made in units of 1/2/4/32 bytes.

Burst access utilizes the wraparound function. This interface has a 32-byte write buffer (large enough for
two single writes or one burst write). Only when there are consecutive single writes do consecutive writes
occur on the root bus, making high-speed access possible (but attention must be made to possession of the
bus). The maximum transfer speed is 356MB/s (during a burst write).

<TA FIFO interface>
This interface is primarily used for transferring polygon data and texture data to the TA FIFO.

- 21 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

This interface supports 32-byte writes only. Wraparound operation is not supported, so access must start
from address 0x00. (0x08, 0x10, and 0x18 are not permitted.) The number of waits is dependent on the TA
FIFO, and the capacity of the FIFO can be checked in the registers. Furthermore, because there is a
possibility that DMA will not be performed properly, writes during ch2-DMA operations are prohibited.
The maximum transfer speed is 640MB/s (during a burst write).

For details on the SB block (DMA and other data transfers), refer to section 2.5 and beyond; for details
on graphics, refer to section 3.

§2.2.3 Initial Settings for the SH4
Tables 2-5 and 2-6 show the settings that are used for the SH4 in the Dreamcast System.
Table 2-5 lists the operation modes of the SH4, which are selected by means of the MD[7:0] pins. These

pins are used for other functions, and are sampled internally when the reset condition is released. The same
applies to the clock mode, which is set again by software after the system boots up.

Item Setting
External clock 100MHz (cycle time: 10ns)
Internal clock 200MHz (cycle time: 5ns)
Endian Little Endian (Intel style)
Area 0 interface MPX (multiplex)

Table 2-5 SH4 Configuration

Mode Pin Setting Operation
MD8 0 Use oscillator.
MD7 1 * SH4 operates in master mode. *
MD6 0 * MPX operation is used for area 0. *
MD5 1 All buses are Little Endian format.
MD4 0 64-bit bus width operation
MD3 0 64-bit bus width operation
MD2 1 Clock mode
MD1 0 Clock mode
MD0 1 Clock mode

The configuration of the items marked by an asterisk ("*") in the table may differ, depending on the SH4
process. (The values indicated in the above table are for the 25µ process.)

Table 2-6 SH4 Operation Mode Settings

The initial settings and notes concerning each of the SH4's functions listed below are shown in the
following pages. For details on each of the settings, please refer to the SH4 hardware manual.

The register settings and addresses indicated in this section are the values in the SH4's P4 area. (Caching
not permitted; refer to section 2.1.1 and the SH4 manual.)

・ Low power consumption mode
・ Clock oscillation circuit
・ Real-time clock (RTC)
・ Time unit (TMU)
・ Bus state controller (BSC)
・ Direct memory access controller (DMAC)
・ Interrupt controller (INTC)

- 22 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Use of the following SH4 functions, even those that are for debugging only, is prohibited.

・ Serial communication interface (SCI)
・ Smart card interface
・ User break controller (UBC) [for debugging only]
・ Hitachi user debugging interface (HITACHI-UDI) [for debugging only]

<Low power consumption mode>

The following limitations apply to low power consumption mode.

(1) Use of standby mode is prohibited, because in that mode the clock is not output and the system
hangs.

(2) Sleep and module standby modes can be used. In addition, because the SCI and RTC are not used,
no clock signal is supplied.

(3) Set the RTC control register 2 (RCR2) before setting the standby control register (STBCR).

The register settings are shown below. (Only valid bits are shown.)

STBCR (standby control register) 0xFFC00004 (8 bits) ←0x03 (initial value: 0x00)

bit7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 1

bit7 – STBY ←‘0’ Enters sleep mode in response to the SLEEP instruction.
bit6 - PHZ ←‘0’ Peripheral module-related pins (*1) do not go to high impedance in

standby mode.
bit5 - PPU ←‘0’ Peripheral module-related pins (*2) are pulled up when they are inputs or

high impedance.
bit4 - MSTP4 ←‘0’ Activates the DMAC.
bit3 - MSTP3 ←‘0’ As desired (SCIF clock supplied/not supplied)
bit2 - MSTP2 ←‘0’ As desired (TMU clock supplied/not supplied)
bit1 - MSTP1 ←‘1’ Stops clock supplied to the RTC.
bit0 - MSTP0 ←‘1’ Stops clock supplied to the SCI.

*1 MD0/SCK,MD1/TXD2,MD2/RXD2,MD7/TXD,MD8/RTS2,CTS2,DACK0/TDACK,DRAK0/BAVL,DACK1/
ID0,DRAK1/ID1

*2 MD0/SCK,MD1/TXD2,MD2/RXD2,MD7/TXD,MD8/RTS2,SCK2/MRESET,RXD,CTS2,DREQ0/DBREQ,
DACK0/TDACK,DRAK0/BAVL,DREQ1/TR,DACK1/ID0,DRAK1/ID1,TCLK

<Clock oscillation circuit>

The clock oscillation circuit settings also conform with the MD pin settings in Table 2-6.

(1) Using an oscillator, not a crystal resonator * MD8= 0
(2) Using clock operation mode "5" * MD2= 1, MD1= 0, MD0= 1

The detailed settings are as follows:

1/2 divider: OFF
PLL1: ON
PLL2: ON
EXTAL clock input: 33MHz
CPU clock: 200MHz (× 6)
Bus clock: 100MHz (× 3)
Peripheral module clock: 50MHz (× 3/2)

(3) CKIO is clock output
(4) Watchdog timer mode is prohibited since resets are applied to SH4 only, and not to other chips.

- 23 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The register settings are shown below. (Only valid bits are shown.)

FRQCR (frequency control register): 0xFFC00000 /initial value: 0x0E0A
With the MD pin settings shown in Table 2-6, it is not necessary to set this register. (The initial

settings are adequate.)

bit15-12 11 10 9 8-6 5-3 2-0
0000 1 1 1 000 001 010

[Bits 15:12 are reserved. (Specify "0x0".)]
bit11 - CKOEN ←‘1’ CKIO clock input
bit10 - PLL1EN ←‘1’ Use PLL1
bit9 - PLL2EN　 ←‘1’ Use PLL2
bit8:6 - IFC [2:0] ←‘000’ CPU clock × 1
bit5:3 - BFC[2:0] ←‘001’ Bus clock × 1/2
bit2:0 - PFC[2:0]　 ←‘010’ Peripheral clock × 1/4

WTCNT (watchdog timer counter): 0xFFC00008 /initial value: 0x0000

bit15-8 7 6 5 4 3 2 1 0
0101 1010 * * * * * * * *

　 [Bits 15:8 are reserved. (Specify "0x5A".)]
bit7:0 Don't care

WTCSR (watchdog timer control/status): 0xFFC0000C ← 0xA500/Initial value: 0x0000

bit15-8 7 6 5 4 3 2-0
1010 0101 * 0 * * * ***

[Bits 15:8 are reserved. (Specify "0xA5".)]
bit7 - TME ←Don't care Timer enable
bit6 - WT/IT ←‘0’ Used in interval timer mode
bit5 - RSTS ←Don't care Reset type that was generated (Ignored in interval timer

mode.)
bit4 - WOVF ←Don't care Overflow flag (Not set in interval timer mode.)
bit3 - IOVF ←Don't care Overflow flag (Used in interval timer mode.)
bit2:0 - CKS[2:0] ←Don't care WTCNT clock select (The clock from divider 2 is 200MHz.)

<Real-time clock (RTC)>

Use of the RTC is prohibited, and it is necessary to make the setting that stops it. Note that the TCLK
pin is an input, and the RTC control register 2 (RCR2) must be set before the standby control register
(STBCR) is set.

Including those registers for which access is prohibited, the RTC-related register settings are as listed
below.

R6 ４ CNT (64Hz counter) : 0xFFC80000 Access prohibited
RSECCNT (seconds counter) : 0xFFC80004 Access prohibited
RMINCNT (minutes counter) : 0xFFC80008 Access prohibited
RHRCNT (hours counter) : 0xFFC8000C Access prohibited
RWKCNT(day of the week counter) : 0xFFC80010 Access prohibited
RDAYCNT (day counter) : 0xFFC80014 Access prohibited
RMONCNT (month counter) : 0xFFC80018 Access prohibited
RYRCNT (year counter) : 0xFFC8001C Access prohibited
RSECAR (seconds alarm) : 0xFFC80020 Access prohibited
RMINAR (minutes alarm) : 0xFFC80024 Access prohibited
RHRAR (hours alarm) : 0xFFC80028 Access prohibited
RWKAR (day of the week alarm) : 0xFFC8002C Access prohibited
RDAYAR (day alarm) : 0xFFC80030 Access prohibited
RMONAR (month alarm) : 0xFFC80034 Access prohibited

- 24 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

RCR1 (RTC control register 1): 0xFFC80038 (8 bits) ← 0x00 -- Setting is not required
bit7 6 5 4 3 2 1 0
* - - 0 0 - - *

bit7 - CF ←Don't care Carry flag
bit4 - CIE ←‘0’ Do not generate carry interrupt
bit3 - AIE ←‘0’ Do not generate alarm interrupt
bit0 - AF ←Don't care Alarm flag

RCR2 (RTC control register 2): 0xFFC8003C (8 bits) ← 0x00 /Initial value: 0x0001001

bit7 6-4 3 2 1 0
* 000 0 0 0 0

bit7 - PEF ←Don't care Periodic interrupt flag
bit6:4 - PES[2:0] ←‘000’ Periodic interrupt generation off
bit3 - RTCEN ←‘0’ RTC crystal oscillator stopped
bit2 - ADJ ←‘0’ Normal clock operation
bit1 - RESET ←‘0’ Normal clock operation
bit0 - START ←‘0’ Alarm flag

<Timer unit (TMU)>

Because the TCLK pin is a pull-up input, the TMU cannot be used with an external clock or the input
capture function. Furthermore, the TMU cannot be used with the built-in RTC output clock. The
peripheral module clock is 50MHz.

The register settings are as shown below.

TOCR (Timer output control register): 0xFFD8000 ← 0x00 -- Setting is not required

bit7 6 5 4 3 2 1 0
- - - - - - - *

bit0 - TCOE ←‘0’ TCLK pin input

TSTR (Timer start register): 0xFFD80004 /Initial value 0x00

bit7 6 5 4 3 2 1 0
- - - - - * * *

bit2 - STR2 ←Don't care Timer counter 2 on/off
bit1 - STR1 ←Don't care Timer counter 2 on/off
bit0 - STR0 ←Don't care Timer counter 2 on/off

TCOR0 (Timer constant register 0): 0xFFD80008 (32 bits) -- Set as desired

TCNT0 (Timer counter register 0): 0xFFD8000C (32 bits) -- Set as desired

TCR0 (Timer control register 0): 0xFFD80010 /Initial value 0x0000

bit15-9 8 7 6 5 4-3 2-0
0000 000 * - - * 00 ***

bit8 - UNF ←Don't care Underflow flag
bit5 - UNIE ←Don't care Underflow interrupt
bit4:3 - CKEG[1:0] ←‘00’ Rising edge
bit2:0 - TPSC[2:0] ←Don't care Timer prescaler (101, 110, and 101 are prohibited)

- 25 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TCOR1 (Timer constant register 1): 0xFFD80014 (32 bits) -- Set as desired

TCNT1 (Timer counter register 1): 0xFFD80018 (32 bits) -- Set as desired

TCR1 (Timer control register 1): 0xFFD80010C /Initial value 0x0000

bit15-9 8 7 6 5 4-3 2-0
0000 000 * - - * 00 ***

bit8 - UNF ←Don't care Underflow flag
bit5 - UNIE ←Don't care Underflow interrupt
bit4:3 - CKEG[1:0] ←‘00’ Rising edge
bit2:0 - TPSC[2:0] ←Don't care Timer prescaler (101, 110, and 101 are prohibited)

TCOR2 (Timer constant register 2): 0xFFD80020 (32 bits) -- Set as desired

TCNT2 (Timer counter register 2): 0xFFD80024 (32 bits) -- Set as desired

TCR2 (Timer control register 2): 0xFFD80028 /Initial value 0x0000

bit15-10 9 8 7-6 5 4-3 2-0
0000 00 * * 00 * 00 ***

bit9 - ICPF ←Don't care Input capture interrupt flag
bit8 - UNF ←Don't care Underflow flag
bit7:6 - ICPE[1:0] ←‘00’ Use of input capture prohibited
bit5 - UNIE ←Don't care Underflow interrupt
bit4:3 - CKEG[1:0] ←‘00’ Rising edge
bit2:0 - TPSC[2:0] ←Don't care Timer prescaler (101, 110, and 101 are prohibited)

TCPR2 (input capture) 0xFFD8002C Access prohibited

- 26 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<Bus state controller (BSC)>

The BSC is a register for SH4 external bus-related settings. For details on the main settings, refer to the
settings for MD[3:7] in the MD pin settings shown in Table 2-6. The settings for SDRAM, the system
memory, are described in section 2.3.2.

The register settings are shown below.

BCR1 (Bus state control 1): 0xFF800000　 ← 0xA3020008 /Initial value: 0xA0000000

bit31 30 29 28-26 25 24 23-22 21 20 19 18 17 16 15 14 13-11 10-8 7-5 4-2 1 0
1 0 1 - 1 1 - 0 0 0 0 0 - 0 0 000 000 000 010 - 0

bit31 - ENDIAN ←‘1’ Little Endian
bit30 - MASTER ←‘0’ Master
bit29 - AOMPX ←‘1’ Area 0 is MPX
bit25 - IPUP ←‘1’ Do not pull-up the controller pins (*3)
bit24 - OPUP ←‘1’ Do not pull-up the controller pins (*4)
bit21 - A1MBC ←‘0’ Area 1 normal
bit20 - A4MBC ←‘0’ Area 4 normal
bit19 - BREQEN ←‘0’ External request invalid
bit18 - PSHR ←‘0’ Master mode
bit17 - MEMMPX ←‘1’ Area 1 to 6 MPX
bit15 - HIZMEM ←‘0’ High impedance during standby (*5)
bit14 - HIZCNT ←‘0’ High impedance during standby or when bus is granted
bit13:11 - A0BST[2:0] ←‘000’ Area 0 normal memory
bit10:8 - A5BST[2:0] ←‘000’ Area 5 normal memory
bit7:5 - A6BST[2:0] ←‘000’ Area 6 normal memory
bit4:2 - DRAMTP[2:0] ←‘010’ Area 2 normal memory, area 3 SDRAM
bit0 - A56PCM ←‘0’ Area 5 6 normal memory

*3 NMI,IRL[3:0],BREQ,MD6,RDY
*4 A[25:0],BS,CSn,RD,WEn,RD/WR,RAS,RAS2,CE2A,CE2B,RD2,RD/WR2
*5 A[25:0],BS,CSn,RD/WR,CE2A,CE2B,RD/WR2
*6 RAS,RAS2,WEn,RD,RD2

BCR2 (Bus state control 2): 0xFF800004← 0x0000 /Initial value 0x3FFC

bit15-14 13-12 11-10 9-8 7-6 5-4 3-2 1 0
00 00 00 00 00 00 00 - 0

bit15:14 - A0SZ[1:0] ←‘00’ Area 0 is 64 bits
bit13:12 - A6SZ[1:0] ←‘00’ Area 6 is 64 bits
bit11:10 - A5SZ[1:0] ←‘00’ Area 5 is 64 bits
bit9:8 - A4SZ[1:0] ←‘00’ Area 4 is 64 bits
bit7:6 - A3SZ[1:0] ←‘00’ Area 3 is 64 bits
bit5:4 - A2SZ[1:0] ←‘00’ Area 2 is 64 bits
bit3:2 - A1SZ[1:0] ←‘00’ Area 1 is 64 bits
bit0 - PORTEN ←‘0’ Ports D47 to D32 are unused

- 27 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

WCR1 (Wait control 1): 0xFF800008 ← 0x01110111 /Initial value: 0x7777777

bit31 30-28 27 26-24 23 22-20 19 18-16 15 14-12 11 10-8 7 6-4 3 2-0
- 000 - 001 - 001 - 001 - 000 - 001 - 001 - 001
bit30:28 - DMAIW[2:0] ←‘000’ SDRAM is RAS down mode
bit26:24 - A6IW[2:0] ←‘001’ Area 6 - 1 idle cycle between cycles
bit22:20 - A5IW[2:0] ←‘001’ Area 5 - 1 idle cycle between cycles
bit18:16 - A4IW[2:0] ←‘001’ Area 4 - 1 idle cycle between cycles
bit14:12 - A3IW[2:0] ←‘000’ SDRAM is RAS down mode
bit10:8 - A2IW[2:0] ←‘001’ Area 2 - 1 idle cycle between cycles
bit6:4 - A1IW[2:0] ←‘001’ Area 1 - 1 idle cycle between cycles
bit2:0 - A0IW[2:0] ←‘001’ Area 0 - 1 idle cycle between cycles

WCR2 (Wait control 2): 0xFF80000C ← 0x018060D8 /Initial value 0xFFFEEFFF

bit31-29 28-26 25-23 22-20 19-17 16 15-13 12 11-9 8-6 5-3 2-0
000 000 011 000 000 - 011 - 000 011 011 000
bit31:29 - A6W[2:0] ←‘000’ Area 6 Read: 1 data, 1 wait; others, 0 waits
bit28:26 - A6B[2:0] ←‘000’ Area 6 burst pitch = 0
bit25:23 - A5W[2:0] ←‘011’ Area 5 1 data, 3 waits; others, 0 waits
bit22:20 - A5B[2:0] ←‘000’ Area 5 burst pitch = 0
bit19:17 - A4W[2:0] ←‘000’ Area 4 Read: 1 data, 1 wait; others, 0 waits
bit15:13 - A3W[2:0] ←‘011’ SDRAM CAS latency = 3
bit11:9 - A2W[2:0] ←‘000’ Area 2 Read: 1 data, 1 wait; others, 0 waits
bit8:6 - A1W[2:0] ←‘011’ Area 1 1 data, 3 waits; others, 0 waits
bit5:3 - A0W[2:0] ←‘011’ Area 0 1 data, 3 waits; others, 0 waits
bit2:0 - A0B[2:0] ←‘000’ Area 0 burst pitch = 0

WCR3 (Wait control 3): 0xFF800010 ← 0x07777777 -- Setting is not required

bit31-27 26 25-24 23 22 21-20 19 18 17-16 15 14 13-12 11 10 9-8 7 6 5-4 3 2 1-0
- 1 11 - 1 11 - 1 11 - 1 11 - 1 11 - 1 11 - 1 11

bit26 - A6S0 ←‘1’ Area 6 Write strobe setup = 1
bit25:24 - A6H[1:0] ←‘11’ Area 6 Data hold = 3
bit22 - A5S0 ←‘1’ Area 5 Write strobe setup = 1
bit21:20 - A5H[1:0] ←‘11’ Area 5 Data hold = 3
bit18 - A4S0 ←‘1’ Area 4 Write strobe setup = 1
bit17:16 - A4H[1:0] ←‘11’ Area 4 Data hold = 3
bit14 - A3S0 ←‘1’ Area 3 Write strobe setup = 1
bit13:12 - A3H[1:0] ←‘11’ Area 3 Data hold = 3
bit10 - A2S0 ←‘1’ Area 2 Write strobe setup = 1
bit9:8 - A2H[1:0] ←‘11’ Area 2 Data hold = 3
bit6 - A1S0 ←‘1’ Area 1 Write strobe setup = 1
bit5:4 - A1H[1:0] ←‘11’ Area 1 Data hold = 3
bit2 - A0S0 ←‘1’ Area 0 Write strobe setup = 1
bit1:0 - A0H[1:0] ←‘11’ Area 0 Data hold = 3

PCR (PCMCIA control): 0xFF800018 -- Setting is not required

Other BSC-related register settings are described in section 2.3.2.

- 28 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<Direct memory access controller (DMAC)>

The DMAC-related settings are described below.

(1) DMAC uses DDT mode.

(2) Because DMA channel 0 is used by the hardware, use by the software is prohibited. (The DMA end
interrupt cannot be used.)

(3) DMA operations are performed on channel 2 as a set with ch2-DMA of the HOLLY chip. (The
SH4's DMAC channel 2 register must be controlled by software at the same time.) Channel 2 DMA
depends on the following settings.
・ Transfer data length: Only 32-byte block transfer is permitted.
・ Address mode: Only single address mode is permitted.
・ Transfer initiation request: Only external requests (external address space -> external device) are

permitted.
・ Bus mode: Only burst mode is permitted.
・ DMA end interrupt: Generation of both SH4:DMAC and HOLLY:ch2-DMA is permitted. →

Select one or the other. (If two are enabled, it will just result in interrupts being generated twice.)

(4) Channels 1 and 3 can be used in the following manner:
・ The allowed transfer data length (8/16/32 bits, 32 bytes) depends on the transfer area. The 64-bit

transfer data length specification is permitted only for system memory.
・ Address mode: Only dual address mode is permitted.
・ Transfer initiation request: SCIF interrupt and auto request are permitted.
・ Bus mode: Only cycle steal mode is permitted.
・ DMA end interrupt: Can be used.

The register settings are shown below.

SAR0 (DMA source address 0): 0xFFA00000 -- Access prohibited

DAR0 (DMA destination address 0): 0xFFA00004 -- Access prohibited

DMATCR0 (DMA transfer count 0): 0xFFA00008 -- Access prohibited

CHCR0 (DMA channel control 0): 0xFFA0000C -- Access prohibited

SAR1 (DMA source address 1): 0xFFA00010 -- Set as desired

DAR1 (DMA destination address 1): 0xFFA00014 -- Set as desired

DMATCR1 (DMA transfer count 10): 0xFFA00018 -- Set as desired

- 29 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

CHCR1 CHCR1 (DMA channel control 1): 0xFFA0001C←0x00005440/Initial value: 0x00000000

bit31-29 28 27-25 24 23-20 19 18 17 16 15-14 13-12 11-8 7 6-4 3 2 1 0
000 0 000 0 - 0 0 0 0 ** ** **** 0 *** - * * *

bit31:29 - SSA[2:0] ←‘000’ No PCMCIA (PCMCIA source address space attributes)
bit28 - STC ←‘0’ No PCMCIA (PCMCIA source address wait)
bit27:25 - DSA[2:0] ←‘000 No PCMCIA (PCMCIA destination address space attributes)
bit24 - DTC ←‘0’ No PCMCIA (PCMCIA destination address wait)
bit19 - DS ←‘0’ DREQ low level detection
bit18 - RL ←‘0’ DDT mode (DRAK active high)
bit17 - AM ←‘0’ DACK output for reads
bit16 - AL ←‘0’ DDT mode (DACK active high)
bit15:14 - DM[1:0] ←Don’t care Destination address mode
bit13:12 - SM[1:0] ←Don’t care Source address mode
bit11:8 - RS[3:0] ←Don’t care Resource select - Only 0100, 0101, 0110, 1010, and 1011 can

be set
bit7 - TM ←‘0’ Cycle steal mode
bit6:4 - TS[2:0] ←Don’t care Transfer size (64-bit transfer data length specification is

permitted only for system memory)
bit2 - IE ←Don’t care Interrupt enable
bit1 - TE ←Don’t care Transfer end
bit0 - DE ←Don’t care DMAC enable

SAR2 (DMA source address 2): 0xFFA00020
This is a system memory (SDRAM) address setting. The address must be a 32-byte boundary

address. (Specify "0" for bits 4 through 0.)

DAR2 (DMA destination address 2): 0xFFA00024 - -Access prohibited

DMATCR2 (DMA transfer count 2): 0xFFA00028
This sets the transfer length, in 32-byte units.

* It is necessary to set the same transfer amount as the "transfer count" on the HOLLY side.
Although the DMAC in the SH4 is set in 32-byte units, the value is set in 1-byte units in the
HOLLY.

CHCR2 (DMA channel control 2): 0xFFA0002C ←0x000052C0 /Initial value: 0x00000000

bit31-29 28 27-25 24 23-20 19 18 17 16 15-14 13-12 11-8 7 6-4 3 2 1 0
000 0 000 0 - 0 - 0 - 01 ** 0010 1 100 - * * *

　bit31:29 - SSA[2:0] ←‘000’ No PCMCIA (PCMCIA source address space attributes)
　bit28 - STC ←‘0’ No PCMCIA (PCMCIA source address wait)
　bit27:25 - DSA[2:0] ←‘000 No PCMCIA (PCMCIA destination address space

attributes)
　bit24 - DTC ←‘0’ No PCMCIA (PCMCIA destination address wait)
　bit19 - DS ←‘0’ DREQ low level detection
　bit17 - AM ←‘0’ DACK output for reads
　bit15:14 - DM[1:0] ←‘01’ DDT mode (destination address increment)
　bit13:12 - SM[1:0] ←Don’t care Source address mode

bit11:8 - RS[3:0] ←‘0010’ External request (external address space → external device)
bit7 - TM ←‘1’ Burst mode
bit6:4 - TS[2:0] ←‘100’ 32-byte block transfer
bit2 - IE ←Don’t care Interrupt enable
bit1 - TE ←Don’t care Transfer end
bit0 - DE ←Don’t care DMAC enable

- 30 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SAR3 (DMA source address 3): 0xFFA00030 -- Set as desired

DAR3 (DMA destination address 3): 0xFFA00034 -- Set as desired

DMATCR3 (DMA transfer count 3): 0xFFA00038 -- Set as desired

CHCR3 (DMA channel control 3): 0xFFA0003C ← 0x00005440

bit31-29 28 27-25 24 23-20 19 18 17 16 15-14 13-12 11-8 7 6-4 3 2 1 0
000 0 000 0 - 0 - 0 - ** ** **** 0 *** - * * *

bit31:29 - SSA[2:0] ←‘000’ No PCMCIA (PCMCIA source address space attributes)
bit28 - STC ←‘0’ No PCMCIA (PCMCIA source address wait)
bit27:25 - DSA[2:0] ←‘000 No PCMCIA (PCMCIA destination address space

attributes)
bit24 - DTC ←‘0’ No PCMCIA (PCMCIA destination address wait)
bit19 - DS ←‘0’ DREQ low level detection
bit17 - AM ←‘0’ DACK output for reads
bit15:14 - DM[1:0] ←Don’t care Destination address mode
bit13:12 - SM[1:0] ←Don’t care Source address mode
bit11:8 - RS[3:0] ←Don’t care Resource select - Only 0100, 0101, 0110, 1010, and 1011

can be set
bit7 - TM ←‘0’ Cycle steal mode
bit6:4 - TS[2:0] ←Don’t care Transfer size (64-bit transfer data length specification is

permitted only for system memory)
bit2 - IE ←Don’t care Interrupt enable
bit1 - TE ←Don’t care Transfer end
bit0 - DE ←Don’t care DMAC enable

DMAOR (DMA operation): 0xFFA00040 ← 0x00008201 /Initial value: 0x00000000

bit31-16 15 14 13 12 11 10 9-8 7 6 5 4 3 2 1 0
- 1 - - - - - 10 - - - - - * * 1

bit15 - DDT ←‘1’ DDT mode
bit9:8 - PR[1:0] ←‘10’ ch2 priority
bit2 - AE ←Don’t care Address error flag
bit1 - NMIF ←Don’t care NMI flag
bit0 - DME ←‘1’ DMAC enable

<Serial communication interface with built-in FIFO (SCIF)>

There are no particular initial settings for the SCIF.

- 31 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<I/O ports>

The I/O port settings are undefined.

<Interrupt Controller (INTC)>

The INTC settings are as described below.

(1) NMI interrupts (falling edge detection; the NMI pin is pulled up) are for debugging purposes only,
and are not supported in the release version (MP).

(2) Only the IRL1 and 2 interrupts are used (pull up IRL0 and 3), and these interrupts are used as level
encoding interrupts. The interrupt levels are "2" (IRL3:0 = 1101), "4" (IRL3:0 = 1011), and "6"
(IRL3:0 = 1001).

(3) The following interrupts are not generated:
TMU2/TICPI2: Input capture interrupt
RTC/ATI: Alarm interrupt
RTC/PRI: Cycle interrupt
RTC/CUI: Carry interrupt
SCI/ERI: Reception error interrupt
SCI/RXI: Reception data full interrupt
SCI/TXI: Transmission data empty interrupt
SCI/TEI: Transmission end interrupt
REF/RCMI: Compare match interrupt
DMAC/DMTE0: DMAC-ch0 transfer end interrupt

(4) The Hitachi-UDI interrupt is for debugging only.

The register settings are as shown below.

IPRA (interrupt priority level setting register A): 0xFFD00004 /Initial value: 0x00000000

bit15-12 11-8 7-4 3-0
**** **** **** 0000

bit15:12 - TMU0 ←Don’t care TMU0 interrupt request (select from among interrupt levels
1101, 1011, and 1001)

bit11:8 - TMU1 ←Don’t care TMU1 interrupt request (same as above)
bit7:4 - TMU2 ←Don’t care TMU2 interrupt request (same as above)
bit3:0 - RTC ←‘0000’ RTC interrupt request mask (same as above)

IPRB (interrupt priority level setting register B): 0xFFD00008 /Initial value: 0x00000000

bit15-12 11-8 7-4 3-0
**** **** 0000 -

bit15:12 -WDT ←Don’t care WDT interrupt request (select from among interrupt levels
1101, 1011, and 1001)

bit11:8 - REF ←Don’t care REF interrupt request (same as above)
bit7:4 - SCI ←‘0000’ SCI interrupt request mask (same as above)

IPRC (interrupt priority level setting register C): 0xFFD0000C /Initial value: 0x00000000

bit15-12 11-8 7-4 3-0
- **** **** ****

bit11:8 - DMAC ←Don’t care DMAC interrupt request (select from among interrupt levels
1101, 1011, and 1001)

bit7:4 - SCIF ←Don’t care SCIF interrupt request (same as above)

- 32 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

bit3:0 - UDI ←Don’t care Hitachi-UDI interrupt request (same as above)

ICR (interrupt control register): 0xFFD00000 /Initial value: 0x00000000

bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
*- - - - - - * 0 0 - - - - - - -

bit15 - NMIL ←Don’t care NMI input level
bit9 - NMIB ←Don’t care NMI block mode
bit8 - NMIE ←‘0’ NMI is detected at falling edge
bit7 - IRLM ←‘0’ IRL interrupts are level encoded interrupts

- 33 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.3 System Memory

§2.3.1 System Memory Configuration and Control
System memory, which is the main memory in the Dreamcast System, is connected directly to the SH4

(the CPU), and is used by the SH4 to store program code and as work memory. The memory size that will
be supported depends on the cost of memory. The specifications for the system memory are shown in Table
2-7. The base configuration is 2 x 64Mbit SDRAMs, which provides a 16MB storage capacity.

Memory size 16MB
Technology 2 × 64Mbit SDRAMs (2 banks × 1024K words × 32 bits)
Total bus width 64 bit
Burst sequence Sequential
1-chip bus width 32 bit
Operating frequency 100MHz
Peak BBW 800MB/s

Table 2-7 Base Specifications for System Memory

The SDRAM is controlled directly by the SH4's internal BSC (Bus State Controller). The BSC controls
all of the SDRAM control signals, and also handles the refresh and precharge operations.

The SDRAM must be set prior to being accessed immediately after the power is applied. The SH4
generates all configuration cycles through software. The configuration cycles are generated by writing to
the SH4 registers.

Only the SH4 can be the master for an SDRAM access; an access from the HOLLY chip to SDRAM can
only be performed by using the SH4 DMA cycle. In addition, it is possible for one external device to
become the logical bus master through the SH4's DDT interface.

The On Demand Data Transfer Mode (DDT) protocol can be used for channel 0. An external device can
program the SH4's DMAC channel 0 through DDT. This approach can be used by HOLLY to efficiently
access the main memory SDRAM.

§2.3.2 System Memory Initial Settings
The initial settings for system memory are identified below.

 Use burst length = 4, wrap type = sequential, CAS latency = 3

 RAS down mode.

 Self-refresh mode may not be used.

 Set the SDRAM refresh interval to 15040nsec.

- 34 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The register settings are shown below.

MCR (individual memory control): 0xFF800014 ← 0xC0121214 /Dev.Box memory 32M
← 0xC0091224 /Dev.Box/MP
(mass production version) memory 16M

bit31 30 29-27 26-24 23 22 21-19 18 17-16 15-13 12-10 9 8-7 6 5-3 2 1 0
1 * 000 - 0 - TPC - RCD 000 100 1 00 0 AMX 1 0 0

bit31 - RASD ←‘1’ RAS down mode
bit30 - MRSET ←Don’t SDMR write: "0", all bank precharge; "1", mode register

 care setting
bit29:27 - TRC[2:0] ←‘000’ RAS precharge = 0 after refresh
bit23 - TCAS ←‘0’ CAS negate = 1
bit21:19 - TPC[2:0] ←‘010’ PRE-RAS = 3 -- Dev.Box memory 32M --

 ‘001’ PRE-RAS = 2 -- Dev.Box/MP memory 16M --
bit17:16 - RCD[1:0] ←‘10’ PRE-CAS = 3 -- Dev.Box memory 32M --

 ‘01’ PRE-CAS = 2 -- Dev.Box/MP memory 16M --
bit15:13 - TRWL[2:0] ←‘000’ Write precharge = 1
bit12:10 - TRAS[2:0] ←‘100’ After refresh, command interval = 8 + TRC
bit9 - BE ←‘1’ DRAM burst ("1" due to RAS down)
bit8:7 - SZ[1:0] ←‘00’ SDRAM 64bit
bit6 - AMXEXT ←‘0’ Bank address normal
bit5:3 - AMX[2:0] ←‘010’ 64Mbit, 16-bit bus, 2 banks × 4 -- Dev.Box memory 32M --

 ‘100’ 64Mbit, 32-bit bus, 4 banks × 2 -- Dev.Box/MP memory 16M --
bit2 - RFSH ←‘1’ Perform refresh
bit1 - RMODE ←‘0’ CAS-before-RAS refresh (self-refresh may not be used)
bit0 - EDOMODE ←‘0’ "0" due to SDRAM

SDMR (SDRAM mode): 0xFF940190 ← 0Xff (MCR-MRSET must also be set at the same time)

bit15-10 9-7 6 5-3 2-0
(000000) 011 0 010 (000)

*This register is specified by a byte write to write address [0xFF940000 + X]. Either specify the "0"
for the other bits in the setting X, or the contents of the data in the byte write do not matter.

bit9:7 - LTMODE ←‘011’ CAS latency = 3
bit6 - WT ←‘0’ Wrap type = Sequential
bit5:3 - BL ←‘010’ Burst Length=4

RTCSR (refresh timer control/status): 0xFF80001C←0xA510 /Initial value: 0x0000

bit15-8 7 6 5-3 2 1 0
(1010 0101) * 0 010 * * *

bit7 - CMF ←Don’t care Compare match flag
bit6 - CMIE ←‘0’ Compare match interrupt disabled
bit5:3 - CKS[2:0] ←‘010’ Clock = CKIO/16 = 160nsec
bit2 - OVF ←Don’t care Refresh count overflow flag
bit1 - OVIE ←Don’t care Refresh count overflow interrupt
bit0 - LMTS ←Don’t care Refresh count overflow limit

RTCNT (Refresh timer counter): 0xFF800020← 0xA500 /Initial value 0x0000

bit15-8 7 6 5 4 3 2 1 0
(1010 0101) 0 0 0 0 0 0 0 0

- 35 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

RTCOR (Refresh time constant): 0xFF800024 ← 0xA55E /Initial value 0x0000

bit15-8 7 6 5 4 3 2 1 0
(1010 0101) 0 1 0 1 1 1 1 0

(bits 15:8Specify 0xA5.)
bit7:0 Specify 0x5E. (0x5E = 94...10nsec * 16 * 94 = 15040nsec)

RFCR (refresh count): 0xFF800028 ← Don't care /Initial value: 0x0000

bit15-9 8 7 6 5 4 3 2 1 0
(1010 010) * * * * * * * * *

（bit15:9 Specify 1010010.）

§2.3.3 Access Procedure
In order to use the system memory (SDRAM), it is necessary to set the mode first immediately after

power on; after setting the BSC-related registers, write the SDRAM mode register. (Refer to SDMR.)

- 36 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.4 Register Map
The register map for the System Bus block is shown below. Shaded items are software debugging registers.

Address Name R/W Description
0x005F 6800 SB_C2DSTAT RW ch2-DMA destination address
0x005F 6804 SB_C2DLEN RW ch2-DMA length
0x005F 6808 SB_C2DST RW ch2-DMA start

0x005F 6810 SB_SDSTAW RW Sort-DMA start link table address
0x005F 6814 SB_SDBAAW RW Sort-DMA link base address
0x005F 6818 SB_SDWLT RW Sort-DMA link address bit width
0x005F 681C SB_SDLAS RW Sort-DMA link address shift control
0x005F 6820 SB_SDST RW Sort-DMA start

0x005F 6840 SB_DBREQM RW DBREQ# signal mask control
0x005F 6844 SB_BAVLWC RW BAVL# signal wait count
0x005F 6848 SB_C2DPRYC RW DMA (TA/Root Bus) priority count
0x005F 684C SB_C2DMAXL RW ch2-DMA maximum burst length

0x005F 6880 SB_TFREM R TA FIFO remaining amount
0x005F 6884 SB_LMMODE0 RW Via TA texture memory bus select 0
0x005F 6888 SB_LMMODE1 RW Via TA texture memory bus select 1
0x005F 688C SB_FFST R FIFO status
0x005F 6890 SB_SFRES W System reset

0x005F 689C SB_SBREV R System bus revision number
0x005F 68A0 SB_RBSPLT RW SH4 Root Bus split enable

0x005F 6900 SB_ISTNRM RW Normal interrupt status
0x005F 6904 SB_ISTEXT R External interrupt status
0x005F 6908 SB_ISTERR RW Error interrupt status

0x005F 6910 SB_IML2NRM RW Level 2 normal interrupt mask
0x005F 6914 SB_IML2EXT RW Level 2 external interrupt mask
0x005F 6918 SB_IML2ERR RW Level 2 error interrupt mask

0x005F 6920 SB_IML4NRM RW Level 4 normal interrupt mask
0x005F 6924 SB_IML4EXT RW Level 4 external interrupt mask
0x005F 6928 SB_IML4ERR RW Level 4 error interrupt mask

0x005F 6930 SB_IML6NRM RW Level 6 normal interrupt mask
0x005F 6934 SB_IML6EXT RW Level 6 external interrupt mask
0x005F 6938 SB_IML6ERR RW Level 6 error interrupt mask

0x005F 6940 SB_PDTNRM RW Normal interrupt PVR-DMA startup mask
0x005F 6944 SB_PDTEXT RW External interrupt PVR-DMA startup mask

0x005F 6950 SB_G2DTNRM RW Normal interrupt G2-DMA startup mask
0x005F 6954 SB_G2DTEXT RW External interrupt G2-DMA startup mask

<Note> RW: Read/write; R: Read only; W: Write only
Address Name R/W Description

0x005F 6C04 SB_MDSTAR RW Maple-DMA command table address

0x005F 6C10 SB_MDTSEL RW Maple-DMA trigger select
0x005F 6C14 SB_MDEN RW Maple-DMA enable

- 37 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0x005F 6C18 SB_MDST RW Maple-DMA start

0x005F 6C80 SB_MSYS RW Maple system control
0x005F 6C84 SB_MST R Maple status
0x005F 6C88 SB_MSHTCL W Maple-DMA hard trigger clear
0x005F 6C8C SB_MDAPRO W Maple-DMA address range

0x005F 6CE8 SB_MMSEL RW Maple MSB selection

0x005F 6CF4 SB_MTXDAD R Maple Txd address counter
0x005F 6CF8 SB_MRXDAD R Maple Rxd address counter
0x005F 6CFC SB_MRXDBD R Maple Rxd base address

0x005F 7404 SB_GDSTAR RW GD-DMA start address
0x005F 7408 SB_GDLEN RW GD-DMA length
0x005F 740C SB_GDDIR RW GD-DMA direction

0x005F 7414 SB_GDEN RW GD-DMA enable
0x005F 7418 SB_GDST RW GD-DMA start

0x005F 7480 SB_G1RRC W System ROM read access timing
0x005F 7484 SB_G1RWC W System ROM write access timing
0x005F 7488 SB_G1FRC W Flash ROM read access timing
0x005F 748C SB_G1FWC W Flash ROM write access timing
0x005F 7490 SB_G1CRC W GD PIO read access timing
0x005F 7494 SB_G1CWC W GD PIO write access timing

0x005F 74A0 SB_G1GDRC W GD-DMA read access timing
0x005F 74A4 SB_G1GDWC W GD-DMA write access timing

0x005F 74B0 SB_G1SYSM R System mode
0x005F 74B4 SB_G1CRDYC W G1IORDY signal control
0x005F 74B8 SB_GDAPRO W GD-DMA address range

0x005F 74F4 SB_GDSTARD R GD-DMA address count (on Root Bus)
0x005F 74F8 SB_GDLEND R GD-DMA transfer counter

0x005F 7800 SB_ADSTAG RW AICA:G2-DMA G2 start address
0x005F 7804 SB_ADSTAR RW AICA:G2-DMA system memory start address
0x005F 7808 SB_ADLEN RW AICA:G2-DMA length
0x005F 780C SB_ADDIR RW AICA:G2-DMA direction
0x005F 7810 SB_ADTSEL RW AICA:G2-DMA trigger select
0x005F 7814 SB_ADEN RW AICA:G2-DMA enable

<Note> RW: Read/write; R: Read only; W: Write only

Address Name R/W Description
0x005F 7818 SB_ADST RW AICA:G2-DMA start
0x005F 781C SB_ADSUSP RW AICA:G2-DMA suspend

0x005F 7820 SB_E1STAG RW Ext1:G2-DMA G2 start address
0x005F 7824 SB_E1STAR RW Ext1:G2-DMA system memory start address
0x005F 7828 SB_E1LEN RW Ext1:G2-DMA length
0x005F 782C SB_E1DIR RW Ext1:G2-DMA direction
0x005F 7830 SB_E1TSEL RW Ext1:G2-DMA trigger select
0x005F 7834 SB_E1EN RW Ext1:G2-DMA enable

- 38 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0x005F 7838 SB_E1ST RW Ext1:G2-DMA start
0x005F 783C SB_E1SUSP RW Ext1: G2-DMA suspend

0x005F 7840 SB_E2STAG RW Ext2:G2-DMA G2 start address
0x005F 7844 SB_E2STAR RW Ext2:G2-DMA system memory start address
0x005F 7848 SB_E2LEN RW Ext2:G2-DMA length
0x005F 784C SB_E2DIR RW Ext2:G2-DMA direction
0x005F 7850 SB_E2TSEL RW Ext2:G2-DMA trigger select
0x005F 7854 SB_E2EN RW Ext2:G2-DMA enable
0x005F 7858 SB_E2ST RW Ext2:G2-DMA start
0x005F 785C SB_E2SUSP RW Ext2: G2-DMA suspend

0x005F 7860 SB_DDSTAG RW Dev:G2-DMA G2 start address
0x005F 7864 SB_DDSTAR RW Dev:G2-DMA system memory start address
0x005F 7868 SB_DDLEN RW Dev:G2-DMA length
0x005F 786C SB_DDDIR RW Dev:G2-DMA direction
0x005F 7870 SB_DDTSEL RW Dev:G2-DMA trigger select
0x005F 7874 SB_DDEN RW Dev:G2-DMA enable
0x005F 7878 SB_DDST RW Dev:G2-DMA start
0x005F 787C SB_DDSUSP RW Dev: G2-DMA suspend

0x005F 7880 SB_G2ID R G2 bus version

0x005F 7890 SB_G2DSTO RW G2/DS timeout
0x005F 7894 SB_G2TRTO RW G2/TR timeout
0x005F 7898 SB_G2MDMTO RW Modem unit wait timeout
0x005F 789C SB_G2MDMW RW Modem unit wait time

0x005F 78BC SB_G2APRO W G2-DMA address range

0x005F 78C0 SB_ADSTAGD R AICA-DMA address counter (on AICA)
0x005F 78C4 SB_ADSTARD R AICA-DMA address counter (on root bus)
0x005F 78C8 SB_ADLEND R AICA-DMA transfer counter

0x005F 78D0 SB_E1STAGD R Ext-DMA1 address counter (on Ext)
0x005F 78D4 SB_E1STARD R Ext-DMA1 address counter (on root bus)
0x005F 78D8 SB_E1LEND R Ext-DMA1 transfer counter

<Note> RW: Read/write; R: Read only; W: Write only

Address Name R/W Description
0x005F 78E0 SB_E2STAGD R Ext-DMA2 address counter (on Ext)
0x005F 78E4 SB_E2STARD R Ext-DMA2 address counter (on root bus)
0x005F 78E8 SB_E2LEND R Ext-DMA2 transfer counter

0x005F 78F0 SB_DDSTAGD R Dev-DMA address counter (on Ext)
0x005F 78F4 SB_DDSTARD R Dev-DMA address counter (on root bus)
0x005F 78F8 SB_DDLEND R Dev-DMA transfer counter

0x005F 7C00 SB_PDSTAP RW PVR-DMA PVR start address
0x005F 7C04 SB_PDSTAR RW PVR-DMA system memory start address
0x005F 7C08 SB_PDLEN RW PVR-DMA length
0x005F 7C0C SB_PDDIR RW PVR-DMA direction
0x005F 7C10 SB_PDTSEL RW PVR-DMA trigger select
0x005F 7C14 SB_PDEN RW PVR-DMA enable
0x005F 7C18 SB_PDST RW PVR-DMA start

- 39 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0x005F 7C80 SB_PDAPRO W PVR-DMA address range

0x005F 7CF0 SB_PDSTAPD R PVR-DMA address counter (on Ext)
0x005F 7CF4 SB_PDSTARD R PVR-DMA address counter (on root bus)
0x005F 7CF8 SB_PDLEND R PVR-DMA transfer counter

<Note> RW: Read/write; R: Read only; W: Write only

Table 2-9

- 40 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.5 Single Access to Each Block
The devices that can be accessed from SH4 are shown in the memory map in section 2.1, "System

Mapping." The areas that can be read/written, and the accessible sizes are also the same.

- 41 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6 DMA Transfers

§2.6.1 Overview of DMA Transfers
There are two basic types of DMA in this system. There is write-only DMA, which can transfer texture

data or display lists (polygon parameters) quickly from system memory to texture memory via the TA Bus
of the HOLY internal block bus, and DMA for transfers via the Root Bus.

In addition, there are two types of DMA that use the TA Bus: ch2-DMA and Sort-DMA. ch2-DMA is
used to transfer texture data and display lists. Sort-DMA is used to presort display lists in the CPU and
then transfer the data in accordance with that list.

There are six types of DMA that use the Root Bus: PVR-DMA, GD-DMA, AICA-DMA, Ext-DMA1,
Ext-DMA2, and Maple-DMA. 32 bytes can be transferred in one DMA transfer operation.

The use of each type of DMA is described below.
PVR-DMA is used to overwrite palette RAM, etc., in the CORE from system memory. GD-DMA is

used to transfer data from the GD-ROM to system memory or to wave memory (AICA Memory). AICA-
DMA (wave DMA) is used to transfer wave data from system memory to wave memory. Ext-DMA1 and 2
are DMA for devices connected to the G2 Bus. (At present, there is no particular use for these types of
DMA.) Maple-DMA is used to read commands from system memory, and to write data from a control pad,
etc., into system memory.

In addition, even if TA Bus DMA and all six types of Root Bus DMA have been initiated, the CPU can
still freely access those areas which it is normally permitted to access. However, because all DMAs steal
cycles, it is always necessary to check the DMA end interrupt.
A DMA transfer can end either normally or abnormally; the status is reflected in the interrupt register.

 PVRIF

 TA FIFO

Memory/Reg IF

G1IF

G2IF

 MPLIF

DDTIF

 S H4IF

SH4

System Memory

TA Bus

100MHz 64bit

G2 Bus

25MHz 16bit

G1 Bus

A-Sync 16bit

A-Sync 8bit

100MHz
32bit

GD,Boot ROM

AICA,Modem

External Device

Texture Memory

Video out

HOLLY

SEGA Block VL Block
（TA+CORE）

IN TC

CPU Bus

100MHz
64bit

Root Bus
50MHz 32bit

RLIF （Root bus/Local bus interface） & FIFO

Peripheral Hab

Fig. 2-1

- 42 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.2 Types of DMA
The DMA types are shown in the table below.

No. Name of DMA Use
1 GD Data DMA1 Downloads programs and data from GD-ROM to system memory.
2 GD Data DMA2 Transfers waveform data from GD-ROM to wave memory.
3 Texture DMA Large, high-speed texture transfer to texture memory. Direct texture

transfer from system memory → TA → texture memory.
4 Display list DMA List transfer of one million polygons from system memory
5 Wave Data DMA Transfers data from system memory to wave memory.
6 ARM Data DMA Transfers programs and data from system memory to ARM (sound

processor).
7 Peripheral DMA1 Reads the status (pressed or not) of the game pad buttons, etc., into

system memory.
8 Peripheral DMA2 Reads the status (pressed or not) of the game pad buttons, etc., into

system memory.
9 Color Palette DMA Block transfers the color palette from system memory.
10 External Area DMA1 Transfers data from an external area, such as a development

(debugging) tool, to system memory.
11 External Area DMA2 Transfers data from system memory to an external area, such as a

development (debugging) tool.

Table 2-10

* All of the types of DMA listed in the table above are explained in detail in the sections that follow.

- 43 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.3 GD-ROM Data Transfers
This section explains the register settings and GD-ROM drive settings that are needed in order to use a

DMA transfer to transfer data from the GD-ROM to an area in system memory, texture memory, or wave
memory.

(1)　SB_GDAPRO (0x005F74B8) register setting
If the transfer destination is system memory, set System Memory Protection. The upper 16 bits
contain the Protection Code "0x8843." 7 bits (bits 14 - 8) out of the lower 16 bits indicate the start
address for which transfer is enabled, while another 7 bits (bits 6 - 0) indicate the end address for
which transfer is enabled. Each of these groups of 7 bits corresponds to the address bits A26 - A20.

To enable transfer to 0x0C000000 through 0x0FFFFFFF, write 0x8843407F to the register.
To enable transfer to 0x0FF00000 through 0x0FFFFFFF, write 0x88437F7F to the register.
To enable transfer to 0x0D400000 through 0x0D7FFFFF, write 0x88435457 to the register.

(2)　SB_G1GDRC (0x005F74A0) register setting
Set the access wait value when reading by a DMA.
Write 0x00001001, which is equivalent to "Multi Word-DMA Mode 2."

(3)　SB_GDSTAR (0x005F7404) setting
Set the transfer start address for the transfer destination (the SH4 address).

(4) SB_GDLEN (0x005F7408) setting
Specify the number of bytes to be transferred, in units of "0x20".
If an excess results when the amount of data that is to be sent is specified in units of 0x20 bytes, the
data that is to be sent is padded with zeroes.

(5) SB_GDDIR (0x005F740C)
Specify the transfer direction. Write a "1" (GD-ROM → system memory, etc.)

(6) SB_GDEN (0x005F7414)
Specify "1" for DMA enable.

(7) GD-ROM drive (0x005F7000 - 0x005F70FF) settings
Set the register for the GD-ROM drive.
For details on the settings, refer to the GD-ROM protocol specifications.

(8) SB_GDST (0x005F7418) settings
DMA starts when the SB_GDEN register is set to "1" and then a "1" is written to this register
(SB_GDST).
This register also functions as the DMA status register. (0: DMA stopped; 1: DMA in progress)

- 44 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Example: DMA transfer of 32,768 bytes (16 sectors) from GD-ROM to 0x0C000000 in system memory

Star t

 0x005F74B8 [SB_GDAPRO] <- 0x8843507F
 0x005F74A0 [SB_G1CDRC] <- 0x00001001
 0x005F7404 [SB_GDSTAR] <- 0x0D000000
 0x005F7408 [SB_GDLEN] <- 0x00008000
 0x005F740C [SB_GDDIR] <- 0x00000001

 0x005F7418 [SB_GDST] <- 0x00000001
 DMA start

 GD-ROM inter r upt generat ion

Er ror
 Normal end

 0x005F7414 [SB_GDEN] <- 0x00000001
 0x005F7000-0x005F70FF GD-ROM drive settings

 0x005F7414 [SB_GDEN] <- 0x00000000
 DMA halt

 0x005F7418[SB_GDST]=0?
 DMA stop check

 Stop

Not stopped

DMA end inter rupt
generated

Inter r upt
generat ion

 G1DMA inter r upt
generat ion

 Over r un in ter r upt genera ted

 Illegal Address inter rupt generated

Nor mal end Abnor mal end

 GD-ROMG1DMA

Resend

Fig. 2-2

- 45 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Interrupts from the GD-ROM are allocated to bit 0 of the SB_ISTEXT (0x005F6904) register. An
interrupt is generated if an error of some sort occurred in the GD-ROM drive, or if the transfer ended
normally. The status is determined by the Status register in the GD-ROM drive.

Regarding the end of DMA: if DMA ends normally, bit 14 of the SB_ISTNRM (0x005F6900) register is
set to "1" and, if the interrupt mask is not in effect, an interrupt is generated.

In addition, the SB_GDST register indicates the DMA status; when DMA ends, the value of this register
returns to "0." In this case, the value in the SB_GDEN register remains "1."

Regarding DMA errors: if the DMA address for the transfer destination moves beyond the allowable
memory range during a DMA operation, an overrun interrupt is generated and that DMA operation is
forcibly terminated. In this case, bit 13 of the SB_ISTERR (0x005F6908) register is set to "1."
Furthermore, if the transfer destination address was incorrectly set outside of the allowable memory range,
an illegal address interrupt is generated and bit 12 of the SB_ISTERR register is set to "1." These
interrupts are generated both when the incorrect DMA address is set, and when an attempt is made to
initiate DMA with such an incorrect DMA address.

Note that when these errors are generated, the SB_GDEN register is set to "0."

Cautions during DMA operations: If the SB_GDAPRO, SB_G1GDRC, SB_GDSTAR, SB_GDLEN, or
SB_GDDIR register is overwritten while a DMA operation is in progress, the new setting has no effect on
the current DMA operation. Once the current DMA is terminated and the next DMA is initiated
(SB_GDEN = 1 and SB_GDST = 1), the values in these five registers are retrieved. A DMA operation that
is currently in progress can be forcibly terminated by writing a "0" in the SB_GDEN register. If an access
is in progress when this happens, the value in the SB_GDST register returns to "0" as soon as the access
terminates.

Note that system ROM and flash memory cannot be accessed while a DMA operation is in progress. If a
write access is attempted, it is invalid, and if a read access is attempted, the value "0x00" is returned. In
this case, bit 14 of the SB_ISTERR (0x005F6908) register is set to "1." This error has no effect on DMA
operations, but it is essential to realize that the access to system ROM or flash memory that was performed
is invalid.

- 46 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.4 Texture Data Transfers
There are two types of texture data transfers: direct texture transfers and YUV texture transfers.

§2.6.4.1 Direct Texture Transfers
ch2-DMA* (explained at the end of this section) is used to conduct DMA transfers of direct textures.

The setup procedure is described below.

(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC-CHCR2 register, and confirm that both the TE bit and the DE bit are both
set to "0." If either bit is set to "1," set that bit to "0."

(3) Set the transfer source address in the SH4-DMAC-SAR2 register.

(4) Set the size of the transfer (the number of bytes to be transferred/32) in the SH4-DMAC-
DMATCR2 register.

(5) Make the operation settings in the SH4-DMAC-CHCR2 register. When doing so, set the DE bit
to "1."

(6) Read the SH4-DMAC-DMAOR register and confirm that the DDT bit is set to "1," the AE bit is
set to "0," the NMIF bit is set to "0," and the DME bit is set to "1." DMA cannot be initiated if
the AE, NMIF, and DME bits do not all meet this condition. Furthermore, if the DDT bit is "0,"
the DMA operation will be performed incorrectly.

(7) If the address that is set in the SB_C2DSTAT register is within the range from 0x11000000 to
0x11FFFFE0, set 0x00000000 in the SB_LMMODE0 register.

(8) If the address that is set in the SB_C2DSTAT register is within the range from 0x13000000 to
0x13FFFFE0, set 0x00000000 in the SB_LMMODE1 register.

(9) Set the transfer destination address in the SB_C2DSTAT register.

(10) Set the transfer size (the number of bytes) in the SB_C2DLEN register.

(11) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

The following prohibitions apply during a direct texture DMA transfer:

• Because a direct texture DMA transfer is performed using ch2-DMA, other DMA operations that
use ch2-DMA cannot be performed at the same time.

• Never write to any of the registers that are used in a direct texture DMA transfer. The only
exception is writing 0x00000000 to the SB_C2DST register in order to interrupt the DMA transfer.

• The CPU must not perform a burst write to addresses 0x10000000 to 0x13FFFFE0. Doing so
could result in the loss of some data in the DMA transfer.

The status of each register when a direct texture DMA transfer ends normally is described below:

• The SH4_DMAC_SAR2 register points to the address that follows the location at which the
transfer ended.

• The value in the SH4_DMAC_DMATCR2 register is 0x00000000.
• The TE bit of the SH4_DMAC_CHCR2 register is "1."
• The SB_C2DSTAT register points to the address that follows the location at which the transfer

ended.
• The value in the SB_C2DLEN register is 0x00000000.
• The value in the SB_C2DST register is 0x00000000.
• The DMA end interrupt flag (SB_ISTNRM - bit 19: DTDE2INT) is set to "1."

- 47 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

An example of how to use direct texture DMA transfer is provided below.

Transferring texture data (0x00004000 bytes) from system memory to texture memory
System memory addresses: 0C600000 to 0x0C603FFF
TA addresses: 0x11400000 to 0x11403FFF
Texture memory addresses: x00400000 to 0x00403FFF

(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC_CHCR2 register, and confirm that both the TE bit and the DE bit are
both set to "0." If either bit is set to "1," set that bit to "0."

(3) Set 0x0C600000 in the SH4-DMAC_SAR2 register.

(4) Set 0x00000200 in the SH4-DMAC_DMATCR2 register.

(5) Set 0x000012C1 in the SH4-DMAC_CHCR2 register.

(6) Read the SH4-DMAC_DMAOR register and confirm that the DDT bit is set to "1," the AE bit is
set to "0," the NMIF bit is set to "0," and the DME bit is set to "1."

(7) Because the address that is set in the SB_C2DSTAT register is within the range from
0x11000000 to 0x11FFFFE0, set 0x00000000 in the SB_LMMODE0 register.

(8) Because the address that is set in the SB_C2DSTAT register is not within the range from
0x13000000 to 0x13FFFFE0, do not set the SB_LMMODE1 register.

(9) Set 0x11400000 in the SB_C2DSTAT register.

(10) Set 0x00004000 in the SB_C2DLEN register.

(11) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

- 48 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

-- (Supplement) About ch2-DMA --

ch2-DMA permits fast data transfer from system memory to texture memory. ch2-DMA cannot be
used in the reverse direction, for transfers from texture memory to system memory.

Local
Memory

Work
Memory

TASH4
64bit

32bit

32bit

Bus A

Bus B

Fig. 2-3 ch2-DMA Transfer Path

There are three possible types of ch2-DMA transfers: transfer to the TA Converter, transfer to the
YUV Converter, and direct transfer to texture memory. The transfer to the TA Converter uses the TA
function, so this type is used to transfer polygon parameters. The transfer to the YUV Converter is used
to transfer YUV texture data. Direct transfer to texture memory is used for direct texture data transfers
because it transfers the contents of system memory to texture memory without converting the data. In
addition, the bus width for transfers to texture memory can be selected as either 64 bits or 32 bits.

Which of these types of transfers is to be used is determined by the address that is set in the
SB_C2DSTAT register.

The following is a list of the HOLLY registers that are used for ch2-DMA. (For details, refer to
section 8.4.1, "System Bus Register.")

SB_C2DSTAT (0x005F6800)

SB_C2DLEN (0x005F6804)

SB_C2DST (0x005F6808)

SB_LMMODE0 (0x005F6884)

SB_LMMODE1 (0x005F6888)

- 49 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Local
Memory

Work
Memory

TASH4

32bit

32bit

64bit

Bus A

Bus B

Fig. 2-4　LMMODE0/1 = 0 (Bus A & B)

Local
Memory

Work
Memory

TASH4

32bit

32bit

64bit

Bus A

Bus B

Fig.2-5　LMMODE0/1 = 1 (Bus A)

Local
Memory

Work
Memory

TASH4

32bit

32bit

64bit

Bus A

Bus B

Fig. 2-6　LMMODE0/1 = 0 (Bus B)

- 50 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0x00000000
0x00000008
0x00000010
0x00000018
0x00000020
0x00000028

.

.

.
0x007ffff8

0x00000004
0x0000000c
0x00000014
0x0000001c
0x00000024
0x0000002c

.

.

.
0x007ffffc

0x00800000
0x00800008
0x00800010
0x00800018
0x00800020
0x00800028

.

.

.
0x00fffff8

0x00800004
0x0080000c
0x00800014
0x0080001c
0x00800024
0x0080002c

.

.

.
0x00fffffc

Bus A Bus B

0x00000000
0x00000004
0x00000008
0x0000000c
0x00000010
0x00000014

.

.

.
0x003ffffc

0x00400000
0x00400004
0x00400008
0x0040000c
0x00400010
0x00400014

.

.

.
0x007ffffc

Bus A Bus B

0x00800000
0x00800004
0x00800008
0x0080000c
0x00800010
0x00800014

.

.

.
0x00bffffc

0x00c00000
0x00c00004
0x00c00008
0x00c0000c
0x00c00010
0x00c00014

.

.

.
0x00fffffc

When LMMODE0/1 = 0 When LMMODE0/1 = 1

Local Memory
(Normal 8MBytes)

Local Memory
(Extend 8MBytes)

64bit access 32bit access 32bit access

Fig. 2-7　Texture Memory Address

- 51 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Similarly, the following section describes the SH4(-DMAC) registers that are used for ch2-DMA.
(For details, refer to the item on DMAC in the SH4 manual.)

SAR2 (ch2-DMA Source Address: P4 addr.-0xFFA00020、area7 addr.-0x1FA00020)
This specifies the ch2-DMA transfer destination address. The address that is set must lie at a 32-
byte boundary.
Setting values: 0x0C000000 to 0x0FFFFFE0 (system memory area)

DMATCR2 (ch2-DMA Transfer Count: P4 addr.-0xFFA00028、area7 addr.-0x1FA00028)
This specifies the size of the ch2-DMA transfer, in units of 32 bytes.
The transfer size that is set must match the transfer size that is set in the SB_C2DLEN register.
Although the transfer size is specified in bytes in the SB_C2DLEN register, here the transfer size
is specified in units of 32 bytes (number of bytes/32). Values outside of the ranges shown below
for the settings must not be set.
Setting values: 0x00000001: 32Bytes

0x00000002: 64Bytes
0x00000003: 96Bytes
～
0x0007FFFF: (16M-32)Bytes
0x00080000: 16Mbytes

- 52 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

CHCR2 (ch2-DMA channel Control: P4 addr.-0xFFA0002C、area7 addr.-0x1FA0002C)
This is the ch2-DMA control register. (For details, refer to the SH4 manual.)
Never set a value other than those indicated in the table below.

Set Value Source Addr. Mode Transmit Mode Interrupt Enable DMA Enable
0x000012C1 Increment Burst Disable Enable
0x000012C0 Increment Burst Disable Disable
0x000012C5 Increment Burst Enable Enable
0x000012C4 Increment Burst Enable Disable
0x00001241 Increment Cycle steal Disable Enable
0x00001240 Increment Cycle steal Disable Disable
0x00001245 Increment Cycle steal Enable Enable
0x00001244 Increment Cycle steal Enable Disable
0x000022C1 Decrement Burst Disable Enable
0x000022C0 Decrement Burst Disable Disable
0x000022C5 Decrement Burst Enable Enable
0x000022C4 Decrement Burst Enable Disable
0x00002241 Decrement Cycle steal Disable Enable
0x00002240 Decrement Cycle steal Disable Disable
0x00002245 Decrement Cycle steal Enable Enable
0x00002244 Decrement Cycle steal Enable Disable
0x000002C1 Fix Burst Disable Enable
0x000002C0 Fix Burst Disable Disable
0x000002C5 Fix Burst Enable Enable
0x000002C4 Fix Burst Enable Disable
0x00000241 Fix Cycle steal Disable Enable
0x00000240 Fix Cycle steal Disable Disable
0x00000245 Fix Cycle steal Enable Enable
0x00000244 Fix Cycle steal Enable Disable
0x00000000 --- --- --- Disable

Table 2-11

* The IE (Interrupt Enable) bit can also be generated from the HOLLY side; it does not matter which side
generates the bit.

DMAOR (DMA operation: P4 addr.-0xFFA00040、area7 addr.-0x1FA00040)
This register sets the DMA transfer mode. (For details on the contents of this register, refer to

the startup procedure or to the SH4 manual.)

- 53 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The method for confirming the end of ch2-DMA is described below.

1) Although an interrupt is used in order to confirm the end of ch2-DMA, in order to generate the
interrupt it is necessary to set bit 19 of either the SB_IML2NRM, SB_IML4NRM, or
SB_IML6NRM register (for details, refer to the interrupt manual) to "1" and release the ch2-DMA
end interrupt mask. The mask needs to be released before initiating ch2-DMA.

2) Once ch2-DMA terminates, 0x00000000 is automatically set in the SB_C2DST register, and at the
same time bit 19 of the SB_ISTNRM register (for details, refer to the interrupt manual) is set to "1."
If the mask has been cancelled as described in item 1 above, an interrupt is now generated.

3) Once the SH4 receives the interrupt, it determines the source of the interrupt by reading the
SB_ISTNRM, SB_ISTEXT, and SB_ISTERR registers. The SH4 is able to confirm that ch2-DMA
has ended by checking bit 19 of the SB_ISTNRM register.

4) As soon as it has confirmed that ch2-DMA has ended, the SH4 cancels the interrupt by writing a "1"
to bit 19 of the SB_ISTNRM register.

Note) A separate ch2-DMA end interrupt exists for the SH4-DMAC. when using the interrupt described
above, it is necessary to mask the interrupt for the SH4-DMAC by setting the IE bit in the SH4-
DMAC-CHCR2 register to "0." Conversely, when using the interrupt for the SH4-DMAC, it is
necessary to mask the interrupt described above by setting bit 19 in the SB_IML2NRM register,
the SB_IML4NRM register, and the SB_IML6NRM register all to "0."

The following procedure explains how to stop ch2-DMA:

1) Request a stop of ch2-DMA by writing 0x00000000 to the SB_C2DST register.

2) Note that after performing step 1, the value in the SB_C2DST register does not immediately become
0x00000000; instead, the value 0x00000001 is maintained in the register until ch2-DMA stops
completely. Therefore, it is necessary to poll the register repeatedly until its value becomes
0x00000000.

3) Once the register value becomes 0x00000000, ch2-DMA has stopped. At this point, the contents of
the SB_C2DSTAT, SB_C2DLEN, SH4-DMAC-SAR2, and SH4-DMAC-DMATCR registers
indicate the address from which the next data item was to be transferred and the amount of data
remaining to be transferred. If the value of the SB_C2DLEN and SH4-DMAC-DMATCR registers
is 0x000000, that indicates that the transfer has been completed; in this case, it is not permissible to
resume the ch2-DMA transfer.

Supplement 1) After stopping a ch2-DMA transfer, it is possible to change the register values and
then begin a new ch2-DMA transfer.

Supplement 2) When a ch2-DMA transfer is stopped, no ch2-DMA end interrupt is generated.

If a ch2-DMA transfer was stopped by the method described above, it can be resumed by writing
0x00000001 to the SB_C2DST register; this causes the transfer to resume from the position where it
was stopped. However, the values in the registers when the transfer is resumed must be identical to the
values that were in the registers when the transfer was stopped.

- 54 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.4.2 YUV Texture Transfer
ch2-DMA is used to conduct DMA transfers of YUV textures.
In order to conduct a DMA transfer of a YUV texture, two separate procedures are required. First, set

the TA registers, and then make the ch2-DMA settings. Each of these procedures is described below.

● Setting the TA registers
(1) Set the starting address (the relative address from the start of texture memory) where the YUV

texture is to be stored in the TA_YUV_TEX_BASE register.

(2) Make the YUV texture settings in the TA_YUV_TEX_CTRL register.

(3) Read the TA_YUV_TEX_CTRL register. (Because, from the viewpoint of the CPU, a write to a TA
register consists of writing the data to the buffer ahead of the register and then forgetting about it,
perform only one read and then wait until the write to the register is completed.)

● Setting up the ch2-DMA transfer
(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC-CHCR2 register, and confirm that both the TE bit and the DE bit are both set
to "0." If either bit is set to "1," set that bit to "0."

(3) Set the transfer source address in the SH4-DMAC-SAR2 register.

(4) Set the size of the transfer (the number of bytes to be transferred/32) in the SH4-DMAC-DMATCR2
register.

(5) Make the operation settings in the SH4-DMAC-CHCR2 register. When doing so, set the DE bit to
"1."

(6) Read the SH4-DMAC-DMAOR register and confirm that the DDT bit is set to "1," the AE bit is set
to "0," the NMIF bit is set to "0," and the DME bit is set to "1." DMA cannot be initiated if the AE,
NMIF, and DME bits do not all meet this condition. Furthermore, if the DDT bit is "0," the DMA
operation will be performed incorrectly.

(7) Set the address for the TA's YUV texture converter in the SB_C2DSTAT register.

(8) Set the transfer size (the number of bytes) in the SB_C2DLEN register.

(9) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

The following prohibitions apply during a YUV texture DMA transfer:

• Because a YUV texture DMA transfer is performed using ch2-DMA, other DMA operations that
use ch2-DMA cannot be performed at the same time.

• Never write to any of the registers that are used in a YUV texture DMA transfer. The only
exception is writing 0x00000000 to the SB_C2DST register in order to interrupt the DMA transfer.

• The CPU must not perform a burst write to addresses 0x10000000 to 0x13FFFFE0. Doing so
could result in the loss of some data in the DMA transfer.

- 55 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The status of each register when a YUV texture DMA transfer ends normally is described below:
• The SH4_DMAC_SAR2 register points to the address that follows the location at which the

transfer ended.
• The value in the SH4_DMAC_DMATCR2 register is 0x00000000.
• The TE bit of the SH4_DMAC_CHCR2 register is "1."
• The SB_C2DSTAT register retains the value that was set.
• The value in the SB_C2DLEN register is 0x00000000.
• The value in the SB_C2DST register is 0x00000000.
• The DMA end interrupt flag (SB_ISTNRM - bit 19: DTDE2INT) is set to "1."

An example of how to use YUV texture DMA transfer is provided below.

Transferring YUV420 texture data (8 * 8 macro blocks: 0x00006000 bytes) from system memory
to texture memory, converting the data to YUV422

System memory addresses (YUV420 texture): 0x0C200000 to 0x0C205FFF
TA address: 0x10800000
Texture memory addresses (YUV422 texture): 0x00600000 -

● Example for setting the TA registers

(1)　Set 0x00600000 in the TA_YUV_TEX_BASE register.

(2)　Set 0x00000707 in the TA_YUV_TEX_CTRL register.

(3)　Read the TA_YUV_TEX_CTRL register.

● Example for setting up the ch2-DMA transfer

(1)　Read the SB_C2DST register and confirm that the value is 0x00000000.

(2)　Read the SH4-DMAC-CHCR2 register, and confirm that both the TE bit and the DE bit are both set
to "0." If either bit is set to "1," set that bit to "0."

(3)　Set 0x0C200000 in the SH4-DMAC-SAR2 register.

(4)　Set 0x00000300 in the SH4-DMAC-DMATCR2 register.

(5)　Set 0x000012C1 in the SH4-DMAC-CHCR2 register.

(6)　Read the SH4-DMAC-DMAOR register and confirm that the DDT bit is set to "1," the AE bit is set
to "0," the NMIF bit is set to "0," and the DME bit is set to "1."

(7)　Set 0x10800000 in the SB_C2DSTAT register.

(8)　Set 0x00006000 in the SB_C2DLEN register.

(9)　Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

- 56 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.5 Display List Transfers
There are two methods for transferring display lists (polygon parameters): a method that uses ch2-DMA

and a method that uses Sort-DMA (ch0:DDT).

§2.6.5.1 Direct Display list DMA
ch2-DMA is used to conduct DMA transfers of direct display lists. The setup procedure is described

below.

(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC-CHCR2 register, and confirm that both the TE bit and the DE bit are both set to "0." If
either bit is set to "1," set that bit to "0."

(3) Set the transfer source address in the SH4-DMAC-SAR2 register.

(4) Set the size of the transfer (the number of bytes to be transferred/32) in the SH4-DMAC-DMATCR2 register.

(5) Make the operation settings in the SH4-DMAC-CHCR2 register. When doing so, set the DE bit to "1."

(6) Read the SH4-DMAC-DMAOR register and confirm that the DDT bit is set to "1," the AE bit is set to "0," the
NMIF bit is set to "0," and the DME bit is set to "1." DMA cannot be initiated if the AE, NMIF, and DME bits
do not all meet this condition. Furthermore, if the DDT bit is "0," the DMA operation will be performed
incorrectly.

(7) If the address that is set in the SB_C2DSTAT register is within the range from 0x11000000 to 0x11FFFFE0, set
0x00000001 in the SB_LMMODE0 register.

(8) If the address that is set in the SB_C2DSTAT register is within the range from 0x13000000 to 0x13FFFFE0, set
0x00000001 in the SB_LMMODE1 register.

(9) Set the transfer destination address in the SB_C2DSTAT register.

(10) Set the transfer size (the number of bytes) in the SB_C2DLEN register.

(11) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

The following prohibitions apply during a direct display list DMA transfer:
• Because a direct display list DMA transfer is performed using ch2-DMA, other DMA operations

that use ch2-DMA cannot be performed at the same time.
• Never write to any of the registers that are used in a direct display list DMA transfer. The only

exception is writing 0x00000000 to the SB_C2DST register in order to interrupt the DMA transfer.
• The CPU must not perform a burst write to addresses 0x10000000 to 0x13FFFFE0. Doing so

could result in the loss of some data in the DMA transfer.

The status of each register when a direct display list DMA transfer ends normally is described below:
• The SH4_DMAC_SAR2 register points to the address that follows the location at which the

transfer ended.
• The value in the SH4_DMAC_DMATCR2 register is 0x00000000.
• The TE bit of the SH4_DMAC_CHCR2 register is "1."
• The SB_C2DSTAT register points to the address that follows the location at which the transfer

ended.
• The value in the SB_C2DLEN register is 0x00000000.
• The value in the SB_C2DST register is 0x00000000.
• The DMA end interrupt flag (SB_ISTNRM - bit 19: DTDE2INT) is set to "1."

- 57 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

An example of how to use direct display list DMA transfer is provided below.

Transferring a direct display list (0x00002000 bytes) from system memory to texture memory
System memory addresses: 0x0C400000 to 0x0C401FFF
TA addresses: 0x11600000 to 0x11601FFF
Texture memory addresses: 0x00600000 to 0x00601FFF

(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC_CHCR2 register, and confirm that both the TE bit and the DE bit are both set to "0." If
either bit is set to "1," set that bit to "0."

(3) Set 0x0C400000 in the SH4-DMAC_SAR2 register.

(4) Set 0x00000100 in the SH4-DMAC_DMATCR2 register.

(5) Set 0x000012C1 in the SH4-DMAC_CHCR2 register.

(6) Read the SH4-DMAC_DMAOR register and confirm that the DDT bit is set to "1," the AE bit is set to "0," the
NMIF bit is set to "0," and the DME bit is set to "1."

(7) Because the address that is set in the SB_C2DSTAT register is within the range from 0x11000000 to
0x11FFFFE0, set 0x00000001 in the SB_LMMODE0 register.

(8) Because the address that is set in the SB_C2DSTAT register is not within the range from 0x13000000 to
0x13FFFFE0, do not set the SB_LMMODE1 register.

(9) Set 0x11600000 in the SB_C2DSTAT register.

(10) Set 0x00002000 in the SB_C2DLEN register.

(11) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

- 58 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.5.2 TA Input Display List Transfers
In order to perform a DMA transfer for a display list for input to the TA, it is necessary to first set the TA

registers and then to set up the ch2-DMA transfer. Each of these setup procedures is described below.

● Setting the TA registers

(1) Set the starting address (the relative address from the start of texture memory) for where the Object List is to be
stored in the TA_OL_BASE register.

(2) Set the starting address (the relative address from the start of texture memory) for where the ISP/TSP Parameters
are to be stored in the TA_ISP_BASE register.

(3) Set the limit address (the relative address from the start of texture memory) for where the Object List is to be
stored in the TA_OL_LIMIT register.

(4) Set the limit address (the relative address from the start of texture memory) for where the ISP/TSP Parameters
are to be stored in the TA_ISP_LIMIT register.

(5) Set the Global Tile Clip value in the TA_GLOB_TILE_CLIP register.

(6) Set the Object Pointer Block unit size in the TA_ALLOC_CTRL register.

(7) Write 0x80000000 in the TA_LIST_INIT register to initialize the TA's internal registers.

(8) Read the TA_LIST_INIT register. (Because, from the viewpoint of the CPU, a write to a TA register consists of
writing the data to the buffer ahead of the register and then forgetting about it, perform only one read and then
wait until the write to the register is completed.)

● Setting up the ch2-DMA transfer

(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC-CHCR2 register, and confirm that both the TE bit and the DE bit are both set to "0." If
either bit is set to "1," set that bit to "0."

(3) Set the transfer source address in the SH4-DMAC-SAR2 register.

(4) Set the size of the transfer (the number of bytes to be transferred/32) in the SH4-DMAC-DMATCR2 register.

(5) Make the operation settings in the SH4-DMAC-CHCR2 register. When doing so, set the DE bit to "1."

(6) Read the SH4-DMAC-DMAOR register and confirm that the DDT bit is set to "1," the AE bit is set to "0," the
NMIF bit is set to "0," and the DME bit is set to "1." DMA cannot be initiated if the AE, NMIF, and DME bits
do not all meet this condition. Furthermore, if the DDT bit is "0," the DMA operation will be performed
incorrectly.

(7) Set the address for the TA's display list input in the SB_C2DSTAT register.

(8) Set the transfer size (the number of bytes) in the SB_C2DLEN register.

(9) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

The following prohibitions apply during a TA input display list DMA transfer:
• Because a TA input display list DMA transfer is performed using ch2-DMA, other DMA

operations that use ch2-DMA cannot be performed at the same time.
• Never write to any of the registers that are used in a TA input display list DMA transfer. The only

exception is writing 0x00000000 to the SB_C2DST register in order to interrupt the DMA transfer.
• The CPU must not perform a burst write to addresses 0x10000000 to 0x13FFFFE0. Doing so

could result in the loss of some data in the DMA transfer.
The status of each register when a TA input display list DMA transfer ends normally is described

below:

• The SH4_DMAC_SAR2 register points to the address that follows the location at which the
transfer ended.

• The value in the SH4_DMAC_DMATCR2 register is 0x00000000.
• The TE bit of the SH4_DMAC_CHCR2 register is "1."

- 59 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

• The SB_C2DSTAT register retains the value that was set.
• The value in the SB_C2DLEN register is 0x00000000.
• The value in the SB_C2DST register is 0x00000000.
• The DMA end interrupt flag (ISTNRM - bit 19: DTDE2INT) is set to "1."

An example of how to use TA input display list DMA transfer is provided below.

Transferring a display list (0x00008000 bytes) from system memory to texture memory
System memory addresses: 0x0C400000 to 0x0C407FFF
TA address: 0x10000000
Texture memory addresses (Object List): 0x00100000～
Texture memory addresses (ISP/TSP Parameters): 0x00000000～

● Example for setting the TA registers

(1) Set 0x00100000 in the TA_OL_BASE register.

(2) Set 0x00000000 in the TA_ISP_BASE register.

(3) Set 0x00200000 in the TA_OL_LIMIT register.

(4) Set 0x00100000 in the TA_ISP_LIMIT register.

(5) Set 0x000E0013 in the TA_GLOB_TILE_CLIP register.

(6) Set 0x00000202 in the TA_ALLOC_CTRL register.

(7) Write 0x80000000 in the TA_LIST_INIT register to initialize the TA's internal registers.

(8) Read the TA_LIST_INIT register.

● Example for setting up the ch2-DMA transfer

(1) Read the SB_C2DST register and confirm that the value is 0x00000000.

(2) Read the SH4-DMAC-CHCR2 register, and confirm that both the TE bit and the DE bit are both set
to "0." If either bit is set to "1," set that bit to "0."

(3) Set 0x0C400000 in the SH4-DMAC-SAR2 register.

(4) Set 0x00000400 in the SH4-DMAC-DMATCR2 register.

(5) Set 0x000012C1 in the SH4-DMAC-CHCR2 register.

(6) Read the SH4-DMAC-DMAOR register and confirm that the DDT bit is set to "1," the AE bit is set
to "0," the NMIF bit is set to "0," and the DME bit is set to "1."

(7) Set 0x10000000 in the SB_C2DSTAT register.

(8) Set 0x00008000 in the SB_C2DLEN register.

(9) Write 0x00000001 in the SB_C2DST register to initiate the DMA operation.

- 60 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.5.3 Sort-DMA Transfer of α Polygon Parameters

DMA ch0 (DDT) is used to transfer α polygon parameters by means of a Sort-DMA transfer. In order to
perform an α polygon Sort-DMA transfer , it is necessary to first set the TA registers and then to set up the
Sort-DMA transfer. Each of these setup procedures is described below.

● Setting the TA registers

(1) Set the starting address (the relative address from the start of texture memory) for where the Object
List is to be stored in the TA_OL_BASE register.

(2) Set the starting address (the relative address from the start of texture memory) for where the
ISP/TSP Parameters are to be stored in the TA_ISP_BASE register.

(3) Set the limit address (the relative address from the start of texture memory) for where the Object
List is to be stored in the TA_OL_LIMIT register.

(4) Set the limit address (the relative address from the start of texture memory) for where the ISP/TSP
Parameters are to be stored in the TA_ISP_LIMIT register.

(5) Set the Global Tile Clip value in the TA_GLOB_TILE_CLIP register.

(6) Set the Object Pointer Block unit size in the TA_ALLOC_CTRL register.

(7) Write 0x80000000 in the TA_LIST_INIT register to initialize the TA's internal registers.

(8) Read the TA_LIST_INIT register. (Because, from the viewpoint of the CPU, a write to a TA
register consists of writing the data to the buffer ahead of the register and then forgetting about it,
perform only one read and then wait until the write to the register is completed.)

● Setting up the Sort-DMA transfer

(1) Read the SB_SDST register and confirm that the value is 0x00000000.

(2) Set the start address of the Start Link Address Table in the SB_SDSTAW register.

(3) Set the Link Base Address in the SB_SDBAAW register.

(4) Set the bit width of the Start Link Address in the SB_SDWLT register.

(5) Set the Link Address shift control in the SB_SDLAS register.

(6) Write 0x00000001 in the SB_SDST register to initiate the DMA operation.

The following prohibitions apply during an α polygon Sort-DMA transfer:
• Never write to any of the registers that are used in an α polygon Sort-DMA transfer. The only

exception is writing 0x00000000 to the SB_SDST register in order to interrupt the DMA transfer.
• The CPU must not perform a burst write to addresses 0x10000000 to 0x13FFFFE0. Doing so

could result in the loss of some data in the DMA transfer.

The status of each register when an α polygon Sort-DMA transfer ends normally is described below:

• The SB_SDSTAW register value is incremented.
• The value in the SB_SDST register is 0x00000000.
• The SB_SDDIV register the number of times that the Sort-DMA operation read the Start Link

Address.
• The DMA end interrupt flag (SB_ISTNRM - bit 20: DTDESINT) is set to "1."

- 61 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

An example of how to use α polygon Sort-DMA transfer is provided below.

Transferring a display list (α polygon) from system memory to texture memory by means of
Sort-DMA

Start Link Address Table address in system memory: 0x0C600000
Link Base Address in system memory: 0x0C604000
TA address (fixed): 0x10000000
Texture memory addresses (Object List): 0x00100000～
Texture memory addresses (ISP/TSP Parameters): 0x00000000～

● Example for setting the TA registers

(1) Set 0x00100000 in the TA_OL_BASE register.

(2) Set 0x00000000 in the TA_ISP_BASE register.

(3) Set 0x00200000 in the TA_OL_LIMIT register.

(4) Set 0x00100000 in the TA_ISP_LIMIT register.

(5) Set 0x000E0013 in the TA_GLOB_TILE_CLIP register.

(6) Set 0x00000202 in the TA_ALLOC_CTRL register.

(7) Write 0x80000000 in the TA_LIST_INIT register to initialize the TA's internal registers.

(8) Read the TA_LIST_INIT register.

● Example for setting up the Sort-DMA transfer

(1) Read the SB_SDST register and confirm that the value is 0x00000000.

(2) Set 0x0C600000 in the SB_SDSTAW register.

(3) Set 0x0C604000 in the SB_SDBAAW register.

(4) Set 0x00000001 in the SB_SDWLT register.

(5) Set 0x00000000 in the SB_SDLAS register.

(6) Write 0x00000001 in the SB_SDST register to initiate the DMA operation.

- 62 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

-- (Supplement) About Sort-DMA --

Sort-DMA permits the transfer of random data from system memory to texture memory by adding
link information to the polygon parameters.

Local
Memory

Work
Memory

TASH4
64bit

32bit

32bit

Bus A

Bus B

Fig. 2-8 Sort-DMA Transfer Path (Bus A)

Local
Memory

Work
Memory

TASH4
64bit

32bit

32bit

Bus A

Bus B

Fig. 2-9 Sort-DMA Transfer Path (Bus B)

Polygon parameters must be sorted in order to draw an α polygon. Normally, this is accomplished
either by using the Renderer's sorting function, or by having the CPU sort the parameters beforehand.
When drawing a large number of α polygons, it is probably more effective to have the CPU perform the
sorting rather than using an auto-sorting function. However, sorting a large amount of polygon data can
consume a large amount of CPU time. If the CPU generates link information in the α polygon
parameters, and then performs the transfer using the Sort-DMA function, it is possible to reduce the
load on both the CPU and on the Renderer.

The HOLLY registers that are used in Sort-DMA operations are listed below. (For details, refer to
section 8.4.1, "System Bus Register.")

Note that it is not possible to specify the texture memory address that is the transfer destination for
the data in the Sort-DMA registers. For details on specifying the texture memory address, refer to the
TA manual.

SB_SDSTAW (0x005F6810)
SB_SDBAAW (0x005F6814)
SB_SDWLT (0x005F6818)
SB_SDLAS (0x005F681C)
SB_SDST (0x005F6820)
SB_SDDIV (0x005F6860)

- 63 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

－　Start Link Address Table

The Start Link Address Table consists of several Start Link Addresses. A Start Link Address is
needed required for Sort-DMA for each Sort-DMA polygon parameter list in order to know the starting
position of the link.

・ The starting position of the Start Link Address Table is specified by the SB_SDSTAW register.

・ Because the address that is produced by adding the value that is in the SB_SDBAAW register to the
Start Link Address is used in Sort-DMA operations as the link destination address, it is the same as
writing the offset from SB_SDBAAW for the Next Link Address.

・ The bit width of the Start Link Address is selected through the SB_SDWLT register as either 16 bits
or 32 bits.

・ The value that is written for the Start Link Address is selected through the SB_SDLAS register as
either the original address or the address divided by 32.

・ If either 0x0001 (when SB_SDWLT = 0) or 0x00000001 (when SB_SDWLT = 1) is written in the
Start Link Address, the Sort-DMA operation recognizes this as the End Of List code, and begins to
read the next Start Link Address.

・ If either 0x0002 (when SB_SDWLT = 0) or 0x00000002 (when SB_SDWLT = 1) is written in the
Start Link Address, the Sort-DMA operation recognizes this as the End Of DMA code, and ends the
transfer.

Start Link Address #0

Start Link Address #1

Start Link Address #2

0x0000

0x0002

0x0004

Start Link Address #3

Start Link Address #4

Start Link Address #5

:

Start Link Address #n

0x0006

0x0008

0x000a

:

0x0002 * n

16bit

When the Start Link Address consist of
16bit

Start Link Address #0

Start Link Address #1

Start Link Address #2

0x0000

0x0004

0x0008

Start Link Address #3

Start Link Address #4

Start Link Address #5

:

Start Link Address #n

0x000c

0x0010

0x0014

:

0x0004 * n

32bit

address data address data

When the Start Link Address consist of
32bit

SDSTAW + SDSTAW +

Fig. 2-10 Start Link Address Table Format

- 64 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Start Link Address　: Specify the offset for the starting addresses where the polygon parameters
that are to be transferred at the beginning of each parameter list are stored.

Set Value (SB_SDWLT=0,SB_SDLAS=0)
0x0000 : Offset Address = 0x00000000
0x0080 : Offset Address = 0x00000080
0x00A0 : Offset Address = 0x000000A0
0x00C0 : Offset Address = 0x000000C0
～

0xFFC0 : Offset Address = 0x0000FFC0
0xFFE0 : Offset Address = 0x0000FFE0
0x0001 : End OF List
0x0002 : End OF DMA

Set Value (SB_SDWLT=0,SB_SDLAS=1)
0x0000 : Offset Address = 0x00000000
0x0004 : Offset Address = 0x00000080
0x0005 : Offset Address = 0x000000A0
0x0006 : Offset Address = 0x000000C0
～

0xFFFE : Offset Address = 0x001FFFC0
0xFFFF : Offset Address = 0x001FFFE0
0x0001 : End OF List
0x0002 : End OF DMA

Set Value (SB_SDWLT=1,SB_SDLAS=0)
0x00000000 : Offset Address = 0x00000000
0x00000080 : Offset Address = 0x00000080
0x000000A0 : Offset Address = 0x000000A0
0x000000C0 : Offset Address = 0x000000C0
～

0x07FFFFC0 : Offset Address = 0x07FFFFC0
0x07FFFFE0 : Offset Address = 0x07FFFFE0
0x00000001 : End OF List
0x00000002 : End OF DMA

Set Value (SB_SDWLT=1,SB_SDLAS=1)
0x00000000 : Offset Address = 0x00000000
0x00000004 : Offset Address = 0x00000080
0x00000005 : Offset Address = 0x000000A0
0x00000006 : Offset Address = 0x000000C0
～

0x003FFFFE : Offset Address = 0x07FFFFC0
0x003FFFFF : Offset Address = 0x07FFFFE0
0x00000001 : End OF List
0x00000002 : End OF DMA

・ Never specify any values other than those shown above.

－ Polygon Parameter

- 65 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

There are three types of polygon parameters: Control Parameters, Global Parameters, and Vertex
Parameters. In Sort-DMA, the link destination address is calculated on the basis of the link information
that is contained in the Global Parameters. Therefore, when sorting several polygons, the data must be
created by adding Global Parameters to each Vertex Parameter, divided up by polygons. The parameter
format for each polygon is illustrated below.

The seventh 32-bit word from the start of the Global Parameters is allocated for the current data size,
and the eighth 32-bit word from the start of the Global Parameters is allocated for the Next Link
Address. Write the size (in units of 32 bytes) of the polygon parameters that are currently being
transferred for the current data size, and indicate the address where the next polygon parameters that are
to be transferred are stored for the Next Link Address.

・ Because the address that is produced by adding the value that is in the SB_SDBAAW register to the
Next Link Address is used in Sort-DMA operations as the link destination address, it is the same as
writing the offset from SB_SDBAAW for the Next Link Address.

・ The value that is written for the Next Link Address is selected through the SB_SDLAS register as
either the original address or the address divided by 32.

・ If 0x00000001 is written in the Next Link Address, the Sort-DMA operation recognizes this as the
End Of List code, and begins to read the next Start Link Address from the Start Link Address Table
as the new link destination address.

・ If 0x00000002 is written in the Next Link Address, the Sort-DMA operation recognizes this as the
End Of DMA code, and ends the transfer.

Control Parameter 0 or 32 Bytes

Global Parameter

Vertex Parameter

Vertex Parameter

.
:

Control Parameter

32 or 64 Bytes

96～ (32*255) Bytes

0 or 32 Bytes

Current Data Size*32 Bytes

Fig. 2-11 Polygon Parameter Format

- 66 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Parameter Control Word

When the Global Parameters consist
of 32 bytes

ISP/TSP Instruction Word

TSP Instruction Word

Texture Control Word

-

-

Current Data Size

Next Link Address

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

address data

Parameter Control Word

When the Global Parameters consist
of 64 bytes

ISP/TSP Instruction Word

TSP Instruction Word

Texture Control Word

-

-

Current Data Size

Next Link Address

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

address data

Face Color Alpha

Face Color R

0x20

0x24

0x28

0x2c

0x30

0x34

0x38

0x3c

Face Color G

Face Color B

Face Offset Color Alpha

Face Offset Color R

Face Offset Color G

Face Offset Color B

Fig. 2-12 Global Parameter Format

- 67 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Current Data Size　　　: Specify the value that is the size of the polygon parameters (control + global
+ vertex) that are currently being transferred, divided by 32. No values other
than those listed below may be specified.

Set Value 0x00000004 : 128Bytes
0x00000005 : 160Bytes
0x00000006 : 192Bytes
～

0x000000FF : 8160Bytes
0x00000000 : 8192Bytes

Next Link Address　　　: Specify the offset value for the starting address where the polygon
parameters that are to be transferred next are stored.

Set Value (SB_SDLAS=0)
0x00000000 : Offset Address = 0x00000000
0x00000080 : Offset Address = 0x00000080
0x000000A0 : Offset Address = 0x000000A0
0x000000C0 : Offset Address = 0x000000C0
～

0x07FFFFC0 : Offset Address = 0x07FFFFC0
0x07FFFFE0 : Offset Address = 0x07FFFFE0
0x00000001 : End Of List
0x00000002 : End Of DMA

Set Value (SB_SDLAS=1)
0x00000000 : Offset Address = 0x 00000000
0x00000004 : Offset Address = 0x 00000080
0x00000005 : Offset Address = 0x 000000A0
0x00000006 : Offset Address = 0x 000000C0
～

0x003FFFFE : Offset Address = 0x 07FFFFC0
0x003FFFFF : Offset Address = 0x 07FFFFE0
0x00000001 : End Of List
0x00000002 : End Of DMA

・ Never specify any values other than those shown above.

- 68 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

－　Supplement concerning Sort-DMA

The method for confirming the end of Sort-DMA is described below.

(1) Although an interrupt is used in order to confirm the end of Sort-DMA, in order to generate the
interrupt it is necessary to set bit 20 of either the SB_IML2NRM, SB_IML4NRM, or
SB_IML6NRM register (for details, refer to the interrupt manual) to "1" and release the Sort-DMA
end interrupt mask. The mask needs to be released before initiating Sort-DMA.

(2) Once Sort-DMA terminates, 0x00000000 is automatically set in the SB_SDST register, and at the
same time bit 20 of the SB_ISTNRM register (for details, refer to the interrupt manual) is set to "1."
If the mask has been cancelled as described in item 1 above, an interrupt is now generated.

(3) Once the SH4 receives the interrupt, it determines the source of the interrupt by reading the
SB_ISTNRM, SB_ISTEXT, and SB_ISTERR registers. The SH4 is able to confirm that Sort-DMA
has ended by checking bit 20 of the SB_ISTNRM register.

(4) As soon as it has confirmed that Sort-DMA has ended, the SH4 cancels the interrupt by writing a "1"
to bit 20 of the SB_ISTNRM register.

The following procedure explains how to interrupt Sort-DMA:

(1) Request a stop of Sort-DMA by writing 0x00000000 to the SB_SDST register.

(2) Note that after performing step 1, the value in the SB_SDST register does not immediately become
0x00000000; instead, the value 0x00000001 is maintained in the register until Sort-DMA stops
completely. Therefore, it is necessary to poll the register repeatedly until its value becomes
0x00000000.

(3) Once the register value becomes 0x00000000, Sort-DMA has stopped. At this point, SB_SDDIV
indicates the number of times a Start Link Address was retrieved; this information can be used in
order to make a rough estimate of how far the transfer proceeded.

Supplement) When a Sort-DMA transfer is interrupted, no Sort-DMA end interrupt is generated.

The method for generating a Sort-DMA parameter error interrupt is described below.

(1) In order to generate a Sort-DMA parameter error interrupt it is necessary to set bit 28 of either the
SB_IML2ERR, SB_IML4ERR, or SB_IML6ERR register (for details, refer to the interrupt manual)
to "1" and release the Sort-DMA parameter error interrupt mask. The mask needs to be released
before initiating Sort-DMA.

(2) If a parameter error is generated, 0x00000000 is automatically set in the SB_SDST register, and at
the same time bit 28 of the SB_ISTNRM register (for details, refer to the interrupt manual) is set to
"1." Sort-DMA is forcibly terminated. If the mask has been cancelled as described in item 1 above,
an interrupt is now generated.

Supplement 1) A parameter error occurs when the Global Parameters could not be found in the Sort-
DMA transfer data. It is possible either that the format of the source data differs from
that shown in the Fig. 2-10 Polygon Parameter format, or an incorrect value was
written for a link address.

Supplement 2) When a Sort-DMA transfer is forcibly terminated, no Sort-DMA end interrupt is
generated.

- 69 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

－ Sort-DMA Operation Flowchart

SDWLT = 0

SDLAS = 0

Get 16-bit
Start Link Address

Get 32-bit
Start Link Address

Substitute Start Link Address
for Link Address

Multiply Link Address
by 32

Add Link Base Address
to Link Address

Sort-DMA start

Substitute Next Link Address
for Link Address

T
F

T
F

Start transfer of polygon parameters from
Link Address position

Global parameters
detected? F

T

Fewer than 128 bytes since
beginning of transfer? T

F
Generate Sort-DMA Parameter

Error interrupt

Sort-DMA forced end

Get Current Data Size and
Next Link Address

Transfer polygon parameters equal
to the Current Data Size

Link Address = End Of List

Link Address = End Of DMA

F

F

T

T

Generate Sort-DMA end
interrupt

Sort-DMA normal end

Sort-DMA stop request?

F
T

Sort-DMA interrupted

Fig. 2-13 Sort-DMA Operation Flowchart

- 70 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

－ Sort-DMA Transfer Example

Start Link Address

Start Link Address

Global Parameter (Current Data Size, Next Link Address)
Vertex Parameter
Vertex Parameter
Vertex Parameter

End Of List Code

Start Link Address

Control Parameter
Global Parameter (Current Data Size, Next Link Address)
Vertex Parameter
Vertex Parameter
Vertex Parameter

Global Parameter (Current Data Size, End Of List Code)
Vertex Parameter
Vertex Parameter
Vertex Parameter
Vertex Parameter

Global Parameter (Current Data Size, Next Link Address)
Vertex Parameter
Vertex Parameter
Vertex Parameter
Vertex Parameter
Vertex Parameter

Global Parameter (Current Data Size, End Of List Code)
Vertex Parameter
Vertex Parameter
Vertex Parameter

Global Parameter (Current Data Size, End Of DMA Code)
Vertex Parameter
Vertex Parameter
Vertex Parameter
Control Parameter

DMA Start

DMA End

SDSTAW

Start Link Address+SDBAAW

Next Link Address+SDBAAW

Next Link Address+SDBAAW

Start Link Address Table

Polygon Parameter

Fig. 2-14 Sort-DMA Transfer Example

- 71 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.6 Wave Data Transfers
In the Dreamcast System, wave memory is allocated to a 2MB space (0x00800000 to 0x009FFFFF) in

the G2 Bus area. There are four types of DMA on the G2 Bus: DMA0 (AICA-DMA), DMA1 (External-
DMA1), DMA2 (External-DMA2), and DMA3 (Debug-DMA). All of these types of DMA are functionally
similar, but can be set and executed independently, except for a few common registers.

The common settings for G2-DMA are shown below, using DMA0 (AICA-DMA) as an example.
Regarding DMA1 and 3 for expansion devices, etc., set registers for the AICA setting items for that device.

(1) Load the AICA address in the SB_ADSTAG register. (If an incorrect address is set, an illegal
address interrupt is generated.)
Valid addresses are specified by bits 28 through 5. (The high-order bits 31 to 29 and the low-order
bits 4 to 0 are "0".)
When setting other addresses in registers, set the highest three bits and the lowest five bits to "0".)

(2) Load the root bus address in the SB_ADSTAR register. (If an incorrect address is set, an illegal
address interrupt is generated.)

(3) Set the transfer size (in 32-byte units) in the SB_ADLEN register.

(4) Set the transfer direction in the SB_ADDIR register.
0: Root → G2
1: G2 → Root

(5) Set the initiation trigger in the SB_ADTSEL register.
0: CPU trigger

- Software initiation
1: HARD trigger

- AICA (DMA0) when the buffer is empty. In other cases, DMA1 through DMA3 depend on
the expansion device.

2: INT trigger
- Initiated when any interrupt for which "1" is set in the SB_SBDTNRM or SB_G2DTEXT
register is received. INT initiation is possible with a variety of sources, requiring procedures
that vary according to the interrupt that is being used.

 ■ CPU initiation (ex: DMA0)

(6) Set "1" in the SB_ADEN register. (If an incorrect address is set, an illegal address interrupt is
generated.)
0: Disable
1: Enable

(7) Set "1" in the SB_ADST register. If an incorrect address is set, the transfer is not initiated.
0: STOP
1: START

(8) There are two ways to confirm the end of a transfer:
A. Confirm through the value in the SB_ADST register.

0: DMA end
1: Not end

B. Confirm the end through the G2DEAINT (AICA-DMA end) interrupt.

- 72 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

 ■ HARD initiation (ex: DMA0)

(6) Set "1" in the SB_ADEN register.
0: Disable
1: Enable - After setting "enable," execute the transfer right after the AICA buffer becomes
empty.

(7) End confirmation
A. Confirm through the value in the SB_ADEN register.

0: DMA end
1: Not end

B. Confirm the end through the G2DEAINT interrupt.
Note: Although this usage is the same for DMA1 through DMA3, the initiation source depends
on the expansion device.

 ■ INT initiation (ex.: DMA0)

(6) Set "1" for the bits corresponding to the interrupt sources in the SB_G2DTNRM and
SB_G2DTEXT registers.

(7) Set "1" in the SB_ADEN register.
0: Disable
1: Enable

(8) End confirmation
A. Confirm through the value in the SB_ADEN register. (The value is set to either "1" or "0" by
the hardware.)

0: DMA end
1: Not end

- However, due to the time lag in the operation of SB_ADST, the DMA operation cannot be
gauged accurately.
B. Confirm the end through the G2DEAINT interrupt.

System memory area protection is set by setting 0x4659XXYY in the SB_G2APRO register.

XX: Starting area where protection is disabled
YY: Ending area where protection is disabled

System memory is allocated in 0x0C000000 to 0x0FFFFFFF, but 7 bits of XX and YY, respectively, are
reflected in bits 26 to 20 of the above area addresses, indicating whether protection is enabled/disabled for
the specified area.

To disable protection for the entire area, set 0x4659007F in the SB_G2APRO register. To enable
protection for the entire area, set 0x46597F00 in the same register.

・ When a G2-DMA transfer is performed so that it spans a protected area, an overrun error is generated.

・ Regarding the timeout setting registers, the values that are set in the SB_G2DSTO and SB_G2TRTO
registers must satisfy the following relationship:

SB_G2DSTO≦ SB_G2TRTO

[Supplement] Basically, changes are not possible.

- 73 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

For DMA transfers to wave memory, the type of transfers that are primarily used are data transfers to
system memory and data transfers from the GD-ROM on the G1 bus.

The registers that are used for wave data DMA (wave DMA) include registers that are dedicated to wave
DMA on the G2 Bus, and registers for interrupts that are shared with other types of DMA. An overview of
the registers is provided below.

 ■ Wave DMA Dedicated Registers

SB_ADSTAG 0x005F7800 : Wave memory start address setting
 Settable area: 0x00800000 to 0x009FFFE0

SB_ADSTAR 0x005F7804 : System memory start address setting
 Settable area (Note: The setting in the System Memory Protection register is also referenced):
0x0C000000 to 0x0FFFFFE0

SB_ADLEN 0x005F7808 : Transfer size setting
 Set in 0x20 (32-byte) units.
 The setting of bit 31 enables DMA initiation (SB_ADEN) when a DMA transfer ends.

0x00000000: Do not set DMA initiation enable setting to "0."
0x80000000: Set DMA initiation enable setting to "0."

SB_ADDIR 0x005F780C : Transfer direction setting
 0x00000000 : System memory to wave memory
 0x00000001 : Wave memory to system memory

SB_ADTRG 0x005F7810 : DMA initiation method setting
 0x00000000 : Initiation by CPU
 0x00000002 : Initiation by interrupt

SB_ADEN 0x005F7814 : DMA operation enable
0x00000000 : DMA operation enabled
0x00000001 : DMA operation disabled

SB_ADST 0x005F7818 : DMA initiation by CPU
0x00000000 : ----
0x00000001 : DMA initiation

SB_G2APRO 0x005F78BC : System memory access restriction setting (shared with other
G2 devices)

0x00000000 : ----
0x00000001 : DMA initiation

SB_IST*** 0x005F6900 to 0x005F6908 interrupt status registers

SB_IML*** 0x005F6910 to 0x005F6938 interrupt mask registers

SB_G2DTNRM 0x005F6950 : Wave DMA interrupt initiation setting 1 (shared with other G2
devices

SB_G2DTEXT 0x005F6954 : Wave DMA interrupt initiation setting 2 (shared with other G2
devices)

(Settings 1 and 2 function as a pair.)

- 74 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Examples of how to use wave DMA are provided below.

(Example 1)
Transferring wave data (0x00000040 bytes) from wave memory to system memory

Wave memory address: 0x00800000
System memory address: 0x0C001000

(1) Set 0x4659007F in the SB_G2APRO register, completely releasing the system memory protect
setting.

(2) Set 0x00000000 in the SB_ADEN register, disabling DMA operations.

(3) Set the wave memory address 0x00800000 in the SB_ADSTAG register.

(4) Set the system memory address 0x0C001000 in the SB_ADSTAR register.

(5) Set the transfer size (0x00000040: 64 bytes) in the SB_ADLEN register.

(6) Set the transfer direction (0x00000001: wave memory to system memory) in the SB_ADDIR
register.

(7) Set the DMA initiation method (0x00000000: CPU trigger) in the SB_ADTRG register.

(8) Set "DMA enabled" (0x00000001) in the SB_ADEN register.

(9) Set 0x00000001 in the SB_ADST register, initiating wave memory DMA.

*1 When actually using wave DMA, it is necessary to set the System Memory Protection register
(SB_G2APRO).

*2 Wave memory DMA loads the set value when operation is enabled (a "1" has been written to the
SB_ADEN register). Therefore, when overwriting the registers, always follow the procedure
described below.

1. Disable DMA operation. (Wave DMA enable = 0)
2. Update the registers.
3. Enable DMA operation. (Wave DMA enable = 1)

*3 When system memory access is restricted through the System Memory Protection register
(SB_G2APRO), some address settings may result in a DMA error (Illegal Address Error), causing
the DMA transfer to end abnormally.

(Example 2)
Transferring wave data (0x00000040 bytes) from system memory to wave memory, after having
executed example 1

System memory address: 0x0C001000
Wave memory address: 0x00800040

(1) Set 0x00000000 in the SB_ADEN register, disabling DMA operations.

(2) Set the wave memory address 0x00800040 in the SB_ADSTAG register.

(3) Set the transfer direction (0x00000000: system memory to wave memory) in the SB_ADDIR
register.

(4) Set "DMA enabled" (0x00000001) in the SB_ADEN register.

(5) Set 0x00000001 in the SB_ADST register, initiating wave memory DMA.
* Because the initial values in the registers are maintained after DMA is completed, the following

registers do not change and therefore do not need to be overwritten:

SB_ADSTAR(system memory address: 0x0C001000)
SB_ADLEN(64-byte transfer size: 0x00000040)
SB_ADTRG(DMA initiation method - CPU trigger: 0x00000000)

- 75 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(Example 3)
Initiating DMA through an interrupt signal from AICA, transferring wave data (0x00000040
bytes) from wave memory to system memory

Wave memory address: 0x00800000
System memory address: 0x0C001000

(1) Set 0x00000000 in the SB_ADEN register, disabling DMA operations.

(2) Set the wave memory address 0x00800000 in the SB_ADSTAG register.

(3) Set the system memory address 0x0C001000 in the SB_ADSTAR register.

(4) Set the transfer size (0x00000040: 64 bytes) in the SB_ADLEN register.

(5) Set the transfer direction (0x00000001: wave memory to system memory) in the SB_ADDIR
register.

(6) Set the DMA initiation method (0x00000003: interrupt trigger) in the SB_ADTRG register.

(7) Set "DMA enabled" (0x00000001) in the SB_ADEN register.

(8) Set initiation by interrupt through the G2DTNRM register and the G2DTEXT register.

*1 Because this transfer operation is initiated by interrupt, the following register does not need to be set:

SB_ADST(DMA initiation: 0x00000001)

*2 In this example, wave DMA is initiated when the AICA interrupt signal is input, but it is also
necessary to make settings for AICA that will generate the interrupt.

*3 When initiating DMA through an interrupt, if the interrupt from AICA is generated immediately after
a "1" is written to the SB_ADEN (DMA operation enable) register, wave DMA might not be
initiated. This is because the time at which the settings in the wave DMA registers become effective
differs from the time at which the setting in the register that enables initiation by an interrupt
becomes effective. In order to prevent this from happening, it is necessary to coordinate the timing
of the settings by, for example, reading the SB_G2ID register (which returns the G2 Bus version
information) after setting up wave DMA, and then setting the interrupt-related registers.

- 76 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.7 ARM Data Transfers
ARM data transfers are DMA transfers programs and data for the ARM, the AICA's internal processor, to

wave memory, and are basically similar to G2-DMA DMA0 (AICA-DMA) transfers.

- 77 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.8 Peripheral Data Transfers
The registers that are required for DMA transfers of peripheral data and the procedure for setting up the

command file for the controller (Maple-Host) are described in this section.
Because only the minimum requirements in terms of the registers and the procedure for DMA transfers

of peripheral data are described below, refer to section 5, "User Interface," if more details are required.

<Registers used for Maple-DMA>

SB_MDSTAR 0x005F6C04: Starting address setting for the command table in system
memory

Settable area: 0x0C000000～0x0FFFFFE0

SB_MDTSEL 0x005F6C10: Maple-DMA trigger setting
0x00000000 : Software trigger
0x00000001 : Hardware trigger

SB_MDEN 0x005F6C14: Enables Maple-DMA
(Read)
0x00000000 : Disable
0x00000001 : Enable

(Write)
0x00000000 : Disable
0x00000001 : Enable

SB_MDST 0x005F6C18: Maple-DMA software start
(Read)
0x00000000 : Maple-DMA end
0x00000001 : Maple-DMA transfer in progress

(Write)
0x00000000 : Invalid
0x00000001 : Maple-DMA start

SB_MSYS 0x005F6C80: Maple system control setting
For details, refer to section 8.4.1.1, "System Registers."

SB_MDAPRO 0x005F6C8C: Maple-DMA area protection setting
Settable area: 0x0C000000 to 0x0FFFFFE0

SB_ISTNRM 0x005F6900: Normal interrupt status
bit12: Maple-DMA end
For details on interrupt registers, refer to section 8.4.1.1, "System Registers."

- 78 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The procedure is described through the use of an example below. (CPU initiation for Maple, 4 port
access, interrupts not used)

(1) Set 0x00001000 in the SB_ISTNRM register to clear the Maple-DMA end status.

(2) Set 0x00000000 in the SB_MDEN register to disable Maple-DMA.

(3) Read the SB_MDST register, and confirm that DMA operation is not in progress (0x00000000).

(4) Set the SB_MDSYS register. (0xC3500000: timeout 1ms, transfer rate 2Mbps)

(5) Set the initiation trigger in the SB_MDSEL register. (0x00000000: Triggered from CPU)

(6) Set the accessible area in system memory in the SB_MDAPRO register. (0x6155007F: access
range 0x80000000 to 0x0FFFFFE0)

(7) Set up the following command file in system memory.

(Address) (Data)
0x0C700000 → 0x00000000 Port 0, 4-byte data transmission (instruction to Maple-Host)
0x0C700004 → 0x0C800000 Port 0, reception data storage address (instruction to Maple-

Host)
0x0C700008 → 0x01200000 [Device Request], transfer destination AP: 0x20, transfer source

AP: 0x00
0x0C70000C→ 0x00010000 Port 1, 4-byte data transmission
0x0C700010 → 0x0C800100 Port 1, reception data storage address
0x0C700014 → 0x01604000 [Device Request], transfer destination AP: 0x60, transfer source

AP: 0x40
0x0C700018 → 0x00020000 Port 2, 4-byte data transmission
0x0C70001C→ 0x0C800200 Port 2, reception data storage address
0x0C700020 → 0x01A08000 [Device Request], transfer destination AP: 0x80, transfer source

AP: 0xA0
0x0C700024 → 0x80030000 Port 3, 4-byte data transmission
0x0C700028 → 0x0C800300 Port 3, reception data storage address
0x0C70002C→ 0x01E0C000 [Device Request], transfer destination AP: 0xC0, transfer source

AP: 0xE0

(8) Set the starting address of the command file (0x0C700000 in this example) in the SB_MDSTAR
register.

(9) Set 0x00000001 in the SB_MDEN register to enable Maple-DMA.

(10) Write 0x00000001 in the SB_MDST register to initiate Maple-DMA (software initiation).

After executing steps (1) through (10) above and confirming that bit 12 in the SB_ISTNRM register is
"1" (DMA end), the data that was received can be used to confirm the connection, or that there is no
connection, or that an error occurred.

(Specified reception data storage address: 0x0C800000)
0x0C800000 →0x0500201C [Device Status], transfer destination AP:00, transfer

source AP:20
0x0C800004 →0x00000001 112 bytes of fixed data follows

 ： ：
0x0C800070 →0x00000000

0x0C800000 →0xFFFFFFFF No connection
0x0C800000 →0xFFFFFF00 Reception data error
After confirming the device status through the received data described on the previous page, the trigger

data can be acquired by using "Get Condition."
Because Maple is initialized through steps (1) through (10) on the previous page, the trigger data can be

acquired by changing the command file and by initiating Maple-DMA.

- 79 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(1) Set 0x00001000 in the SB_ISTNRM register to clear the Maple-DMA end status.

(2) Set up the following command file in system memory.
 (Address) (Data)
0x0C700000 → 0x00000001 Port 0, 8-byte data transmission (instruction to Maple-Host)
0x0C700004 → 0x0C800000 Port 0, reception data storage address (instruction to Maple-

Host)
0x0C700008 → 0x09200001 [Get Condition], transfer destination AP: 0x20, transfer source

AP: 0x00
0x0C70000C→ 0x00000001 Function type
0x0C700010 → 0x00010001 Port 2, 8-byte data transmission
0x0C700014 → 0x0C800100 Port1, reception data storage address
0x0C700018 → 0x09604001 [Get Condition], transfer destination AP:0x60,

transfer source AP:0x40
0x0C70001C→ 0x00000001 Function Type
0x0C700020 → 0x00020001 Port 2, 8-byte data transmission
0x0C700024 → 0x0C800200 Port 2, reception data storage address
0x0C700028 → 0x09A08001 [Get Condition], transfer destination AP: 0x80, transfer source

AP: 0xA0
0x0C70002C→ 0x00000001 Function type
0x0C700030 → 0x80030001 Port 3, 8-byte data transmission, command list end
0x0C700034 → 0x0C800300 Port 3, reception data storage address
0x0C700038 → 0x09E0C001 [Get Condition], transfer destination AP: 0xC0, transfer source

AP: 0xE0
0x0C70003C→ 0x00000001 Function Type

(3) Write 0x00000001 in the SB_MDST register to initiate Maple-DMA (software initiation).

After executing steps (1) through (3) above and confirming that bit 12 in the SB_ISTNRM register is "1"
(DMA end), the data that was received can be used to confirm the connection, or that there is no
connection, or that an error occurred.

(Specified reception data storage address: 0x0C800000)
0x0C800000 →0x0500201C [Device Status], transfer destination AP:00, transfer

source AP:20
0x0C800004 →0x00000001
0x0C800008 →0xFFFF0000 Upper 16 bits: Digital trigger; lower 16 bits:
0x0C800070 →0x33008080 Lower 16 bits: Analog 2ch

0x0C800000 →0xFFFFFFFF No connection
0x0C800000 →0xFFFFFF00 Reception data error

Once the trigger data has been acquired through the above sequence, the data can be acquired repeatedly
through just the following procedure:

(1) Set 0x00001000 in the SB_ISTNRM register to clear the Maple-DMA end status

(2) Write 0x00000001 in the SB_MDST register to initiate Maple-DMA (software initiation).

(3) Check received data.

§2.6.9 Color Palette Transfers
When using DMA to transfer data from system memory to palette RAM, the required values must be set

in the following registers:

(1) SB_PDSTAP (0x005F7C00) register
Palette RAM transfer start address (SH4 address)

(2) SB_PDSTAR (0x005F7C04) register
System memory transfer start address (SH4 address)

- 80 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(3) SB_PDLEN (0x005F7C08)
Specify the number of transfer bytes in units of 0x20 bytes.

(4) SB_PDDIR (0x005F7C0C)
Specify the transfer direction. Write "0" (system memory to palette RAM).

(5) SB_PDTSEL (0x005F7C10)
Specify the DMA initiation source. This is always "0"

(6) SB_PDEN (0x005F7C14)
Set DMA enable to "1."

(7) SB_PDST (0x005F7C18)
DMA starts when register setup is complete, the SB_PDEN register is "1" and a "1" is written to
this register. This register also functions as a DMA status register. (0: DMA is in standby; 1: DMA
is in progress)

Regarding the end of DMA: if DMA ends normally, bit 11 of the SB_ISTNRM (0x005F6900) register is
set to "1" and an interrupt is generated.

In addition, the SB_PDST register indicates the DMA status; when DMA ends, the value of this register
returns to "0." In this case, the value in the SB_PDEN register remains "1."

Regarding DMA errors: if the DMA address in system memory moves beyond the allowable memory
range during a DMA operation, an overrun interrupt is generated and that DMA operation is forcibly
terminated. In this case, bit 7 of the SB_ISTERR (0x005F6908) register is set to "1." Furthermore, if the
address in system memory or on the PVR side was incorrectly set outside of the allowable memory range,
an illegal address interrupt is generated and bit 6 of the SB_ISTERR (0x005F6908) register is set to "1."
These interrupts are generated both when the incorrect DMA address is set, and when an attempt is made to
initiate DMA with such an incorrect DMA address.

Cautions during DMA operations: If the SB_PDSTAP, SB_PDSTAR, SB_PDLEN, SB_PDDIR, or
SB_PDTSEL register is overwritten while a DMA operation is in progress, the new setting has no effect on
the current DMA operation. Once the current DMA is terminated and the next DMA is initiated
(SB_PDEN = 1 and SB_PDST = 1), the values in these five registers are retrieved. A DMA operation that
is currently in progress can be forcibly terminated by writing a "0" in the SB_PDEN register. If an access
is in progress when this happens, the value in the SB-PDST register returns to "0" as soon as the access
terminates.

- 81 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.6.10 External Data Transfer
This type of DMA transfer is for expansion devices connected to the G2 bus. The details are similar to

those of other G2-DMA transfers.

- 82 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.7 Interrupts

§2.7.1 Overview
The following are the main interrupt sources for the SH4:

 NMI interrupts

 JTAG interrupts

 SH4 external interrupts

Of these, the NMI and JTAG interrupts are controlled by the debugging adapter, which is an external
expansion device that manipulates the system reset signal, NMIs, etc., and is used as a software
development tool. Other external interrupts that are sent to the SH4 are all controlled by HOLLY, the
graphics/interface core.

Interrupt processing within HOLLY is described below.

The graphics/interface core HOLLY includes an interrupt controller that collects interrupts that originate
within and outside of the chip. HOLLY accepts interrupts from an internal and external devices, outputs
interrupts to the SH4, and generates DMA start signals for the PVR block and devices on the G2 Bus (G2
devices). Of the SH4's interrupt input IRL[3:0], IRL1 and 2 are used for the interrupts that HOLLY outputs
to the SH4. The interrupt outputs have four priority levels (including "no interrupt"), and can be associated
with any desired interrupt source by making the appropriate register settings. In addition, any desired
interrupt source (other than error interrupts, described later) can be associated with the PVR block and G2
device DMA start signals by making the appropriate register settings.

Interrupt sources are divided into the following three types:

 Normal interrupts: 22* (in the HOLLY2 specifications; 21 in the HOLLY1 specifications)

 External interrupts: 4

 Error interrupts: 32

Each interrupt signal is processed according to the source type. (Refer to section 8.5.2 for a list of
sources and descriptions.)

Normal interrupt and error interrupt input can be confirmed and cleared through the SB_ISTNRM and
SB_ISTERR registers, which indicate the status of interrupts of their respective types, by checking the bits
assigned to each particular interrupt. External interrupts are interrupt signals from external devices (GD-
ROM, AICA, modem, or expansion device), and each latched signal can be checked in SB_ISTEXT, which
is the register that indicates the status of external interrupts, by checking the bits assigned to each interrupt.
Note that external interrupts cannot be cancelled through this register; external interrupts must be cancelled
directly through the corresponding external device.

Interrupt masks are normally set through mask control registers (SB_IML2NRM, SB_IML2EXT,
SB_IML2ERR, SB_IML4NRM, SB_IML4EXT, SB_IML4ERR, SB_IML6NRM, SB_IML6EXT, and
SB_IML6ERR) for each level of each type of interrupt source: normal, external, or error. If a bit assigned to
a source in these registers is set to "1" and an interrupt is received from the corresponding interrupt source,
the corresponding interrupt is generated for the SH4. If a bit in these registers is set to "0," output of that
interrupt to the SH4 is disabled. These registers have priority over the SB_ISTNRM, SB_ISTERR, and
SB_ISTEXT registers; in addition, masking occurs regardless of the timing by which the interrupt was
generated. This means that, for example, if a bit for an interrupt that is currently being generated is
masked, and then the mask is released while the interrupt is still being generated, the same interrupt might
be generated again.

- 83 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Masked signals are assigned a priority at the level encoding stage, and are output as interrupt signals to
the SH4. The order of priority is level 6 > level 4 > level 2. If there are no applicable sources, interrupt
processing is not generated.

The DMA start signal is masked by the SB_PDTNRM and SB_PDTEXT registers on the PVR side, and
by the SB_G2DTNRM and SB_G2DTEXT registers on the G2 side. Except for the fact that there are no
error interrupt registers and that there is only one level, these registers mask their interrupts in the same
manner as interrupts to the SH4 are masked.

For details on interrupt-related registers, refer to section 8.4.1.1.

§2.7.2 Interrupt Settings and Access Procedures
Specific procedures are necessary when modifying register-related interrupts to Holly. If these

procedures are not followed, jumps to interrupt routines may occur with no value set in the INTEVT
register, or interrupts that were presumed to have been canceled may be received again by mistake.

• Procedure 1 (normal case)

Use the following steps (1) to (4) to modify Holly register-related interrupts.

(1) For CPU processing, mask the objective interrupt using one of the following methods:
(1a) Execute SR.IMASK to set a priority higher than the objective interrupt, or
(1b) Set SR.BL to 1.

(2) Modify the Holly register-related interrupts as needed (if multiple modifications are needed, make
them all at once here).

(3) Read the modified Holly register twice.
(4) Remove the mask applied in step (1).

• Procedure 2 (when canceling interrupts from external devices)

When canceling the interrupts from external devices that are controlled by Holly, special steps are
required. There are four types of interrupts, from CD-ROM, AICA, modem and G2 expansion devices, with
the following related registers: ISTEXT, IML2EXT, IML4EXT and IML6EXT. Steps (1) to (4) are the
same as Procedure 1 above.

(1) For CPU processing, mask the objective interrupt using one of the following two methods:
(1.a) Execute SR.IMASK to set a priority above that of the objective interrupt, or
(1.b) Set SR.BL to 1.

(2) Access the interrupt control register of the external device (CD-ROM, AICA, modem or G2
expansion device) and cancel the interrupt (if multiple interrupts are to be canceled, cancel them all
at once here).

(2.5) Read the ISTEXT register (external interrupt status) and confirm that the interrupt was canceled (if
multiple interrupts have been canceled in (2), confirm each interrupt).

(3) Read the ISTEXT register twice.
(4) Remove the mask applied in step (1).

• Supplementary Issues

(a) The previous procedures are required when masked interrupts are not occurring. In other cases,
errors should not occur if the above procedures are not followed.
<Required> When canceling the status of an unmasked (valid) interrupt.
<Not Required> When canceling the status of a masked (invalid) interrupt.
<Required> When an interrupt is masked (to disable the interrupt).
<Not Required> When canceling an interrupt mask (to re-enable the interrupt).

(b) Normally (when not set intentionally), SR.BL=1 during an interrupt processing routine, so when
modifying a register within the interrupt routine, steps (1) and (4) are not required. However, even
within the interrupt routine, when SR.BL=0 and multiple interrupts are enabled, the procedures
must be followed. Outside of the interrupt routine, steps (1) through (4) must be followed (of
course, if either (1a) or (1b) is satisfied, there is no need for steps (1) and (4)).

(c) Step (3) consists of dummy reads to be executed between steps (2) and (4). It ensures sufficient

- 84 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

processing time for step (2). When continuously executing step (2), which externally accesses the
CPU, and step (4), which internally accesses the CPU, step (4) may be executed in any order. Also,
several clocks are required if the Holly status resulting from step (2) affects the internal CPU state.

(d) Failing to set the INTEVT register results in an INTEVT register value of 0.
(e) The dummy reads in step (3) must be executed until the interrupt is available to execute step (4) or

the RTE command. However, two reads are not required for every single change: they are required
only to allow the interrupts to be received after a modification has been made. Other types of
accesses may be mixed without problem.

• Related Issues

(a) The Holly interrupt-related registers are as follows:

ISTNRM (0xA05F6900) normal interrupt status
ISTEXT (0xA05F6904) external interrupt status
ISTERR (0xA05F6908) error interrupt status
IML2NRM (0xA05F6910) Level2 normal interrupt mask control
IML2EXT (0xA05F6914) Level2 external interrupt mask control
IML2ERR (0xA05F6918) Level2 error interrupt mask control
IML4NRM (0xA05F6920) Level4 normal interrupt mask control
IML4EXT (0xA05F6924) Level4 external interrupt mask control
IML4ERR (0xA05F6928) Level4 error interrupt mask control
IML6NRM (0xA05F6930) Level6 normal interrupt mask control
IML6EXT (0xA05F6934) Level6 external interrupt mask control
IML6ERR (0xA05F6938) Level6 error interrupt mask control

(b) This procedure is required for internal CPU interrupt processing, as described in the hardware
manual (section 19.2.3). In that case, only one dummy read is required in step (3).

(c) Error causes are as follows (for reference).
1) Timing between "interrupt acknowledge" and "set INTEVT" processes: normal processing is as

follows:

Interrupt occurs
↓

CPU acknowledges the interrupt and modifies internal state
↓

CPU changes to the interrupt status and sets INTEVT (for the pending interrupt)
↓

Interrupt processing starts
↓

Interrupt is canceled

- 85 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

However, if timing is such that the interrupt is canceled before INTEVT has been set, there is
no interrupt to refer to, so INTEVT is set incorrectly, as follows:

Interrupt occurs
↓

CPU acknowledges the interrupt and modifies internal state
↓

Interrupt is canceled
↓

CPU changes to the interrupt status and sets INTEVT (for the pending interrupt)
<but there is no pending interrupt at this point!>

↓
Interrupt processing starts

The procedures described previously prevent the interrupt being canceled between the two
processes (interrupt acknowledgement and INTEVT setting).

2) Also, when the following interrupt routine finishes:

MOV.L R0,@R1 ; write to cancel interrupt
RTE
NOP

While the interrupt routine is being processed, the interrupt processing could be re-entered
because the interrupt has not been canceled, or, even though it may have been canceled within
Holly, the cancel has not been issued to the CPU. Therefore time must be allotted for the CPU
to enter the interrupt cancel status.

MOV.L R0,@R1 ; write to cancel interrupt
MOV.L @R1, R0 ; dummy read 1
MOV.L @R1, R0 ; dummy read 2
RTE
NOP

The methods for using and accessing each register are described below.

SB_ISTNRM (0x005F 6900) normal interrupt status

This register is used to confirm and cancel normal interrupts. When a normal interrupt is generated
internally by Holly, the corresponding bit in this register is set to "1." In addition, any of these interrupts
can be cancelled (set to "0") by writing a "1" to the corresponding bit. Note that the two highest bits
indicate the OR'ed result of all of the bits in SB_ISTEXT and SB_ISTERR, respectively, and writes to
these two bits are ignored.

Example 1:
G2DE1INT and TAEOINT are being generated.

Example 2:
An error interrupt is being generated.
MIAINT is being generated.
Cancels all error interrupts.
MIAINT is now cancelled.
The e r ror in t e r rupt image in th i s r eg i s te r i s now
cancelled.

Example 3:
PCVOINT and PCHIINT are being generated.
Cancels PCHIINT.
Only PCHIINT is cancelled.

- 86 -

read 0x005F 6900 -> 0x0001 0080

read 0x005F 6900 -> 0x8000 0000
read 0x005F 6908 -> 0x0000 0100
write 0x005F 6908 <- 0xFFFF FFFF
read 0x005F 6908 -> 0x0000 0000
read 0x005F 6900 -> 0x0000 0000

read 0x005F 6900 -> 0x0000 0030
write 0x005F 6900 <- 0x0000 0020
read 0x005F 6900 -> 0x0000 0010

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_ISTEXT (0x005F 6904) external interrupt status
This register is used to confirm external interrupts. This register is read-only. When an external interrupt

is generated by a GD-ROM, AICA, modem, or expansion device, the corresponding bit in this register is set
to "1." Note that these interrupts can be cancelled only by canceling the interrupt output directly at the
generating source; they cannot be cancelled through this register.

Example:
G2MDMINT and G1GDINT are being generated.

SB_ISTERR (0x005F 6908) error interrupt status
This register is used to confirm and cancel error interrupts. When an error interrupt is generated, the

corresponding bit in this register is set to "1." In addition, any of these interrupts can be cancelled (set to
"0") by writing a "1" to the corresponding bit.

Example:
G2IAAINT and G1IAINT are being generated.
Cancels G2IAAINT.
Only G2IAAINT is cancelled.
In the meantime, TAINPINT has been generated
as a new interrupt.

SB_IML2NRM (0x005F 6910) Level-2 normal interrupt mask control

SB_IML4NRM (0x005F 6920) Level-4 normal interrupt mask control

SB_IML6NRM (0x005F 6930) Level-6 normal interrupt mask control
These registers enable/disable (mask) normal interrupts for the SH4. When a bit is set to "1," the

corresponding interrupt is generated for the SH4. This register is a read/write register. Priority is assigned
to each interrupt according to their level, with level 6 being the highest priority. These registers mask
interrupts without regard to the timing of the signal from the source that is generating the interrupt.

Example 1:
No normal interrupts are set for level 2.
Sets DTDE2INT as a level 2 interrupt.

Example 2:
S e t s P C V O I N T a n d P C V I I N T a s l e v e l 4
interrupts.

Sets PCVOINT as a level 6 interrupt.
Generates a level 6 interrupt.
Masks PCVOINT. Generates a level 4 interrupt.

C a n c e l s t h e P C V O I N T i n t e r r u p t . T h e l e v e l 4
interrupt is cancelled.

SB_IML2EXT (0x005F 6914) Level-2 external interrupt mask control

SB_IML4EXT (0x005F 6924) Level-4 external interrupt mask control

SB_IML6EXT (0x005F 6934) Level-6 external interrupt mask control
These registers enable/disable (mask) external interrupts for the SH4. For details on how to use these

interrupts, refer to the explanation for SB_IML2NRM.

- 87 -

Read 0x005F 6910 -> 0x0000
0000
write 0x005F 6910 <- 0x0008

write 0x005F 6920 <- 0x0000
0018

write 0x005F 6930 <- 0x0000
0010
CR_vout_n has been generated
write 0x005F 6930 <- 0x0000
0000

read 0x005F 6904 -> 0x0000 0005

read 0x005F 6908 -> 0x00009000
write 0x005F 6908 <- 0x00008000
read 0x005F 6908 -> 0x00001010

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_IML2ERR (0x005F 6918) Level-2 error interrupt mask control

SB_IML4ERR (0x005F 6928) Level-4 error interrupt mask control

SB_IML6ERR (0x005F 6938) Level-6 error interrupt mask control
These registers enable/disable (mask) error interrupts for the SH4. for details on how to use these

interrupts, refer to the explanation for SB_IML2NRM.

SB_PDTNRM (0x005F 6940) PVR-DMA trigger select from normal interrupt

SB_PDTEXT (0x005F 6944) PVR-DMA trigger select from external interrupt
These interrupts are set when using interrupts as triggers for initiating DMA to the PVR. By setting a bit

to "1," the corresponding interrupt signal can be used as a trigger for initiating DMA. These registers are
read/write registers. Note that the DMA settings must have been made on the PVR side in order to actually
initiate DMA.

Example:
Sets MVOINT as a PVR-DMA trigger.

SB_G2DRNRM (0x005F 6950)G2-DMA trigger select from normal interrupt

SB_G2DREX (0x005F 6954) G2-DMA trigger select from external interrupt
These interrupts are set when using interrupts as triggers for initiating DMA to a G2 device. By setting a

bit to "1," the corresponding interrupt signal can be used as a trigger for initiating DMA. These registers
are read/write registers. Note that the DMA settings must have been made on the G2 device side in order to
actually initiate DMA.

Example:
Sets G1GDINT as a G2-DMA trigger.

Changes the G2-DMA trigger to G2AICINT.
G2AICINT is now the G2-DMA trigger.

- 88 -

write 0x005F 6940 <- 0x0000
2000

read 0x005F 6954 -> 0x0000
0001
write 0x005F 6954 <- 0x0000
0002

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§2.7.3 Notes Concerning Interrupts
The following SH4 values require special attention when using interrupts.

 BL bit (bit 28 of the SH4's SR register)
0: Interrupts enabled
1: Interrupts disabled

This bit is set to "1" when the SH4 accepts an interrupt. When a large number of interrupts are generated
or interrupt processing is completed, the interrupt processing routine must set this bit back to "0."

 IMASK bit (bits 7 through 4 of the SH4's SR register)
Acceptance level setting
Interrupt levels of the level that is set or lower are masked.

[7654] Accepted levels
 000x NMI/6/4/2
 001x NMI/6/4
 010x NMI/6
 011x NMI
 100x NMI
 : :
 111x NMI

 SH4 VBR register
Executes a JMP to the address VBR + 0600h when an interrupt is generated. (PC <= VBR +
0x0600)

 INTEVT (address 0xFF000028) (32-bit access r/(w))
bit11-0
Stores a value that corresponds to the level of the interrupt that was accepted when an interrupt is
generated.
0x01C0: NMI
0x0320: level6
0x0360: level4
0x03A0: level2

Others
 ICR (address 0xFFD0 0000) (16-bit access r/w)

IRLM(bit7)
Set to "0." (initial value)

- 89 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3 The Graphics System

- 90 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The Dreamcast graphics system consists of the graphics/interface chip HOLLY, which adopts the Power VR
architecture, and its peripheral texture memory. The explanation below focuses primarily on HOLLY.

*There are two versions of the HOLLY chip for Dev.Box, HOLLY1, and HOLLY2, which has additional
functions added onto HOLLY1. In this section, a dotted line will be used to indicate descriptions that apply to
HOLLY2.

§3.1 Overview

§3.1.1 Graphics Architecture

§3.1.1.1 Basic Polygons
HOLLY supports three basic polygon shapes:

• Single Triangle polygons
• Single Quad polygons
• Stripped Triangle polygons

The Z, U, and V coordinate values of the fourth vertex of a Quad polygon and the Shading Color
values are derived automatically from polygon surface equations that are calculated internally by the
hardware. In addition, strip triangle polygons are supported for infinite strips. The sequencing and
linking of each of the polygon vertices are illustrated below.

A

B

C

D

E

F

G

H

A

B C

DA

B

C

Fig. 3-1

In addition, HOLLY supports six polygon types:

• Non-Textured Flat Shaded
• Non-Textured Gouraud Shaded
• Textured Flat Shaded
• Textured Gouraud Shaded
• Textured Flat Shaded with Offset Color
• Textured Gouraud Shaded with Offset Color

Shading Color includes two data elements, "Base Color" and "Offset Color." The equation that
determines the Shading Color on the basis of this data is specified by the control bit (Texture/Shading
Instruction: refer to section 3.7.9.2) in the polygon parameters. Basically, the Base Color specifies the
shading value for each vertex, and the Offset Color specifies the specular value for each vertex.

- 91 -

Single triangle Single quad Strip triangles

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.1.2 Coordinate System
The coordinates that are specified for HOLLY are specified in terms of the screen coordinate system.

An example of coordinate calculation is shown below.

Ps(fX,fY)

Width

Viewpoin t
(Width /2, Heigh t /2, ez)

P(x,y,z)

Heigh t

Screen

(Width/2, Height /2, sz)

Fig. 3-2
The coordinate values (fX, fY, fInvW) that are passed to the hardware in order to specify the

coordinates of point P (x, y, z) in the above diagram are calculated as follows:

fInvW = (ez – sz) / (ez – z)
fX = x × fInvW
fY = y × fInvW

However, it is not necessary to multiply the UV coordinate value of the texture by fInvW.

§3.1.1.3 Display List
There are two HOLLY graphics blocks, one called the "Tile Accelerator (TA)," which assists in

generating display lists, and one called the "CORE," which handles drawing functions. Polygon lists
for drawing include the "TA parameters," which are input from the CPU to the TA, and the "CORE
display list," which the CORE uses when drawing the graphics. The TA block converts the input TA
parameters into the CORE display list, which is then automatically stored in the specified area in texture
memory. The CORE block uses the CORE display list and texture data in texture memory to draw the
polygons, and then stores the screen data in the frame buffer in texture memory.

Normally, the TA parameters are the polygon list that is prepared by the application. Strictly
speaking, however, the application must also prepare a portion of the CORE display list. (Refer to
section 3.7.)

TA

CORE

HOLLY Texture Mem ory

CORE display list

Fr am e buffer

Textu re da ta

TA
para meters

Fig. 3-3

§3.1.1.4 Tile Partitioning and Surface Equations

- 92 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

HOLLY feature two graphics architectures: Tile partitioning and polygon surface equations.

Tile32pixel

32pixel

Fig. 3-4 Tile Partitioning

With Tile partitioning, a graphics screen of up to 2048 pixels x 2048 pixels is divided into Tiles that
are 32 pixels by 32 pixels. The graphics processing is then performed on these individual Tiles. When
drawing a given polygon, that polygon is registered in a list, called the "Object List," which indicates in
which Tiles that polygon exists. When polygons are drawn, only those polygons that are registered in
the lists that correspond to each Tile are drawn. Because this processing is all performed by the
hardware known as the "Tile Accelerator (TA)," applications do not need to be aware of the Tile
partitions; they only need to send the vertex data for the triangle or Quad polygon to the Tile
Accelerator. The hardware then solves the surface equation Ax + By + C using the coordinates for three
vertices of the registered polygon and draws the pixels.

These two architectures offer a variety of benefits, and permit drawing through Tiles even without
enough space for an entire screen in the Z buffer or the frame buffer. In addition, texturing and shading
processing is only performed on those pixels within the Tile that are visible. On an actual screen, there
are many pixels that are hidden by objects that are closer to the foreground, and processing speed is
markedly improved by not performing texturing and shading processing on such pixels.

- 93 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.1.5 Block Diagram
A block diagram of the CORE block, which handles graphics processing, is shown below.

Memory Arbiter

ISP

SETUP

FPU

TSP

SETUP

FPU

Texture Memory

Triangle Setup

ISP

Precalc

Unit

ISP PE Array

Depth Accumulat ion

Buffer

Span

RLC

Span

Sor ter

ISP

TSP Precalc

+

Param Cache

Iterator

Array

Pixel

Processing

Engine

Micro Tile

Accumulation

Buffer

Texture Cache

TSP

Fig. 3-5 Block Diagram

- 94 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.1.6 Triangle Setup
The Triangle Setup block consists of the ISP SETUP FPU and the TSP SETUP FPU. this block

calculates the polygon surface equations and the texture and shading parameters.
The ISP SETUP FPU calculates the parameters A, B, and C for the surface equation Ax + By + C

from the coordinates of three vertices based on the following adjoint matrix.

)(
111

),,(2,1,0210

210

zzzyyy
xxx

CBA =

Solving this adjoint matrix yields the values of A, B, and C needed in order to describe the plane that
passes through the three vertices that were provided. The result is:

(, ,) (), ,A B C A d jz z z= 0 1 2
1
∆

which yields:

−−−

−−−

−−−

=

yxyxxxyy
yxyxxxyy
yxyxxxyy

Adj

01100110

20022002

12211221

∆ = − + − + −0 1 2 1 2 0 2 0 1x y y x y y x y y() () ()

The resulting ∆ value can be used to perform culling processing for very small polygons.
Note: The x, y, and z values shown in the above equations are all screen coordinates, and are

equivalent to (fX, fY, fInvW) shown in section 3.1.1.2.

The ISP SETUP FPU requires 14 clock cycles to calculate the parameters.
The TSP SETUP FPU calculates the surface equations Px + Qy + R for shading and texture,

respectively. The number of parameters that are actually calculated depends on whether the calculations
are being made in texture mode or shading mode.

In addition, the parameters that are produced by the TSP SETUP FPU are stored in a cache in the TSP
block; the TSP SETUP FPU calculates the parameters only when a miss is generated in the cache.

The TSP SETUP FPU requires 48 to 70 clock cycles to calculate the parameters.

- 95 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.1.7 ISP(Image Synthesis Processor)
The ISP performs on-chip depth sorting for triangles without requiring an external Z buffer. The ISP

works on 32 x 32 Tiles, and performs its processing in a number of clock cycles equivalent to the
number of lines in one triangle. All 1024 screen pixels located in a Tile are processed in parallel.

The processed pixels are sent to the Span RLC, which executes Run Length Encoding on 32 pixels in
parallel in each clock cycle and sends the result to the Span Sorter. This approach maximizes the data
transfer speed between the ISP and the TSP, and lessens the demand for buffering between these two
modules.

An overview of the Span RLC is shown below.

ISP Core Run
Length

Encoder

Span
Sorter

TSP Core
After grouping,
ISP will output
2A,1A,1A,1A,…
1B,2B,2B,…
1C,2C,3C,…etc.

A
B B

B BA
AB

C C C
C C
CAA

Fig. 3-6 Overview of the Span RLC

The Span Sorter regroups the run length encoded spans from the ISP in the triangle sequence.
Therefore, data for the triangles is supplied to the TSP at one time.

Span sorting offers the following benefits:

• Minimizes caching requirements for the TSP parameters.

• Provides the benefits of the Tile-based method (in terms of speed, cost, minimum bandwidth,
and no Z buffer).

• Provides additional benefits beyond conventional methods. (Consistency with the Z buffer
texture map)

§3.1.1.8 TSP(Texture and Shading Processor)
The TSP performs texture and shading processing, and draws in the Tile accumulation buffer. Once

all Tiles have been drawn, the TSP writes the contents of the accumulation buffer to texture memory.
The TSP has a local cache for parameters that have been calculated, which is used to minimize the
recalculation of parameters by taking advantage of consistencies between visible polygons.

There is a 64 × 64-bit texture cache for normal texels or the VQ texture code book, and a 64 × 64-bit
texture cache for VQ texture indices, for a total of 128 × 64 bits.

The TSP performs perspective compensation for all texture and shading elements, U, V, Alpha, R, G,
B, and Fog.

- 96 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.1.9 Polygon List
HOLLY utilizes the following five lists:

(1) Opaque: Opaque polygon list
(2) Punch Through: Punch Through polygon list
(3) Opaque Modifier Volume: Opaque polygon and Punch Through Polygon

Modifier
(4) Translucent: Translucent polygon list
(5) Translucent Modifier Volume: Translucent Polygon Modifier Volume list

The Opaque list is for a non-textured polygon with no alpha blending, or for a textured polygon with
no alpha blending in which all of the texels are opaque (with an alpha value of 1.0 only). The Punch
Through is for a textured polygon with no alpha blending in which all of the texels are transparent or
opaque (with an alpha value of 0.0 or 1.0 only). The Translucent List is for textured and non-textured
polygons with alpha blending, or for a textured polygon with no alpha blending in which the texels are
translucent (with an alpha value ranging from 0.0 to 1.0). In addition, Modifier Volume lists are for
polygons that are used to distinguish different areas in order to give an object a three-dimensional feel
through shadows, etc. There are two types of Modifier Volumes, one for Opaque and Punch Through
polygons and one for Translucent polygons. (Refer to Section 3.4.3.)

These lists are drawn in order, starting from (1), for each Tile. When drawing Opaque polygons, the
ISP processes the number of Opaque polygons that exist in the Tile in question, and then the TSP
performs texturing and shading processing on those pixels that are visible. When drawing Punch
Through polygons, the ISP sorts the polygons that exist in the Tile in question, starting form the front,
and then the TSP performs texturing and shading processing on those pixels that are visible. This
processing by the ISP and the TSP continues until all of the pixels in the Tile have been drawn.
Furthermore, when drawing translucent polygons, the ISP draws the product of the number of
translucent polygons that exist in the Tile in question multiplied by the number of overlapping polygons
(when in Auto Sort mode), and then the TSP performs texturing and shading processing on all pixels in
the translucent polygons. Therefore, it is important to be aware that drawing translucent polygons can
require much more processing time than drawing Opaque polygons.

It is also necessary to note that this also applies to Opaque Modifier Volumes and Translucent
Modifier Volumes.

- 97 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.2 Drawing Function Overview
HOLLY has many drawing functions; some typical functions are listed below.

• On-chip deletion of hidden surfaces with 32-bit precision (Z buffer not needed)
• Reduction of memory size for display image data (strip buffer mode)
• Support for infinite strip Triangle polygons
• Generation of display lists for drawing individual Tiles through hardware (Tile Accelerator)
• Punch Through polygon drawing processing
• Texture rings with perspective compensation
• True color Gouraud shading with perspective compensation
• Translucent display with perspective compensation
• Support for full D3D source and destination blending
• Translucent polygon auto sort through hardware
• Shadow and satellite generation (Modifier Volume)
• Texture and Shading Color switching in special areas (Modifier Volume)
• Fog (indices, lines, vertices)
• Clipping of Tile units and pixel units
• Rendering to a texture map
• Dithering
• Full-screen scaling and filtering
• Flicker-free interlacing
• Support for bi-linear and tri-linear filtering
• 4x texture super sampling
• Texture sizes ranging from 8 × 8 to 1024 × 1024
• Mip-map textures
• Support for rectangular textures
• Texture UV flipping and clamping
• Approximately 1/8 texture compression using vector quantization (VQ textures)
• Support for 4BPP and 8BPP palette textures (1024-color palette RAM on chip)
• Support for YUV422 textures (includes YUV420 → YUV422 data converter)
• Support for Bump Mapping

- 98 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.1.3 Display Function Overview
The video display modes that are supported by this system are listed below.

Display mode Resolution (pixels) Interlace mode
 NTSC_320×240NI 320×240 Non-interlaced
 NTSC_320×240I 320×240 Single interlaced
 NTSC_640×240NI 640×240 Non-interlaced
 NTSC_640×240I 640×240 Single interlaced
 NTSC_640×480 640×480 Double interlaced
 PAL_320×240NI 320×240 Non-interlaced
 PAL_320×240I 320×240 Single interlaced
 PAL_640×240NI 640×240 Non-interlaced
 PAL_640×240I 640×240 Single interlaced
 PAL_640×480 640×480 Double interlaced

VGA 640×480 Non-interlaced
Note:
Single interlaced: The same image is displayed in odd and even fields (480 display lines).
Double interlaced: Separate images are displayed in odd and even fields.

Table 3-1 Display Mode List

§3.2 Memory Map

- 99 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.3 Register Map
The HOLLY register map is listed below.

Address Name R/W Description
0x005F 8000 ID R Device ID
0x005F 8004 REVISION R Revision number
0x005F 8008 SOFTRESET RW CORE & TA software reset

0x005F 8014 STARTRENDER RW Drawing start
0x005F 8018 TEST_SELECT RW Test (writing this register is prohibited)

0x005F 8020 PARAM_BASE RW Base address for ISP parameters

0x005F 802C REGION_BASE RW Base address for Region Array
0x005F 8030 SPAN_SORT_CFG RW Span Sorter control

0x005F 8040 VO_BORDER_COL RW Border area color
0x005F 8044 FB_R_CTRL RW Frame buffer read control
0x005F 8048 FB_W_CTRL RW Frame buffer write control
0x005F 804C FB_W_LINESTRIDE RW Frame buffer line stride
0x005F 8050 FB_R_SOF1 RW Read start address for field - 1/strip - 1
0x005F 8054 FB_R_SOF2 RW Read start address for field - 2/strip - 2

0x005F 805C FB_R_SIZE RW Frame buffer XY size
0x005F 8060 FB_W_SOF1 RW Write start address for field - 1/strip - 1
0x005F 8064 FB_W_SOF2 RW Write start address for field - 2/strip - 2
0x005F 8068 FB_X_CLIP RW Pixel clip X coordinate
0x005F 806C FB_Y_CLIP RW Pixel clip Y coordinate

0x005F 8074 FPU_SHAD_SCALE RW Intensity Volume mode
0x005F 8078 FPU_CULL_VAL RW Comparison value for culling
0x005F 807C FPU_PARAM_CFG RW Parameter read control
0x005F 8080 HALF_OFFSET RW Pixel sampling control
0x005F 8084 FPU_PERP_VAL RW Comparison value for perpendicular polygons
0x005F 8088 ISP_BACKGND_D RW Background surface depth
0x005F 808C ISP_BACKGND_T RW Background surface tag

0x005F 8098 ISP_FEED_CFG RW Translucent polygon sort mode

0x005F 80A0 SDRAM_REFRESH RW Texture memory refresh counter
0x005F 80A4 SDRAM_ARB_CFG RW Texture memory arbiter control
0x005F 80A8 SDRAM_CFG RW Texture memory control

0x005F 80B0 FOG_COL_RAM RW Color for Look Up table Fog
0x005F 80B4 FOG_COL_VERT RW Color for vertex Fog
0x005F 80B8 FOG_DENSITY RW Fog scale value
0x005F 80BC FOG_CLAMP_MAX RW Color clamping maximum value
0x005F 80C0 FOG_CLAMP_MIN RW Color clamping minimum value

Note: RW: read/write; R: read only; W: write only

Address Name R/W Description
0x005F 80C4 SPG_TRIGGER_POS RW External trigger signal HV counter value
0x005F 80C8 SPG_HBLANK_INT RW H-blank interrupt control
0x005F 80CC SPG_VBLANK_INT RW V-blank interrupt control

- 100 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0x005F 80D0 SPG_CONTROL RW Sync pulse generator control
0x005F 80D4 SPG_HBLANK RW H-blank control
0x005F 80D8 SPG_LOAD RW HV counter load value
0x005F 80DC SPG_VBLANK RW V-blank control
0x005F 80E0 SPG_WIDTH RW Sync width control
0x005F 80E4 TEXT_CONTROL RW Texturing control
0x005F 80E8 VO_CONTROL RW Video output control
0x005F 80Ec VO_STARTX RW Video output start X position
0x005F 80F0 VO_STARTY RW Video output start Y position
0x005F 80F4 SCALER_CTL RW X & Y scaler control

0x005F 8108 PAL_RAM_CTRL RW Palette RAM control
0x005F 810C SPG_STATUS R Sync pulse generator status
0x005F 8110 FB_BURSTCTRL RW Frame buffer burst control
0x005F 8114 FB_C_SOF R Current frame buffer start address
0x005F 8118 Y_COEFF RW Y scaling coefficient
0x005F 811C PT_ALPHA_REF RW Alpha value for Punch Through polygon

comparison

0x005F 8124 TA_OL_BASE RW Object list write start address
0x005F 8128 TA_ISP_BASE RW ISP/TSP Parameter write start address
0x005F 812C TA_OL_LIMIT RW Start address of next Object Pointer Block
0x005F 8130 TA_ISP_LIMIT RW Current ISP/TSP Parameter write address
0x005F 8134 TA_NEXT_OPB R Global Tile clip control
0x005F 8138 TA_ITP_CURRENT R Current ISP/TSP Parameter write address
0x005F 813C TA_GLOB_TILE_CLIP RW Global Tile clip control
0x005F 8140 TA_ALLOC_CTRL RW Object list control
0x005F 8144 TA_LIST_INIT RW TA initialization
0x005F 8148 TA_YUV_TEX_BASE RW YUV422 texture write start address
0x005F 814C TA_YUV_TEX_CTRL RW YUV converter control
0x005F 8150 TA_YUV_TEX_CNT R YUV converter macro block counter value

0x005F 8160 TA_LIST_CONT RW TA continuation processing
0x005F 8164 TA_NEXT_OPB_INIT RW Additional OPB starting address

0x005F 8200-
0x005F 83FC

FOG_TABLE RW Look-up table Fog data

0x005F 8600-
0x005F 8F5C

TA_OL_POINTERS R TA object List Pointer data

0x005F 9000-
0x005F 9FFC

PALETTE_RAM RW Palette RAM

Note: RW: read/write; R: read only; W: write only

Table 3-2 Register Map

- 101 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4 Drawing Function Details

§3.4.1 Background
In areas where nothing is drawn by the CORE display list, the background is drawn according to

separately specified ISP/TSP Parameters. The background ISP/TSP Parameters are normally stored directly
in texture memory without passing through the TA, and the address is specified in the ISP_BACKGND_T
register. In addition, the depth value is specified in the ISP_BACKGND_D register.

<Notes>
• The Textu re Cont rol Word is requ ired even when

textu res a re not being u sed. However, because it
is not actually used, the va lue does not ma t ter.

• The parameter s for ver tex (4) a re not needed,
because they a re calcu la ted au tomat ica lly on the
basis of the para meters for the other th ree ver t ices.

• The ver tex Z values are not the same as the Z va lue
for the background.

• If t extures a re not used, the t extu re U and V da ta
is not needed.

• If offset colors a re not used, the offset color da ta is
not needed.

ISP/TSP Inst r uct ion Word
TSP Inst r uct ion Word
Texture Cont rol Word

Ver tex (1)：Ver tex X
Ver tex (1)：Ver tex Y
Ver tex (1)：Ver tex Z

Ver tex (1)：Texture U
Ver tex (1)：Texture V
Ver tex (1)：Base Color

Ver tex (1)：Offset Color
Ver tex (2)：Ver tex X
Ver tex (2)：Ver tex Y
Ver tex (2)：Ver tex Z

Ver tex (2)：Texture U
Ver tex (2)：Texture V
Ver tex (2)：Base Color

Ver tex (2)：Offset Color
Ver tex (3)：Ver tex X
Ver tex (3)：Ver tex Y
Ver tex (3)：Ver tex Z

Ver tex (3)：Texture U
Ver tex (3)：Texture V
Ver tex (3)：Base Color

Ver tex (3)：Offset Color

ISP/TSP Param eter

Ver tex(1)

Ver tex (2)

Ver tex (3)

Ver tex(4)

Posit ions of ver t ices on t he screen

Fig. 3-7
Normally, the CORE display list is stored in two parts, one for writing texture memory from the TA, and

one for reading texture memory from the CORE. (double buffer processing) Similarly, the background
ISP/TSP Parameters also are stored beforehand in two buffer areas in texture memory, with the most
efficient approach being to specify through the ISP_BACKGND_T register the background ISP/TSP
Parameters that are stored in the CORE display list that is used for drawing.

- 102 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.2 Translucent Polygon Sort
There are two polygon sort modes for drawing translucent polygons: "Auto-sort mode" and "Pre-sort

mode." The sort mode specification method differs according to the HOLLY version. In HOLLY1, either
sort mode can be specified for individual screens according to the setting in the ISP_FEED_CFG register.
In Sort mode, the specification differs according to the Region Array data type. For Region Array data type
1 (when bit 21 in the FPU_PARAM_CFG register is "0"), the "pre-sort mode" is specified for individual
screens in the ISP_FEED_CFG register. For Region Array data type 2 (when bit 21 in the
FPU_PARAM_CFG register is "1"), "pre sort" is specified for individual Tiles in the Region Array data.

§3.4.2.1 Auto-sort Mode
In auto-sort mode, the hardware automatically sorts polygons as individual pixels, and draws the

pixels starting from the farthest Z value, regardless of the order in which the polygons were input to the
TA (registered in the display list). Therefore, α blending is performed properly even in a case where
two translucent polygons intersect. However, because the polygons are sorted as individual pixels, sort
processing must be performed for [the number of registered polygons] × [the number of overlapping
pixels], with the result that a large amount of processing time is required when a large number of
translucent polygons overlap.

polygon-2

polygon-1

Drawing of the far thest pixels Drawing of the second
far thest pixels

Polygon 2 is cor rect ly drawn in
fron t of and beh ind polygon 1.

Fig. 3-8

Sprites (textured polygons that use transparent texels) must be drawn with translucent polygons, even
if no α blending is performed. Auto-sort mode is not recommended for use with Spites in 2D software
that uses a lot of Spites because 3D sorting is not required, and because polygons may overlap much
more frequently than might be initially expected.

Furthermore, in auto-sort mode "Depth Compare Mode," specified in the ISP/TSP Instruction Word,
is disabled; Z values are always compared on the basis of "greater or equal." When two pixels have the
same Z value, the polygon that was input to the TA first is drawn the farthest away.

- 103 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.2.2 Pre-sort Mode
In pre-sort mode, polygons are drawn in the order in which they were input to the TA, as with a

normal Z buffer system.
Because processing is only performed for the number of polygons registered, this mode requires less

processing time than auto sort mode. However, because it is essential to sort the polygons before
inputting the polygon data to the TA, this mode does increase the CPU's work load. Furthermore, alpha
blending is not performed correctly when two polygons intersect.

polygon-2

polygon-1

Drawing of polygon 1 Drawing of polygon 2Polygon 2 is only drawn in fron t
of polygon 1.

Fig. 3-9

In addition, Translucent Modifier Volumes cannot be used in this mode.

§3.4.3 Punch Through Polygons
In drawing Punch Through polygons with the Holly2, the hardware automatically sorts the polygon at the

pixel level, and draws the pixels in order according to their Z value, starting from the front, regardless of
the order in which they were input to the TA (registered in the display list). When drawing, the hardware
reads the texture data and draws only the pixels for which (texel alpha value) >= (PT_ALPHA_REF
register value), and processing continues until all pixels within the Tile have been drawn. Normally, "0xFF
(=1.0)" should be specified for the PT_ALPHA_REF register value. Pixels are drawn with an alpha value
of 1.0. (Translucent processing is not performed.)

Depth Compare Mode specified in the ISP/TSP Instruction Word is invalid, and Z values are always
compared on a "Greater or Equal" basis. When the Z values of two pixels are identical, the one belonging
to the polygon that was input to the TA first is drawn behind the other.

§3.4.3.1 ISP Cache Size
Drawing processing in the Punch Through polygon ISP is performed in units of polygon groups with

a number of vertices (ISP cache size) specified by "Punch Through chunk size" in the ISP_FEED_CFG
register.

(1) The Punch Through polygon data for the number of vertices specified in the register is stored in the
ISP cache.

(2) While automatically sorting the polygons in the ISP cache, the hardware begins drawing the pixels,
starting from the front.

(3) The processing in step 2 is repeated until all polygons in the ISP cache have been processed.
(4) If there are more polygons registered in the Tile than the number of vertices specified, steps 1

through 3 are repeated until the registered polygons are all processed.

Normally, 0x040 to 0x080 (0x040 is recommended) is specified for the ISP cache size for Punch
Through polygon processing. However, when many of a polygon's transparent texels (alpha value =
0.0) are overlapping, specifying a large ISP cache size may result in a worsened drawing processing
efficiency; if this happens, adjust the ISP cache size to a more suitable level.

However, the ISP cache size for Punch Through polygons must be the no larger than the ISP cache
size for Translucent polygons. ([Punch Through chunk size] ≤ [Cache size for translucency])

§3.4.3.2 Relationship with Translucent Polygons

- 104 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Punch Through polygons are drawn in the same manner if they are registered as Translucent
polygons, but normally drawing a polygon as a Punch Through polygon requires much less time than
drawing the same polygon as a Translucent polygon. However, if bi-linear filtering is performed in a
Punch Through polygon, some opaque texels might not be drawn, depending on the texel sampling
position. This is because, in Punch Through polygons, only those pixels with an alpha value (after
texture filtering) that is equal to or greater than the value in the PT_ALPHA_REF register (normally 10)
are drawn. (Refer to section 3.4.7.2.2.)

When a Translucent polygon that is completely identical to a Punch Through polygon has been
registered, those pixels with an alpha value of ten are drawn only through the Punch Through polygon;
when the Translucent polygon is drawn, those pixels are judged to have already been drawn and are not
drawn again. This feature can be used to improve the problem of the disappearance of opaque pixels
when using bilinear filtering with Punch Through polygons, without extending the translucent polygon
processing time very much.

Drawing pixel for the
Punch Through polygon

Texture map

Bilinear filt er ing
sampling image

Drawing pixel for the
Translucent polygon

α =0.25
α =0.5

α =0.75α =1.0

Final drawing
pixel

Fig. 3 - 10

§3.4.4 Processing List Discarding
Because the HOLLY2 hardware automatically draws Punch Through polygons and Translucent polygons

(in Auto sort mode) as individual pixels while sorting the polygons at the same time, it is not necessary for
the CPU to sort the polygons before inputting them to the TA. However, due to the sort processing, the
hardware has to process each registered polygon a number of times. In effect, the hardware is drawing a
number of polygons equal to [number of registered polygons] x [number of overlaps].

In order to reduce the amount of such processing in Auto Sort mode, the HOLLY2 hardware is capable of
performing processing called "discarding," in which polygons that have been completely drawn are
removed ("discarded") from the processing list. This processing is specified through "Discard Mode" in the
ISP_FEED_CFG register.

- 105 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Example of discarding when processing Translucent polygons

X

In Layer 2 processing, poly-E is deemed to have no drawing pixels rema in ing, so it is removed from the
processing list in Layer 3 processing. In the same fash ion , poly-D is removed from the processing list in
Layer 4 processing. Because poly-C st ill ha s drawing pixels in Layer 4 processing, it is not removed in
Layer 5 processing.

Z

poly-A
poly-B
poly-C
poly-D
poly-E

Tile a rea
Layer 1

Processing
list

poly-A
poly-B
poly-C
poly-D
poly-E

Layer 3

Processing
list

poly-A
poly-B
poly-C
poly-D

Layer 4

Processing
list

poly-A
poly-B
poly-C

Layer 5

Processing
list

poly-A
poly-B
poly-C

Layer 2

Processing
list

poly-A
poly-B
poly-C
poly-D
poly-E

discarding

Fig. 3-11

In Punch Through polygon drawing processing, the Z value results of previously drawn Opaque
polygons are referenced. Furthermore, in Translucent polygon drawing processing, the Z value results of
Opaque polygons and Punch Through polygons are referenced. For example, a Punch Through polygon
and a Translucent polygon that are fully hidden behind an Opaque polygon are both discarded in layer 1
processing, so they are only processed once.

Therefore, when creating model data in which many Punch Through polygons and Translucent polygons
overlap, the drawing time can be reduced by inserting Opaque polygons between them.

- 106 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.5 Modifier Volume
A Modifier Volume is polygon data that is used to define an area for adding shadows and otherwise

generate a 3D fell for normal polygons; the Modifier Volume is not actually drawn on the screen. There are
two areas on the screen as a whole that are defined ("area 0" and "area 1"), and the texture and Shading
Color for each area can be changed through the Modifier Volume. This function can therefore be used to
create a variety of effects, such as shadows, spotlights, or window masking.

Opaque Polygon

Opaque modifier volume
(not actually dr awn on the screen)

Area 1

Area 0

Example: Opaque polygon and opaque modifier volume

Fig. 3-12

There are two types of Modifier Volumes: "opaque Modifier Volumes," which are effective only for
Opaque polygons and Punch Through polygons; and "translucent Modifier Volumes," which are effective
only for translucent polygons. Although there is no limit on the number of either type of Volume models
that may be registered in lists, the maximum number of areas that can be defined is two.

Area 0

Translucen t PolygonOpaqu e Polygon

Opaqu e Modifier Volu me Tran slucen t Modifier Volum e

Area 0

Area 1Area 1

Example: Opaque Modifier Volumes and Translucent Modifier Volumes

Fig. 3-13

- 107 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Volume models can be either a protruding shape or a recessed shape, as long as it is a closed shape;
otherwise, the three-dimensional area definition will not be performed correctly. However, if planar area
definition is sufficient, the Volume model does not need to be a three-dimensional object and does not need
to be closed. In this case, the area of the Volume polygon that is deemed to be in front of the normal
polygon is designated as "area 1." In addition, it is necessary to make a distinction between and specify the
final polygon that forms a Volume model as opposed to the other polygons. (Refer to section 3.7.4.4.3.) If
this specification is not made, area definition will not be performed properly.

§3.4.5.1 Inclusion and Exclusion Volumes
There are two types of Modifier Volumes: inclusion volumes and exclusion volumes. An inclusion

volume makes the polygon surface that is inside the volume "area 1," while an exclusion volume makes
the polygon surface that is inside the volume "area 0." Prior to area determination by volume, all
polygon surfaces are "area 0". Therefore, and exclusion volume is used to make "area 0" inside of an
"area 1" that was created by an inclusion volume.

CORE has one flag bit per pixel in order to maintain the area status of each individual pixel. When
processing multiple volumes, area definition by a volume is performed for one model at a time, and the
final area is determined by performing Boolean operations on each result versus the cumulative result of
the Boolean operations performed for that pixel up to that point. The flag value defined by a volume is
a "1" if that pixel is inside the volume, and a "0" if that pixel is outside the volume. If the final flag
value is a "0," that pixel is in area 0; if the final flag value is a "1," that pixel is in area 1. Note that the
initial flag value is "0."

The Boolean operations that are performed on the flag bits for inclusion volumes and exclusion
volumes are as follows:

For an inclusion volume:
(New flag value) = (current flag value)|(result indicated by the volume)

For an exclusion volume:
(New flag value) = (current flag value)&(result indicated by the volume)

The inclusion volume and exclusion volume specifications are made in the volume instruction in the
ISP/TSP Instruction Word. (Refer to section 3.7.9.1.)

§3.4.5.2 Volume Modes
There are two modes for processing that is performed on the area defined as area 1: "parameter

selection volume mode" and "intensity volume mode." Processing performed on area 0 is the same as
processing that is performed on a normal object. These modes are specified through the
FPU_SHAD_SCALE register, and can be selected for an entire screen only.

In addition, it is possible to specify for each object whether processing is to be performed on area 1 or
not. This specification is made in the Parameter Control Word for the display list that is input to the TA.
(Refer to section 3.7.4.4.3.)

- 108 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Parameter Selection Volume Mode
In this mode, there are two sets of ISP/TSP Parameters for one object, and the parameters that are

used switch for each area that is defined. When using this mode, it is necessary to input to the TA
the object data which enables the Modifier Volume with the specification "with Two Volume
format." Parameter 0 that is input to the TA is used for area 0, and parameter 1 is used for area 1.

In this mode, everything that can be specified in the ISP/TSP Parameters, including textures and
UV coordinates, can be changed between the two areas. This mode makes possible effects such as
"spotlight (changing the Shading Color)," which brightens the area, or "window masking (changing
the texture map)," which makes only the area translucent. However, one shortcoming of this mode
is that the amount of data in the display list is large, because two sets of ISP/TSP Parameters must
be stored.

Intensity Volume Mode
This mode is used to represent simple shadows with only one set of ISP/TSP Parameters. The

parameters that are used for both areas are basically the same, but for area 1 the Base Color and
Offset Color are multiplied by the 8-bit value that is specified in the FPU_SHAD_SCALE register.

This mode cannot be used correctly with Bump mapped polygons because the K1K2K3Q data
changes.

Because the 8-bit data that is multiplied with the Shading Color data is set in a register, it is only
possible to represent shadows with just one level of darkness on the screen, but if only simple
shadows are needed, this mode permits them to be represented without increasing the amount of
data in the display list.

§3.4.5.3 Modifier Volume Processing for Various Polygons
An Opaque Modifier Volume list is used for Modifier Volumes for Opaque polygons.
In HOLLY2, Modifier Volume processing on Opaque polygons is performed together with Modifier

Volume processing on Punch Through polygons.
An Opaque Modifier Volume list is used for Modifier Volumes for Punch Through polygons. The

Punch Through polygon processing is first performed for "area 0," and then only those pixels that form
"area 1" due to the Modifier Volume are drawn again. Therefore, if the texture data and UV coordinate
values that are used for parameter 0 and parameter 1 in Parameter Selection Volume mode differ,
inconsistencies such as a pixel that was opaque in area 0 being transparent in area 1 can arise, resulting
in not being able to draw the polygons correctly. Also, graphics cannot be correctly drawn even if
parameters 0 and 1 have different Base Color alpha values.

Therefore, for Punch Through polygons, it is normally possible to change only the base color and
offset color RGB values in parameter 0 and parameter 1.

The processing time for an Opaque Modifier Volume is simply equivalent to the drawing time for that
number of polygons.

A Translucent Modifier Volume list is used for Modifier Volumes for Translucent polygons. Because
only Auto-sort mode is supported, Modifier Volume processing is performed for each layer while
sorting the polygons, starting from the back. Therefore, because each Translucent polygon is processed
once for each layer that they overlap, a great deal more processing time is required in comparison with
an Opaque Modifier Volume.

- 109 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.6 Flow of Texture Mapping and Shading Processing
The following diagram illustrates the flow of texture mapping and shading. Color clamp processing is

performed Fog processing, and α blend processing is performed after Fog processing.
The pixel data that is drawn in units of Tiles is ultimately stored in the primary accumulation buffer, and

from there it is transferred to the frame buffer in texture memory.

Fog Mixer

Texture Fetch
([alpha], color)

Base Color
[Const or Interpolated]

Color

Fog Instr.
Bits

Depth Fog
Color Reg.

Fog MuxFog density

Interpolated Fog Density

Depth based Fog
Density

“0”

 Ignore α Bit

Texture/Shading Combine, and Bump Map Unit
 Texture/Shading
 Instruction

Offset Color
[Const or Interpolated]

Alpha ‘Fog’ Unit

Color

‘Fog’ Alpha
ColorColor + AlphaColor + Alpha

Vertex Fog
Color Reg.

Fog Color

To Frame store

 Accumulation Buffer
 SRC & DST Select SRC Select Mux

Secondary
Accumulation Buffer

Alpha Blending Unit Accumulation Buffer
 Instruction Bits

SRC
(Color + alpha)

DST Select Mux AND DEMux

PRIMARY
Accumulation Buffer

‘Alpha Blending’
Unit

 Color Clamp
 MIN/MAX

Color Clamp
 Color Clamp
 Select

Tri-linear
Multiplier

Tri-linear
Factor

 Tri-linear
Mode

Fig.3-14

- 110 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.6.1 Secondary Accumulation Buffer
Normally, drawing pixel data for individual Tiles is drawn in a buffer called the "Primary

Accumulation Buffer." Another buffer, called the "Secondary Accumulation Buffer," is provided in
order to permit the treatment of the result of overlapping multiple polygons as a single polygon.

The Secondary Accumulation Buffer is typically used for the following:

• Translucent polygons that have been subjected to trilinear filtering

• Translucent polygons that are Bump Mapped + Textured polygons

All that is necessary in order to be able to draw in the Secondary Accumulation Buffer is to set the
DST Select bit (bit 24) in the TSP Instruction Word to "1". To use the results of the draw in the
Secondary Accumulation Buffer as texture data, use a polygon that was drawn by drawing the data in
the Secondary Accumulation Buffer to the Primary Accumulation Buffer (the Flush polygon), and set
the SRC Select bit (bit 25) in the TSP Instruction Word to "1".

The pixel data that is stored when drawing to the Secondary Accumulation Buffer is ARGB 32-bit
data of the same type that is normally drawn and stored in the Primary Accumulation Buffer. When
drawing the result of alpha blending processing in the Secondary Accumulation Buffer to the Primary
Accumulation Buffer as a Translucent polygon, it is essential to note that the pixel alpha values for the
polygon in the Secondary Accumulation Buffer are used, so it is not possible to use the alpha value in
the Base Color of the Flush polygon for control.

The Flush polygon is a polygon that is used to extract a shape specified by pixel data that was
previously stored in the Secondary Accumulation Buffer and then draw that shape in the Primary
Accumulation Buffer (Cut & Paste). It is necessary to once draw to the Secondary Accumulation Buffer
for the pixel coordinates that are to be cut. The pixel data in the Secondary Accumulation Buffer is used
as is, and texture mapping and shading processing (including Base Color, Offset Color, texture, and
Texture/Shading Instructions) are ignored. Therefore, use normal Non-textured polygons for Flush
polygons.

- 111 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.7 Texture Mapping

§3.4.7.1 MIPMAP
When a polygon on which a texture has been mapped moves in the Z direction, the size of the

polygon that is displayed changes. In this case, if the same texture is used, the appearance of the texture
becomes distorted as it changes in conjunction with the movement of the polygon, and even flickering
can occur in a texture that has been applied to a small polygon.

The solution for this type of case is to prepare textures of different sizes beforehand, and then
perform processing that switches among these textures in accordance with the size of the polygon on
which they are displayed. This processing is called "MIPMAP" processing. ("MIP" stands for the Latin
phrase "Multim Im Parvo," or "many in a small space.") MIPMAP textures are prepared as square
textures ranging in size from 1 x 1 to a specified size.

32x32

16x16

8x8

4x4
2x2 1x1

Fig. 3-15
The selection of a MIPMAP texture that accords with the displayed size of the polygon is performed

according to a value, named "D," that is calculated by the CORE. For example, a texture of the
specified size is used when 0.0 < D < 2.0, and the next smaller sized texture is used when 2.0≦ D < 3.0.

The precision of the calculation of D (that is, the equation that is used) can be selected from among
two types through "Dcalc Ctrl" in the ISP/TSP Instruction Word. Each of the equations is shown below.
Note that "a," "b," "c," "d," "e," "f," "p," "q," and "r" are texture mapping coefficients, "X" and "Y" are
screen coefficients, and "X'" and "Y'" are the screen coefficients of the first vertex.

a(pX’+qY ’+r) – p(aX’+bY ’+c)
(pX + qY + r)2dudx =

d(pX’+qY ’+r) – p(dX’+eY ’+f)
(pX + qY + r)2dvdx =

b(pX’+qY ’+r) – q(aX’+bY ’+c)
(pX + qY + r)2dudy =

e(pX’+qY ’+r) – q(dX’+eY ’+f)
(pX + qY + r)2dvdy =

When Dca lc Ct r l = 1When Dca lc Ct r l = 0

ar – pc
(pX + qY + r)2dudx =

dr – pf
(pX + qY + r)2dvdx =

br – qc
(pX + qY + r)2dudy =

er – qf
(pX + qY + r)2dvdy =

D = MA X(dx , dy)

dx = dudx 2 + dvdx 2 dy = dudy 2 + dvdy 2，

The equations that are used when "Dcalc Ctrl = 1" offer greater precision for small polygons, but
consume much more computing (drawing) time. Note also that the D value that is calculated by these
equations can be adjusted through "MIP-MAP D adjust" in the TSP Instruction Word.

§3.4.7.2 Texture Filtering
There are three filtering modes (listed below) for texture mapping. The mode is specified through

"Filter Mode" in the TSP Instruction Word.

- 112 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

• Point sampling

• Bi-linear filtering

• Tri-linear filtering

The polygon sampling position (x, y) that is used when calculating texture coordinates (u, v) can be
selected through the HALF_OFFSET register as either (0, 0) or (0.5, 0.5). Normally, (0.5, 0.5) is
selected.

In addition, there is a function available, called "texture super-sampling," that enlarges the texture
sampling point per pixel by a factor of four (by doubling the size in both the horizontal and vertical
directions), thus increasing the image quality when the texture is compressed.

§3.4.7.2.1 Point Sampling

Point sampling uses the data from the texture coordinates (u, v) that were derived from the
sampling point (x, y) as texture data for the drawing pixel.

Although this mode entails the least processing load of the different types of texture mapping
processing, the quality of the image deteriorates if it is enlarged or compressed.

Textu r e da t a for
dr a win g pixel

Ca lcu la ted (u , v)

Texture Map

Fig. 3-16

- 113 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.7.2.2 Bi-linear Filtering

Bi-linear filtering takes the weighted average of the data from the texture coordinates (u, v) that
were derived from the sampling point (x, y) and the data from three adjacent texels (for a total of
four texels), and uses the result as texture data for the drawing pixel.

Because the weighted average is taken from data for four texels, the quality of the image when
expanded or compressed is superior to that produced by point sampling (although in some cases the
image may appear to be out of focus). The processing time is practically the same as compared to
point sampling when working with Twiddled-format textures, but when working with Non-Twiddled
format textures, processing time can double in a worst-case instance.

Weighted average
of da ta for fou r
texels is taken

Texture da ta for
drawing pixel

Ca lcula ted (u , v)

Texture Map

Fig. 3-17

Because data for four texels is used for bilinear filtering, in a case where the texture coordinates
calculated from the sampling point lie on the edge of the texture map, then the adjacent texels (those
that lie on opposite edges of the texture map) are used, which may result in an unexpected pixel
color. (This problem can be avoided by using the Texture UV clamp function.) It is important to
note that this problem also occurs when using an extracted portion of a larger texture map.

Because coordina tes a re loca ted a t the
edge of the texture map, t exels from the
opposite edge a re used.

Ca lcu la ted (u , v)

Texture Map

Calcu la ted (u , v)

Texture Map

Calcu la ted (u , v)

Texture Map

Extracted
por t ion

Texels ou t side of the
ext racted a rea a re used

Fig. 3-18

When bilinear filtering has been performed on a texture that contains transparent texels, the
transparent texel data (both alpha values and color values) is also used in calculating the weighted
average of the four texels, with the result being used for the alpha value of the drawing pixel.

The translucent polygon has been drawn by alpha value of calculating result, but note that it may
have an influence on transparent texel color data at boundaries between transparent and opaque
pixels.

- 114 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

In the case of Punch Through polygons in the HOLLY2, pixels are drawn only if their calculated
alpha value is 1.0 (in other words, when the alpha value of all four texels is 1.0).

When drawing a polygon using a Punch through texture (a texture in which the alpha values are
only 0.0 or 1.0), the drawing results at boundaries between transparent and opaque pixels differ,
depending on whether the polygon is registered as a Punch Through polygon or a Translucent
polygon. Although the boundary is neater in the case of a Translucent polygon, much more time is
required to draw a Translucent polygon as opposed to a Punch Through polygon.

Text ure Map In th e case of a Pu nch Through

polygon:

0xFFFF (opaque)

In th e drawing pixel da t a , th e t r an spa ren t t exel
da ta ha s an effect , so tha t t he ca lcu la t ed a lpha
va lu e = 0.5; therefore, t he pixel is not dr awn .

0x0000
(t ranspa rent)

Calcu la t ed (u , v)

In th e case of a Translu cen t

polygon:In th e drawing pixel da t a , th e t r an spa ren t t exel
da ta ha s a n effect , so tha t the a s a resu lt of t he
ca lcu la t ion so th a t ea ch 8-bit color RGB = 0x7F
an d is dr awn with an a lpha va lue of 0.5.

Fig. 3-19

- 115 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.7.2.3 Tri-linear Filtering

When using one texture map, it is possible to improve the quality of the image by using bi-linear
filtering instead of point sampling. In addition, MIPMAP processing is used in order to improve the
quality of the image when the compression factor is large (i.e., the image has moved away along the
Z axis). However, even if bi-linear filtering is used in conjunction with MIPMAP processing, it is
possible to clearly see the switchovers between MIPMAP textures of different sizes. Tri-linear
filtering takes the weighted average of the results produced by bi-linear filtering of MIPMAP
textures of two different sizes, and uses the result as texture data for the drawing pixel.

Because the weighted average is taken from data for eight texels in all, this approach offers the
best quality in enlarged and compressed images, and the switchovers between MIPMAP textures
appear smooth. However, because this method requires the most processing time, it is not
recommended for use with all polygons.

③① ②

Weigh ted average
of da ta for two
texels is t aken

Weighted avera ge
of da ta for fou r
texels is ta ken

Textu re da ta for
drawin g pixel

Ca lcu la ted (u , v)

Texture m ap selected

on basis of D value

Weighted avera ge
of da ta for fou r
texels is t aken

Calcu la ted (u , v)

Texture map of next

smaller size

③

Fig. 3-20
As in the case of tri-linear filtering, it is important to note that unexpected pixel colors might be

drawn, depending on the texture coordinates that are calculated. The same also applies to textures
that include transparent texels.

When drawing a polygon with tri-linear filtering, the processing is performed twice for an Opaque
polygon and three times for a translucent polygon. In other words, polygon parameters for two identically
shaped polygons are required for an Opaque polygon, and polygon parameters for three identically
shaped polygons are required for a translucent polygon.

＜Opaque Polygons＞
Drawing an Opaque polygon with tri-linear filtering is performed by performing the following

two polygon processes:

(1) Draw the polygon with "Tri-linear Pass A" specified for the Filter mode. In this case, the Blend
Function should be DST := SRC x "1" + DST × "0" (SRC Alpha Instruction = “1”, DST Alpha
Instruction = “0”), and draw the polygon in the Primary Accumulation Buffer (SRC & DST select =
"0").
The polygon is drawn with color data (as the SRC) produced by multiplying [1 - decimal portion of
D] by the data produced through bi-linear filtering of the
MIPMAP texture with the higher resolution.

(2) Draw the polygon with "Tri-linear Pass B" specified for the Filter Mode. In this case, the Blend
Function should be DST := SRC x "1" + DST × "1" (SRC Alpha Instruction = “1”, DST Alpha
Instruction = “0”), and draw the polygon in the Primary Accumulation Buffer (SRC & DST Alpha
Instruction = "1").
The polygon is drawn with color data (as the SRC) produced by multiplying [decimal portion of D]
by the data produced through bi-linear filtering of the MIPMAP texture with the lower resolution.

However, although the polygon for which "Pass A" was specified may be registered in an
Opaque List, the polygon for which "Pass B" was specified must be registered in a translucent
list.

- 116 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

＜Translucent Polygons＞
A translucent polygon with tri-linear filtering is drawn by performing the following three

polygon processes:
(1) Draw the polygon with "Tri-linear Pass A" specified for the Filter Mode. In this case, the Blend

Function should be DST := SRC x "1" + DST × "0" (SRC Alpha Instruction = “1”, DST Alpha
Instruction = “0”), and draw the polygon in the Secondary Accumulation Buffer (SRC select = "0",
DST select = "1").
The polygon is drawn with color data (as the SRC) produced by multiplying [1 - decimal portion of
D] by the data produced through bi-linear filtering of the MIPMAP texture with the higher
resolution. At this point, [1 - decimal portion of D] is calculated for the pixel alpha values and
stored in the Secondary Accumulation Buffer. Normally, it is sufficient to specify the alpha value
of the final polygon for the alpha value of the Base Color.

(2) Draw the polygon with "Tri-linear Pass B" specified for the Filter Mode. In this case, the Blend
Function should be DST := SRC x "1" + DST × "1" (SRC Alpha Instruction = “1”, DST Alpha
Instruction = “0”), and draw the polygon in the Secondary Accumulation Buffer (SRC select = "0",
DST select = "1").
The polygon is drawn with color data (as the SRC) produced by multiplying [decimal portion of D]
by the data produced through bi-linear filtering of the MIPMAP texture with the lower resolution.
At this point, [1 - decimal portion of D] is calculated for the pixel alpha values and stored in the
Secondary Accumulation Buffer. Normally, it is sufficient to specify the alpha value of the final
polygon for the alpha value of the Base Color.

(3) Using the data that was produced by tri-linear filtering in the Secondary Accumulation Buffer as
the SRC, draw the polygon in the Primary Accumulation Buffer (SRC select = "1", DST select =
"0"). The Blend Function (SRC/DST Alpha Instruction) may be specified as desired in this case.
Normally, DST := SRC × "SRC Alpha" + DST × "Inverse SRC Alpha" (SRC Alpha Instruction = 4,
DST Alpha Instruction = 5).
When the SRC data is stored in the Secondary Accumulation Buffer (SRC select = 1), the values in
the Secondary Accumulation Buffer are used as is for the alpha and color values of the SRC pixels.
The polygon's Shading Color and Texture/Shading instructions are ignored. Therefore, the alpha
value of a tri-linear filtered Translucent polygon is specified by the polygon Base Colors from 1
and 2 above.

Naturally, all three polygons must be registered in a translucent list. In the HOLLY2, Trilinear
filtering cannot be specified for a Punch Through polygon.

§3.4.7.2.4 Texture Super-Sampling

Texture super-sampling can be used in combination with the three filtering modes. This function
doubles the texture sampling points per pixel in both the horizontal and vertical directions [(x, y), (x
+ 0.5, y), (x, y + 0.5), (x + 0.5, y + 0.5)], compresses the texture and improves the quality of the
portion that is drawn. However, because this quadruples the amount of texture data that is read,
drawing takes about three or four times as long as compared to when this function is not used.

This function is recommended for use only when it is necessary to improve the image quality of a
polygon that has a texture that has an intricate pattern or fine lines and that has been compressed. In
addition, because this function yields few benefits if it is used at the same time as full-screen
filtering that used the X scaler and Y scaler, it is recommended that only the full-screen filtering be
used, due to the negative impact on drawing performance that the texture super-sampling function
has.

- 117 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.7.3 Bump Mapping
Bump Mapping is a method that is used to create the appearance of raised and lowered areas on a flat

polygon surface by varying the brightness of the surface. The brightness of each pixel is determined by
the hardware on the basis of the light source vector specified for each polygon and by the normal line
vector specified for each texel (Bump Map texture).

The following two data items are specified as parameters for Bump Mapped polygons.

(1) Bump Map parameters: K1K2K3Q (light source vector data)
(2) Bump Map texture: SR (texel normal line vector data)

The K1K2K3Q data for Bump Mapped polygons is set in the location where the normal polygon
Offset Color data is stored, and the data for the third vertex is valid (for example, as the Shading Color
data for Flat Shading). In the case of a strip polygon, the data for the third and subsequent vertices is
valid.

Bump Map parameters (specified for individual polygons)
bit 31-24 23-16 15-8 7-0

K1 K2 K3 Q

Bump Map textures (specified for individual texels)
bit 15-8 7-0

S R

The RGB values of the texture data for Bump Mapped polygons are fixed to "white" (R = G = B =
0xFF), and the alpha value is the brightness (0x00 to 0xFF) that is calculated on the basis of the above
parameters, where the darkest pixels are 0x00 and the brightest pixels are 0xFF. The color data for the
drawing pixels is calculated from the texture data and the Base Color value according to the method
specified in the Texture/Shading Instruction in the TSP Instruction Word.

When drawing the image of the Bump Mapped polygon itself, normally Decal Alpha is selected by
the Texture/Shading instruction. In this case, the color of the darkest pixels is the color that is specified
by the Base Color, and the color of the brightest pixels is white (the Bump Map Texel color). When
using alpha blending, the pixel alpha color can be specified by the Base Color. for example, if a
polygon is drawn with black (0xFF000000) specified for the Base Color for all pixels, a monochrome
polygon with depressions and raised portions is produced.

Bum p M apped ポ リゴ ン (Texture/Shading Inst ruct ion = Decal Alpha)

Flat Sha ding

Base Color = 0xFF 000000

Flat Sha ding

Base Color = 0xFF 0000FF

Gour aud Sh ading

Base Color 0 = 0xFFF F0000

Base Color 1 = 0xFF 00F F00

Base Color 2 = 0xFF 0000F F

Base Color 3 = 0xFF 000000

Fig. 3-21

- 118 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.7.3.1 Bump Mapping Algorithm

The following section describes the operations that the hardware performs in order to derive the α
values for the texture data from the six 8-bit parameters (K1, K2, K3, Q, S, and R) that were
specified.

The two angles that indicate the vector to a point on a hemisphere (refer to diagram below) are set
in S and R, the parameters that specify the normal line vector for each texel.

Angle S

Angle R

Fig. 3-22

The point indicated on the hemisphere (XS, YS, ZS) is expressed through the following equations.

XS = cos(s’)*cos(r’)

YS = sin (s’)

ZS = cos(s’)*sin (r ’)

π
2 256

S

256
R

2πr ’=

s’=

However,

In other words, the angles that express the normal line vector are specified with a value of 0 to
255, which in the case of S represents a range of angles from 0° to 90°, and in the case of R
represents a range of angles from 0° to 360°. If "255" is specified, "256" (in other words, 90° or
360°) is assumed. Similarly, the light source vector can also be expressed by the following
equations:

XL = cos(t ’)*cos(q’)

YL = sin (t ’)

ZL = cos(t ’)*sin (q’)

π
2 256

T

256
Q2πq’=

t ’=

However,

Because the brightness I of each texel is determined by the inner product of both vectors, the
equation is as follows:

 I = XS*XL + YS*YL + ZS*ZL

= cos(s’)cos(r’)cos(t ’)cos(q’) + sin(s’)sin(t ’) + cos(s’)sin(r ’)cos(t’)sin(q’)
= sin(s’)sin(t ’) + cos(s’)cos(t ’)cos(r ’-q’)

The alpha values for the drawing pixels are calculated by the hardware according to the following
equations that allow the amount of change in the brightness to be specified so that various effects
can be obtained. The Bump Map parameters K1, K2, and K3 are calculated according to the above
equations, and set accordingly. ("0" is set for "0.0," and "255" is set for "1.0.")

- 119 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

α = (1-st rength) + st rength*I
= (1-st rength) + st rength*sin(s’)sin (t ’) + strength*cos(s’)cos(t ’)cos(r ’-q’)
= K1 + K2*sin(s’) + K3*cos(s’)cos(r ’-q’)

However,K1 = 1-strength [strength = 0.0～ 1.0]
K2 = strength*sin (t ’)
K3 = strength*cos(t ’)

§3.4.7.3.2 Bump Mapped + Textured Polygons

Bump Mapped polygons are not normally used by themselves; instead, they are used in
combination with Textured polygons. Three examples of how to combine these polygons are
described below. Normally, Method A is used. Although the result (the RGB value) produced by
Method A and Method B is the same, the alpha value of the pixels that are drawn can be controlled
for the whole polygon through method A (the alpha value is calculated from the alpha value in the
Base Color of the Textured polygon and the alpha value of the texel), while method B does not
permit control of the alpha value because alpha values in a Bump Mapped polygon are reflected on a
pixel by pixel basis. The polygon Shading Color is specified on the Textured polygon side. In
addition, both the Bump Mapped polygon and the Textured polygon are registered in a Translucent
polygon list.

① Bum p Mapped polygon
Deca l Alph a
SRC = One
DST = Zero

Base Color = 0xFF000000

Bump Mapped polygon and Textured polygon

② Textured polygon
Modula te Alpha

SRC = Other Color
DST = Zero

Base Color = 0xXXXXXXXX
Fla t Sha ding Gouraud Shading

Method A

① Bum p Mapped polygon
Deca l Alph a
SRC = One
DST = Zero

Base Color = 0xFF000000

② Textured polygon
Modula te Alpha

SRC = SRC Alpha
DST = Inverse SRC Alpha

Ba se Color = 0x80XXXXXX

Method C

Fla t Sha ding Gouraud Shading

① Textured polygon
Modu la te Alpha

SRC = One
DST = Zero

Base Color = 0xXXXXXXXX

② Bum p Mapped polygon
Deca l

SRC = Zero
DST = SRC Alpha

Base Color = 0xXXXXXXXX

Method B

Resu lt s a re the same as method A

Fig. 3-23

- 120 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

To make an image that was formed by combining a Bump Mapped polygon with a Textured
polygon into a Translucent polygon, use the Secondary Accumulation Buffer. When using method A
above, specify the drawing buffer in the Secondary Accumulation Buffer, and then draw a polygon
with the same shape (a Flush polygon) in the Primary Accumulation Buffer. In other words, three
polygons are required: (1) Bump Mapped polygon, (2) Textured polygon, and (3) Flush polygon.

Example of a Translucent polygon formed by a Bump Mapped polygon + Textured polygon

(1) Bu m p Mapped polygon
Deca l Alpha
SRC = One
DST = Zero

SRC Select = 0
DST Select = 1

Ba se Color = 0xFF000000

 (2) Textured polygo
Modula te Alpha

SRC = Other Color
DST = Zero

SRC Select = 0
DST Select = 1

Base Color = 0xXXXXXXXX

 (3) Flush polygon
[No effect]

SRC = SRC Alpha
DST = Inverse SRC Alpha

SRC Select = 1
DST Select = 0

[No effect]

Example of a Translucent polygon formed by a Bump Mapped polygon + Textured polygon

Fin al draw in g polygon
The a lpha value of the
polygon pixels is ca lcu la ted
from the a lpha va lue in the
Base Color of the Textured
polygon and the a lpha va lue
of the texel. Therefore, t he
t ra nsparen t texels in the
texture a re processed as is.

Non-Textu red
An y n on -
textu r ed
polygon

Transpa ren t texel

Fig. 3-24

- 121 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.8 Fog Processing
Fog processing can be specified for each polygon individually. There are two types of Fog processing:

"Look Up table mode" and "Per Vertex" mode. These modes are specified through "Fog control" in the
TSP Instruction Word. The two modes can both be used within the same screen, and the Fog Color for each
can be specified independently (in the FOG_COL_PAL register or the FOG_COL_VERT register). In
addition, Fog processing is performed prior to the α blend processing.

The equation that is used to calculate the color in Fog processing is as follows:

Fogged_pixel = (1.0 – Fog_alpha) × pixel_col + Fog_alpha × Fog_col

Fogged_pixel: Color data after Fog processing
Fog_alpha: Fog coefficient (8-bit value)
pixel_col: Pixel color
Fog_col: Fog Color

§3.4.8.1 Look-up Table Mode
128 Fog coefficients can be specified in the Fog table. The value that is obtained by interpolating

between the two values that are retrieved from the table according to the pixel's Z (1/W) value becomes
the Fog coefficient for the drawing pixel.

Z0 table value

Z1 table value

Z0 Z1Z
Pixel Z (1/W) value

Fig. 3-25

F The 1/W value, which is used as the Fog table address, is obtained by multiplying the actual Z
value for the drawing pixel by the value specified in the FOG_DENSITY register, clamped between 1.0
and 255.9999. The 7-bit Fog table address is formed as follows from the 1/W value that was calculated.

bit 6-4 3-0
Lower 3 bits for the 1/W index Upper 4 bits for the 1/W mantissa

(the sign bit and "1.0" bit are ignored)

The bit configuration of the FOG_DENSITY register is as shown below. For example, if specifying
255.0, set 0xFF07. In this case, if the Z value of the actual drawing pixel is 1/255.0, then 1/W = 1.0.

bit 15-8 7-0
8-bit mantissa

(bit 15 is the "1.0" bit)
8-bit index

(two's complement)

In addition, the following equation is used to derive the 1/W value from the table address value
(index):

1/W = (pow(2.0, Index>>4) × ((Index & 0xF)+16) / 16.0)) / FogDensity ;
The coefficient for when 1/W = 1.0 is stored at Fog table address 0 (the start of the table), and the

coefficient for when 1/W = 256.0 is stored in table address 127. The 16-bit data in the Fog table
consists of two 8-bit Fog coefficients. The Fog coefficient that is stored in the upper 8 bits is the
coefficient where the value of 1/W is equal to that address, while the Fog coefficient that is stored in the
lower 8 bits is the Fog coefficient that is used for interpolation when the Fog coefficient is larger than

- 122 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

the address value (in other words, the Fog coefficient in the next address).

Address bit 15-8 bit 7-0
0x00 Coefficient when address = 0x00 Coefficient when address = 0x01
0x01 Coefficient when address = 0x01 Coefficient when address = 0x02
0x02 Coefficient when address = 0x02 Coefficient when address = 0x03

…………………………………………………………………………………

0x7E Coefficient when address = 0x7E Coefficient when address = 0x7E
0x7F Coefficient when address = 0x7F Coefficient when address = 0x7F

Look-up table mode includes processing called "Mode 2." For a polygon for which this mode is
specified, the Base Color α value and RGB value are replaced as follows:

Base Color α value = Fog coefficient
Base Color RGB value = Fog Color value

This mode is used for polygons for which Fog processing is to be performed after α blend processing.
For example, when applying a color filter (which controls the transmission ratio of each color) to a
textured polygon, the textured polygon is drawn first, and then a color filter polygon is blended on top
of the first polygon with "other color" or "Inverse Other Color" specified. If Fog processing is
performed on each polygon individually, the resulting image will not be correct.

To draw such a polygon, first blend and draw the textured polygon and the color filter polygon with
no Fog processing. Then blend a third polygon, for which Mode 2 Fog processing is specified, on top
of the other two polygons with "SRC Alpha" or "Inverse SRC Alpha" specified. This approach will
yield the correct image if Fog processing is applied after the two polygons are blended.

§3.4.8.2 Per Vertex Mode

A Fog coefficient is specified for the α value of the Offset Color data for each vertex of a polygon.
In the case of a polygon for which Gouraud shading was specified, the Fog coefficient for each drawing
pixel is derived by interpolating from the α value of the Offset Color for each vertex. When Flat
Shading is specified, the Fog coefficient is also constant.

The only difference between this mode and Look Up table mode is that the Fog coefficient is not
retrieved from a table according to the Z value; instead, it is derived from the value specified for each
vertex. The color operation equations that use the resulting Fog coefficient are completely identical in
the two modes. In addition, with the normal Look Up table mode, once the table has been set, the
hardware performs Fog processing automatically. In "Per Vertex" mode, however, the CPU has to
calculate and set the Fog coefficient (α value) for each vertex each time, according to the polygon's
position. This increases the load on the CPU. However, there are some effects that can be implemented
in "Per Vertex" mode that cannot be implemented in Look Up table mode (for example, creating a Fog
effect based on the Y value instead of the Z value).

Polygons for which this mode is specified must be set up so that an Offset Color is used (Offset bit =
1). If the polygon is not set up to use an Offset Color, Fog processing is not performed.

- 123 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.9 Clipping
There are two types of clipping: Tile Clipping, which is performed on individual Tiles by the TA; and

pixel clipping, which is performed on individual pixels when they are written to the frame buffer.

§3.4.9.1 Tile Clipping
Polygon data that is input to the TA can be clipped at the individual Tile level, so that polygon data

(object) that is completely outside of the specified clipping area is not stored in texture memory. the
Tile Clipping area in the TA is determined by the "Global Tile Clip area" (which is specified by the
TA_GLOB_TILE_CLIP register), and the "User Tile Clip area" (which is specified by the User Tile
Clip Control Parameters). Because the Global Tile Clip specification is a register specification, it can
only be specified for an entire screen. The User Tile Clip specification can be selected for individual
objects as either "off," "enabled inside area," or "enabled outside area." The size of the area can also be
set individually for each object. (Refer to section 3.7.3.3.)

User t ile clip a rea (enabled inside a rea)

C

B
Tile clipping a rea

Global t ile clip a rea

Display screen

A

Only B is registered

Fig. 3-26

- 124 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

For example, when drawing a screen that is divided into two Tiles as shown below, Tile Clipping only
needs to be performed when inputting polygon for each data into the TA.

Tile clipping on
left side of

screen

Tile clipping on
r igh t side of

screen

Image tha t is
drawn

Exam ple of param eter inpu t for TA

User Tile Clip pa rameter tha t
specified the left side of the screen

Opaque polygon da ta needed for the
left side of t he screen

User Tile Clip pa rameter tha t
specified th e r igh t side of the screen
Opaque polygon da ta needed for the

r igh t side of the screen
Opaqu e en d of list

User Tile Clip pa rameter tha t
specified the left side of the screen

Opaque polygon da ta needed for th e
left side of the screen

User Tile Clip pa rameter tha t
specified th e r igh t side of the screen
Opaque polygon da ta needed for the

r igh t side of the screen
Translucen t end of list

Fig. 3-27

- 125 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.9.2 Pixel Clipping
Pixel data that is transferred from the accumulation buffer in the CORE to the frame buffer in texture

memory can be clipped at the individual pixel level so that data that is outside of the specified clipping
area is not stored in the frame buffer (but the polygon is drawn). Because the pixel clipping area is
specified by the FB_X_CLIP register and the FB_Y_CLIP register, only one area can be specified on
one screen. Note that pixels that are in the positions specified by the register are deemed to be inside of
the area, and are therefore stored in the frame buffer.

If the size of the display screen is larger than that of the clipping area, any data that remains in frame
buffer is displayed as is in the portion of the screen that lies outside of the clipping area.

Display screen

Pixel clipping a rea

The gray pixels a re

stored in the frame

buffer

Fig. 3-28

For example, when drawing a screen such as the one shown below where the window area does not
coincide with Tile boundaries, use pixel clipping and draw twice within one frame.

Fir st
drawin g

Secon d
dr awin g

+
pixel clippin g

Com pleted
im age

Exam ple of param eter in pu t an d
draw in g processin g

Fir st
pa ra m eters

for TA

Opa qu e polygon n eeded for
fir st dr aw

Tran slu cen t polygon n eeded
for fir st draw

Opaqu e en d of list

Tran slu cen t end of list

Opa qu e polygon n eeded for
secon d dr aw

Tran slu cen t polygon n eeded
for secon d draw

Opaqu e en d of list

Tran slu cen t end of list

Secon d
para m eters

for TA

TA in it ia liza t ion

P ixel clippin g set t in g
(por t ion of screen)
Secon d ren der in g

TA in it ia liza t ion

P ixel clippin g set t in g
(en t ir e scr een)
F ir st r en der in g Two dr awin g

processes

Note:Th e fir st a n d secon d display list s a re
stor ed in sepa r a te textu re m em or y a r ea s.

Fig. 3-29

§3.4.10 Drawing to a Texture Map

- 126 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The pixel data that is drawn in the accumulation buffer in the CORE is transferred to the texture memory
address specified by the FB_W_SOF1 register and the FB_W_SOF2 register. These registers can be used
to specify whether to store the screen data that has been drawn as texture data for subsequent use, or as
frame buffer data for a TV display.

Register Specified addresses Access area
FB_W_SOF1, 0x0000000～0x0FFFFFC 32-bit (frame buffer)
FB_W_SOF2 0x1000000～0x1FFFFFC 64-bit (texture data)

②

①

Texture MemoryHOLLY

CORE
Accumula t ion

Buffer
(32x32pixel)

Display
list 0

Frame
buffer 0

Display
list 1

Frame
buffer 1

Texture da ta

32-bit area 64-bit a rea

32-bit area

32bit

32bit

(1) : Storage for TV display of drawing resu lt s
(2) : Storage for using drawing resu lt s a s a t extu re

Fig. 3-30

The data that is stored in the 32-bit area is separate from the data that is stored in the 64-bit area, and
frame buffer data cannot be used as texture data and texture data cannot be used for TV display. Therefore,
when performing environment mapping using the drawing results, the first drawing results are stored in a
64-bit area, and then the results of the second drawing that was done using the texture data is stored in the
32-bit area.

When texture data is stored in a 64-bit area, the data is stored according to the same frame buffer-related
register settings as when stored in a frame buffer, so it is necessary to set the registers in a way that will
produce correct texture data. Furthermore, when the drawing results that are stored in the 64-bit area are to
be used for a texture, the texture format will be either Non-Twiddled Rectangular format or Stride format.

FB_W_CTRL
bit 2-0

Pixel format When drawing to a texture map

0 0555 KRGB 16 bit Can be used for drawing to a texture map
1 565 RGB 16 bit
2 4444 ARGB 16 bit
3 1555 ARGB 16 bit
4 888 RGB 24 bit Cannot be used for drawing to a texture map
5 0888 KRGB 32 bit
6 8888 ARGB 32 bit
7 Reserved Cannot be used

§3.4.11 X Scaler & Y Scaler
The X scaler and the Y scaler perform filtering and scaling in the X and Y directions when transferring

pixel data from the accumulation buffer in the CORE to the frame buffer in texture memory. Because this
filtering and scaling is not performed when the pixel data is transferred from the frame buffer to the DAC,

- 127 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

the image that is displayed on the screen is identical to the pixel data in the frame buffer.

Accumulation
Buffer
(32x32)

X&Y Scaler

Y-sca lingY-filter ing
(3line)

X-filter ing & scaling
(2pixel)

Frame Buffer

Texture Mem oryCORE

Fig. 3-31

§3.4.11.1 X Scaler
The X scaler filters every two pixels of pixel data in the X direction that is being drawn, scaling down

the image by 1/2. Whether or not to use this function can be specified in the SCALER_CTL register.
The filtering coefficient is fixed at 0.5, and the averaged data of two adjacent pixels in the

accumulation buffer is stored in the frame buffer as data for one pixel. Therefore, when using X
filtering, it is necessary to draw with double the display resolution in the X direction.

Fram e BufferAccum ulat ion Buffer
0 1 2 3 0+1 2+3 4+54 5

Fig. 3-32

- 128 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.11.2 Y Scaler
The Y scaler filters three lines of pixel data in the Y direction that is being drawn, scaling the image

as specified. Filtering is performed only when scaling an image down, not when scaling an image up.
When scaling an image down, the filtering coefficient is specified in the Y_COEFF register. The
scaling coefficient is specified in the SCALER_CTL register.

When using Y filtering at the drawing resolution in the Y direction, it is sufficient to specify a
reduction coefficient as close to 1.0x as possible (0x0401).

Y scaling produces an image by interpolation of lines above and below according to the results of line
position calculation.

line 4

scale down (x1/1.5)

Image after Y scalingImage after Y filteringImage after drawing

line 0

line 1

line 2

line 3

line 1 (0+1+2)
line 2 (1+2+3)
line 3 (2+3+4)

line 0 (0+0+1)
line 1 (1)
line 2 (3)
line 3 (4)

line 0 (0)

scale up (x1.5)

line 1 (0)
line 2 (1)
line 3 (2)

line 0 (0)

Fig. 3-33

§3.4.12 Flicker-free Interlacing
With an interlaced display, the Y scaler can be used to implement flicker-free filtering. However,

because the Tiles must be drawn in sequence in the Y direction, the Region array data (refer to section 3.7)
must be stored (arranged vertically) so that it is drawn in the Y direction.

There are two methods for implementing flicker-free filtering; the screen drawing intervals, the frame
buffer memory size, and read control for display differ for each method.

Type Screen drawing interval Frame buffer
memory size

Read control for display

A 1/30 second (NTSC) or
1/25 second (PAL)

480 lines Shift the start address one line for each field,
skipping one line at a time when reading

B 1/60 second (NTSC) or
1/50 second (PAL)

240 lines Display as is

- 129 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.12.1 Type A
First, set the Y scaler scaling coefficient so that the reduction coefficient is as close to 1.0x (0x0401)

as possible, and enable Y filtering. The result of filtering three lines of data is then stored in the frame
buffer. In other words, the result of drawing 480 lines is stored in the frame buffer as 480 lines.
Therefore, the screen needs to be drawn for each frame (in units of 1/30 or 1/25 seconds).

When displaying the image, shift the start address for the read from the frame buffer one line for each
field, skipping one line at a time.

For field 0
line 0

line 1

line 2

line 3

line 476

line 477

line 478

line 479

line 0 (0+0+1)

line 1 (0+1+2)

line 2 (1+2+3)

line 3 (2+3+4)

line 476 (475+476+477)

line 477 (476+477+478)

line 478 (477+478+479)

line 479 (478+479+479)

Image after Y filtering
(640x480)

Drawing image
(640x480)

Image after Y acaling
(640x479)

Display image
(640x239)

FB Data

line 0 (0)
line 1 (2)

line 238 (476)

For field 1
line 0 (1)
line 1 (3)

line 238 (477)

line 0 (0)

line 1 (1)

line 2 (2)

line 3 (3)

line 476 (476)

line 477 (477)

line 478 (478)

* One line less due to
com pression set t ing

Fig. 3-34

Make the following settings in order to implement type A flicker-free filtering:

(1) Set the scaling coefficient for the Y direction so that the reduction coefficient is as close to 1.0x as
possible.
(Set the "Vertical Scale Factor" in the SCALER_CTL register to "0x0401".)

(2) Control reads from the frame buffer for display one field at a time.

- 130 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.12.2 Type B
First, perform filtering with 3 lines of data in the Y scaler, scale the data by 1/2, and then store in the

frame buffer only that line data that is needed for the specified display field. In other words, although
drawing must be performed with 480 lines, only 240 lines are needed for the pixel data that is stored in
the frame buffer. However, because this processing is performed for individual Tiles when the pixel
data that was drawn is transferred to the frame buffer, the data must be drawn in every field (in units of
1/50 or 1/60 second).

For display, the data only needs to be read as is from the frame buffer.

For field 0
line 0 line 0 (0)

line 1 (2)

line 238 (476)
line 239 (478)

line 1

line 2

line 3

line 476

line 477

line 478

line 479

line 0 (0+0+1)

line 1 (0+1+2)

line 2 (1+2+3)

line 3 (2+3+4)

line 476 (475+476+477)

line 477 (476+477+478)

line 478 (477+478+479)

line 479 (478+479+479)

Image after Y filtering
(640 x 480)

Drawing image
(640 x 480)

Image after Y scaling
(640 x 480)

For interlace field 0

line 0 (1)
line 1 (3)

line 238 (477)
line 239 (479)

For interlace field 1

Display image
(640 x 240)

FB Data

FB Data

line 0 (0)
line 1 (1)

line 238 (238)
line 239 (239)

For field 1
line 0 (0)
line 1 (1)

line 238 (238)
line 239 (239)

Fig. 3-35

Make the following settings in order to implement type B flicker-free filtering:

(1) Set the scaling coefficient for the Y direction for 1/2 reduction.
(Set the "Vertical Scale Factor" in the SCALER_CTL register to "0x0800".)

(2) Set the Y scaler to interlace mode.
(Set "Interlace" in the SCALER_CTL register to "1".)

(3) Switch the Y scaler setting back and forth between field 0 and field 1 in accordance with the screen
display.
(Toggle "Field Select" in the SCALER_CTL register.)

- 131 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.13 Strip Buffers
A strip buffer is a pixel data buffer that retains pixel data that has been drawn in Tile units for the

specified number of lines, rather than an entire screen; in other words, a compressed frame buffer. Area for
two strip buffers is allocated in texture memory; the size of one buffer can be specified over a range of 32
to 1024 lines, in units of 32 lines. The starting address of the strip buffer can be specified in the
FB_W_SOF1 register and the FB_W_SOF2 register, and the strip buffer size can be specified in the
FB_R_CTRL register.

Strip buffer processing is synchronized with the TV display, and performs the following operations:

(1) Stores 32-pixel × 32-pixel data drawn in the accumulation buffer into strip buffer 1 in texture
memory.

(2) Once strip buffer 1 has been filled with pixel data, the process of displaying the contents of strip
buffer 1 on the screen begins, and the drawing pixel data for the next Tile is stored in strip buffer 2.

(3) Once strip buffer 2 has been filled with pixel data, the process waits until all of the pixel data in
strip buffer 1 has been displayed on the screen. Once this happens, strip buffer 2 becomes the
screen display strip buffer, and strip buffer 1 becomes the pixel data storage strip buffer again.

(4) Steps (1) through (3) are repeated until all of the lines on the display screen have been displayed.

When the strip buffers are used, less memory is required when compared to the frame buffer. However,
the strip buffers are effective only in the following cases:

• When polygons are uniformly positioned over the entire screen. In other words, when the
difference between the drawing time and the display time for the strip buffer size is small.

• When the number of polygons being drawn is small.

Because the strip buffers must operate in synchronization with the TV screen display, the drawing time
required for the buffer size must not be longer than the corresponding screen display time. In other words,
it is also essential that the strip buffer size be specified so that "drawing time < display time." The timing of
drawing must be such that drawing is completed before the strip buffer is displayed at the beginning of the
screen. In other words, drawing must be started before the start of screen display by at least a much of a
margin equal to the time needed to display data equivalent to the size of the strip buffer. For example, when
the strip buffer contains 64 lines, drawing must start at least 64 lines before the start of screen display.
When drawing to the strip buffer is not completed in time for the screen display, the strip buffer is forcibly
switched, drawing is halted, and an interrupt is generated. Naturally, the screen is not displayed correctly in
this case.

When polygons are concentrated in a certain portion of the screen, the size of the strip buffer must be
increased in order to maintain the relationship “drawing time < display time,” which is a restriction of the
strip buffer. However, doing this will reduce drawing performance for processing of screen areas with few
polygons, as processing will not proceed to the next drawing even though the previous one is quickly
completed until termination of display.

When using the strip buffers, the region data array (see section 3.7) must be stored in such a manner that
drawing proceeds in the X direction (horizontally). In addition, when there are 240 display screen lines,
256 lines are drawn and stored in the strip buffer, but the last 16 lines are not displayed.

- 132 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The value that is specified for the screen buffer size must yield an even number when the number of
display screen lines is divided by that value. Normally, in the case of NTSC and PAL (both interlaced and
non-interlaced), the number of display screen lines is 240, so the strip buffer size should be either 32, 64, or
128. In the case of VGA, the number of display screen lines is 480, so the strip buffer size should be either
64, 128, or 256.

Furthermore, the X clipping function cannot be used. In other words, the size of the display screen in the
horizontal direction must be specified for the X clipping values in the FB_X_CLIP register. For example,
when the size of the display screen in the horizontal direction is 640 pixels, specify FB x clipping max =
639 and FB x clipping min = 0.

- 133 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.4.14 Frame Buffer Drawing Data and Display Data
When drawing in Tile units in the CORE, the pixel data is 8-bit ARGB data, and ARGB are each

processed as 8 bits for shading and alpha blending. When this pixel data that has been drawn is transferred
to the frame buffer in texture memory, it is converted into the pixel format specified in the FB_W_CTRL
register. The "4444 ARGB 16-bit" format that can be specified in FB_W_CTRL is a special format for
drawing to the texture map only, and cannot be used to draw to the frame buffer.

Furthermore, when outputting to the DAC for the purpose of display, the data is read from the frame
buffer in he pixel format that was specified in the FB_R_CTRL register, and is converted into Chroma +
RGB 8-bit format. The chroma bit is used for forming a composite with an external screen, and is not
normally used.

Chr om a is deter m ined by com pa r ison wit h fb_ch rom a_th resh old
Wh en th e RGB da t a in th e fr a m e bu ffer is less t ha n 8 bit s, th e fb_conca t va lu e is added a t
t he lower en d of th e da ta .

565 RGB 16bit

0888 K RGB 32bit

888 RGB 24bit pack ed

Pixel data in CORE

1555 ARGB 16bit

fb_concat value in FB_R_CTRL register

0555 K RGB 16bit

Pixel data in the frame buffer (select from among the following six types)

Alph a :8bit Red:8bit Gr een :8bit Blue:8bit

3bit

K:1bit R Upper 5bit G Upper 5bit B Upper 5bit

R Upper 5bit G Upper 6bit B Upper 5bit

A:1bit R Upper 5bit G Upper 5bit B Upper 5bit

K: Va lu e of upper m ost bit in fb_kva l
RGB: Can tu r n dit her processin g on /off

A: Deter m in ed by com par ison with fb_a lph a_th resh old
RGB: Can tu r n dit her processin g on /off

fb_chroma_threshold value in FB_R_CTRL register
8bit

R:8bit G:8bit B:8bit

K:8bit R:8bit G:8bit B:8bit
K: fb_kva l va lu e
RGB: CORE va lu es, a s is

8888 ARGB 32bit
A:8bit R:8bit G:8bit B:8bit

Da ta in CORE , a s is

RGB: Can tu r n dit her processin g on /off

RGB: CORE va lu es, a s is

Pixel data during display

Ch rom a:1bit Red:8bit Gr een :8bit Blu e:8bit

fb_kval value in the FB_W_CTRL register
K:8bit

fb_alpha_threshold value in the FB_W_CTRL register
A:8bit

Fig. 3-36
When the pixel format in the frame buffer is 16 bits, it is important to note that the lower bit values of RGB that are
discardedwhen the data is transferredfrom the CORE to the frame bufferdiffer from the lowerbit valuesof RGB that
are added when the data is output from the frame buffer to the DAC.

- 134 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.5 Display Function Details

§3.5.1 Sync Pulse Generator
HOLLY supports display on both NTSC and PAL TVs and monitors. HOLLY includes a block called the

"SPG" (Sync Pulse Generator) that generates the sync signals. Certain registers must be set in accordance
with the display standard. For details on the registers, refer to section 8.4.2.

The settings for each of the registers in the SPG block for different display modes are listed below.

Ragister name NTSC
Non-interlace

NTSC
Interlace

PAL
Interlace

PAL
Interlace

VGA

320x240
640x240

320x240
640x240
640x480

320x240
640x240

320x240
640x240
640x480

640x480

SPG_LOAD 0x01060359 0x020C0359 0x0138035F 0x0270035F 0x020C0359
SPG_HBLANK 0x007E0345 0x007E0345 0x008D034B 0x008D034B 0x007E0345
SPG_VBLANK 0x00120102 0x00240204 0x002C026C 0x002C026C 0x00280208
SPG_WIDTH 0x03F1933F 0x07D6C63F 0x07F1F53F 0x07D6A53F 0x03F1933F
SPG_CONTROL 0x00000140 0x00000150 0x00000180 0x00000190 0x00000100
VO_STARTX 0x000000A4 0x000000A4 0x000000AE 0x000000AE 0x000000A8
VO_STARTY 0x00120011 0x00120012 0x002E002E 0x002E002D 0x00280028
VO_CONTROL In case of 320：

0x00160100
In case of 640：
0x00160000

In case of 320：
0x00160100
In case of 640：
0x00160000

In case of 320：
0x00160100
In case of 640：
0x00160000

In case of 320：
0x00160100
In case of 640：
0x00160000

0x00160000

Note: When interlaced, the 240 lines are single-interlaced.

The screen display positions for the sync signals are specified in the VO_STARTX and VO_STARTY
registers.

Screen display area

hcount

vc
ou

nt

vb
st

ar
t

vo
_s

ta
rt

y

vo_star tx

vb
en

d

hbend

hbst ar t

Border a rea

Fig. 3-37

§3.5.2 Frame Buffer Settings
The following eight registers are used for the frame buffer settings. For details on the contents of each

register, refer to section 8.4.2.

- 135 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Register name Description of settings
FB_R_CTRL This register is used for settings concerning reads from the frame buffer.

vclk_div : Pixel clock setting
fb_strip_buf_en : Strip buffer enable
fb_stripsize : Strip buffer size
fb_chroma_threshold : Comparison α value for chroma output
fb_concat : Lower bit value for concatenation in RGB

 output
fb_depth : Frame buffer pixel format
fb_line_double : Line double read enable
fb_enable : Frame buffer read enable

FB_W_CTRL This register is used for settings concerning writes to the frame buffer.
fb_alpha_threshold : Comparison value for α value writes
fb_kval : Upper bit value for concatenation during a

 write
fb_dither : Dithering enable
fb_packmode : Frame buffer pixel format

FB_W_LINESTRIDE Specifies the line width (in units of 64 bits) for writes to the frame buffer.
FB_R_SOF1 Specifies the starting address for reads from the frame buffer for field 1.
FB_R_SOF2 Specifies the starting address for reads from the frame buffer for field 2.
FB_R_SIZE Specifies the size when reading from the frame buffer.

FB modulus : Amount of data from the end of a line to
 the data for the next line

FB y size : Number of lines in the frame buffer
FB x size : Number of pixels in the frame buffer

FB_W_SOF1 Specifies the starting address for writes to the frame buffer for field 1.
FB_W_SOF2 Specifies the starting address for writes to the frame buffer for field 2.

The following diagram illustrates the settings for reading from the frame buffer.

FB x size FB modulus

F
B

 y
 s

iz
e

FB_R_SOF1/
FB_R_SOF2

Fig. 3-38

- 136 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6 Texture Definition
The textures coordinates U and V are both normally specified in a range from (0.0 , 0.0) to (1.0, 1.0) with

32-bit IEEE floating-point values. It is also possible to discard the lower 16 bits and specify the coordinates
with 16-bit floating-point values. When using 16-bit values, both coordinates are specified as a 32-bit value,
with the upper 16 bits representing U and the lower 16 bits representing V.

V=0

U
=0

U

V

V=1.0

U
=1

.0

Texel(0, 0)

Texel(N-1, N-1)

U
=0

.5

V=0.5

Texture size = N*N

Fig. 3-39 Texture Definition

- 137 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.1 Texture Pixel Format
The texture pixel formats that can be used are listed below. These formats are specified through "Pixel

Format" in the Texture Control Word.

Type Bit configuration Description
RGB 1555 α value: 1 bit; RGB values: 5 bits each

565 R value: 5 bits; G value: 6 bits; B value: 5 bits
4444 α value: 4 bits; RGB values: 4 bits each

YUV 32bit/2texel YUV 422 data, 8 bits each
Bump Map 16bit/texel S value: 8 bits; R value: 8 bits
Palette 4bit/texel 16 colors per texture

8bit/texel 256 colors per texture

Table 3-3 Pixel Formats

§3.6.1.1 RGB Textures
RGB textures are expressed by 16 bits per texel. There are three different color formats.

RGB1555 Texture
bit 15 14-10 9-5 4-0

Alpha Red Green Blue

RGB565 Texture
bit 15-11 10-5 4-0

Red Green Blue

RGB4444 Texture
bit 15-12 11-8 7-4 3-0
Alpha Red Green Blue

§3.6.1.2 YUV Textures
YUV textures are expressed by 16 bits per texel, and one data item (YUV422 data) corresponds to

two adjacent texels in the horizontal direction. The Y data for the left texel and the U data for both
texels are collectively referred to as "Y0U" data, and the Y data for the right texel together with the V
data for both texels are referred to as “Y1V” data. Each YUV data element is specified by an unsigned
8-bit value from 0 to 255.

MPEG data (YUV420 data in macro block units) is converted into YUV texture data by passing the
data through the YUV data converter in the Tile Accelerator. (Refer to section 3.8.1.)

Y0U-data Y1V-data
bit 15-8 7-0 bit 15-8 7-0

Y0 U Y1 V

The YUV texture data is converted within the CORE according to the following equations into RGB
values for drawing. Note that the RGB values that are computed are clamped in the range 0 to 255.

R = Y + (11/8) × (V-128)
G = Y - 0.25 × (11/8) × (U-128) - 0.5 × (11/8) × (V-128)
B = Y + 1.25 × (11/8) × (U-128)
α= 255

- 138 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.1.3 Bump Map Textures
Bump Map textures are expressed by 16 bits per texel; two 8-bit parameters are specified to express

the normal line vector for each texel.

Bump Map Texture
bit 15-8 7-0

S R

The 8-bit parameters that are specified, S and R, set the two angles that define the vector to a point on
a hemisphere, as shown in the illustration below.

Angle S

Angle R

Fig. 3-40

A point (x, y, z) on the hemisphere is expressed through the following equations:

x = cos(s’)*cos(r ’)

y = sin (s’)

z = cos(s’)*sin (r ’)

π
2 256

S

256
R

2πr ’=

s’=

However,

In other words, the angles that express the normal line vector are specified with a value of 0 to 255,
which in the case of S represents a range of angles from 0° to 90°, and in the case of R represents a
range of angles from 0° to 360°. If "255" is specified, "256" (in other words, 90° or 360°) is assumed.

For details on the Bump Mapping algorithm, refer to section 3.4.7.3.1.

- 139 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.1.4 Palette Textures
Palette textures are expressed by four or eight bits per pixel ("4BPP" or "8BPP," hereafter), which

indicate the low-order address byte in palette RAM in the CORE. When the value specified by the
palette selector in the Texture Control Word is added as the high-order address byte, the result is the
address in palette RAM. In the case of 8BPP format, only the upper two bits of the palette selector are
valid. Up to 1024 colors can be set in palette RAM.

4BPP Palette Texture
bit 9-4 3-0

Palette Selector
(bit26-21)

Texture Data

8BPP Palette Texture
bit 9-8 7-0

Palette Selector
(bit26-25)

Texture Data

The following table lists the four color data formats that can be specified in palette RAM. Only one
format can be specified per screen, in the PAL_RAM_CTRL register. Multiple color data formats
cannot co-exist. It is important to note that if a Filter Mode other than point sampling is set with the
ARGB8888 format, drawing performance will be only about 50% of normal drawing performance.

Format Description
ARGB1555 α value: 1 bit; RGB values: 5 bits each
RGB565 α value: none; R value: 5 bits; G value: 6 bits; B value: 5 bits
ARGB4444 α value: 4 bit; RGB values: 4 bits each
ARGB8888 α value: 8 bit; RGB values: 8 bits each

ARGB1555 Palette
bit 15 14-10 9-5 4-0

Alpha Red Green Blue

RGB565 Palette
bit 15-11 10-5 4-0

Red Green Blue

ARGB4444 Palette
bit 15-12 11-8 7-4 3-0
Alpha Red Green Blue

ARGB8888 Palette
bit 31-24 23-16 15-8 7-0
Alpha Red Green Blue

- 140 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.2 Texture Formats
The texture shapes that can be used are square and rectangular. There are eight sizes (represented by

values of 2n, ranging from 8 to 1024) that can be set for the U size and the V size, each, in the TSP
Instruction Word. If the same size is specified for U and V, the texture shape is square; if different sizes are
specified, the texture shape is rectangular.

One type of rectangular texture is called a "stride texture," for which a multiple of 32 (from 32 to 512) is
specified for the U size. This type of texture can be used when the result of drawing is to be used as a
texture. Stride textures only support Non-Twiddled format. Because the U size is specified in the
TEXT_CONTRL register, only one U size can be specified on one screen.
There are two formats for storing texture data in texture memory: Twiddled format and Non-Twiddled
format. Furthermore, Twiddled format can be either compressed format or non-compressed format. In
addition, among Twiddled format textures, there are textures known as MIPMAP textures, which store
multiple textures that are switched according to the Z value of the polygon.

Storage format Compressed/
non-compressed

MIPMAP Texture format

Twiddled format Compressed MIPMAP Square
Individual Square

Non-compressed MIPMAP Square
Individual Square

Rectangular
Non-Twiddle Non-compressed Individual Square

Rectangular
Stride

§3.6.2.1 Twiddled Format
Twiddled-format texture data is stored in a special order (a reverse "N") shown in the diagram below

in order to minimize performance loss when reading texture data for drawing. Normal textures use this
format. The Twiddled format specification is made through "scan order" in the Texture Control Word.
(Refer to section 3.7.9.3.)

192

0 2

1 3

8 10

9 11

128 130

129 131

4 6

5 7

12 14

13 15

16 18

17 19

20

64

31 63

48

32

47

Fig. 3-41 Twiddle Format

- 141 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Twiddled format textures can be either square or rectangular. The relationship between the texture
data storage address and the UV coordinates is shown below.

<Squares>
The bits of the storage address are configured so that each bit of the UV coordinates alternate,

starting from the low-order end. The least significant bit is bit 0 of the V coordinate (V0).

Example: …… U4 V4 U3 V3 U2 V2 U1 V1 U0 V0

<Rectangles>
The bits of the storage address are configured so that each bit of the UV coordinates alternate,

starting from the low-order end. The least significant bit is bit 0 of the V coordinate (V0). Any
extra bits for one coordinate are positioned in order at the high end.

Example: …… V5 V4 U3 V3 U2 V2 U1 V1 U0 V0

Twiddled format textures support all pixel formats. The data configuration for each type of data is
listed below.

RGB & Bump Map Texture
bit 63-48 47-32 31-16 15-0

Texel (1,1) Texel (1,0) Texel (0,1) Texel (0,0)

YUV Texture
bit 63-48 47-32 31-16 15-0

Y1V (1,1) Y1V (1,0) Y0U (0,1) Y0U (0,0)

4BPP Palette Texture
bit 63-60 59-56 55-52 51-48 47-44 43-40 39-36 35-32
Texel
(3,3)

Texel
(3,2)

Texel
(2,3)

Texel
(2,2)

Texel
(3,1)

Texel
(3,0)

Texel
(2,1)

Texel
(2,0)

bit 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0
Texel
(1,3)

Texel
(1,2)

Texel
(0,3)

Texel
(0,2)

Texel
(1,1)

Texel
(1,0)

Texel
(0,1)

Texel
(0,0)

8BPP Palette Texture
bit 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0
Texel
(1,3)

Texel
(1,2)

Texel
(0,3)

Texel
(0,2)

Texel
(1,1)

Texel
(1,0)

Texel
(0,1)

Texel
(0,0)

<Note> The numbers in parentheses are the UV coordinates.

- 142 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.2.2 Non-Twiddled Format
Non-Twiddled format texture data is stored in sequence, similar to bitmapped data. This format is

used when the drawing results are to be used as texture data.
However, the drawing performance for this format is low compared to Twiddled format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 31

32

112

48

127

Example: When U = 16 pixels and V = 8 pixels

Fig. 3-42 Non-Twiddled Format

Non-Twiddled format textures support all shapes: square, rectangular, and stride. The relationship
between the texture data storage address and the UV coordinates is shown below.

<Squares and rectangles>
(texture data storage address) = (V size) × (V coordinate) + (U coordinate)

<Stride>
(texture data storage address) = (stride value) × 32 × (V coordinate) + (U coordinate)

However, "stride" corresponds to bits 4 through 0 of the TEXT_CONTROL register.

Non-Twiddled formats support all pixel formats, except for palette textures. For example, the data
configuration (64 bits) of texture data with a size of 128 x 128 is as follows.

RGB & Bump Map Texture
Address bit 63-48 47-32 31-16 15-0
0x00 Texel (3,0) Texel (2,0) Texel (1,0) Texel (0,0)

…………………………………………………………………………
Address bit 63-48 47-32 31-16 15-0
0x80 Texel (3,1) Texel (2,1) Texel (1,1) Texel (0,1)

YUV Texture
Address bit 63-48 47-32 31-16 15-0
0x00 Y1V (3,0) Y0U (2,0) Y1V (1,0) Y0U (0,0)

…………………………………………………………………………
Address bit 63-48 47-32 31-16 15-0
0x80 Y1V (3,1) Y0U (2,1) Y1V (1,1) Y0U (0,1)

<Note> The numbers in parentheses are the UV coordinates.

- 143 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.2.3 VQ Textures
One type of Twiddled format texture is a compressed texture data format that is compressed from 1/3

to 1/8 the normal size by a method called "VQ (Vector Quantization) compression." Textures stored in
this format are called "VQ textures." This format is supported only for square RGB pixel format. The
VQ texture specification is made through "VQ compressed" in the Texture Control Word. (Refer to
section 3.7.9.3.)

A VQ texture consists of two types of data, an "index" and a "code book." The relationship between
the index and the code book is similar to the relationship between palette texture data and palette data.
The index indicates 2 texels (H) × 2 texels (V) of the texture prior to compression, through a code book
number. The code book is a grouping of units of data for four texels (64 bits), and usually consists of
256 × 64 bits. The four-texel data of the code book is expanded in a reverse "N" shape, similar to
Twiddled format.

The UV size of a texture in the TSP Instruction Word specifies the size of the texture before
compression. In other words, the Index is one-half the specified UV size in the horizontal and vertical
directions.

0123

U*V*4*16 bit

U*V/4*8 bit

U

V

Texture prior to compression Index Code Book

64 bitU/2

V/21

0 2

3
256*4*16 bit

Fig. 3-43

The texture data sizes before and after compression are listed in the table below.

Texture size
U ｘ V

Amount of
data prior to
compression

(bytes)

Amount of
data after

compression
(bytes)

Compression
ratio (%)

Amount of
data in index

(bytes)

Amount of
data in code

book
(bytes)

16 ｘ 16 512 2,176 425.00 64 256 ｘ 8
32 ｘ 32 2,048 2,304 112.50 256 256 ｘ 8
64 ｘ 64 8,192 3,072 37.50 1,024 256 ｘ 8

128 ｘ 128 32,768 6,144 18.75 4,096 256 ｘ 8
256 ｘ 256 131,072 18,432 14.06 16,384 256 ｘ 8
512 ｘ 512 524,288 67,584 12.89 65,536 256 ｘ 8

1,024 ｘ 1,024 2,097,152 264,192 12.60 262,144 256 ｘ 8
2,048 ｘ 2,048 8,388,608 1,050,624 12.52 1,048,576 256 ｘ 8

It is predetermined that there are normally 256 code book elements per texture. The number of code
book elements indicated for texture sizes of 32 × 32 or smaller in the above table are the values at which
data is not compressed, but instead increases in size. Normally, when dealing with textures that are 32 ×
32 or smaller, it is necessary to group several into a size of at least 64 × 64 before compressing them.

- 144 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

For VQ textures, the two types of data, the index and the code book, are stored in texture memory.
The index data is stored in the same manner as an 8BPP palette texture in Twiddled format, while for
the code book 256 data elements, each corresponding to four texels, are stored. In addition, the data
must be stored contiguously in texture memory (as shown below), with the code book in the lower
addresses.

The texture address that is specified in the Texture Control Word is the starting address of the code
book.

Texture Memory

Code Book
0 2

31

texel-3 texel-2 texel-1 texel-0

bit 63-48 47-32 31-16 15-0

Code Book
(256*64 bit)

In dex
(U/2*V/2*8 bit)

+0x0000

+0x0800

Offset

8bit

Index

Fig. 3-44

The hardware determines that the texture address specified in the Texture Control Word is the start of
the code book data, and uses the address produced by adding 256 x 64-bits to that address as the start of
the index data. Therefore, in order to have a code book with less than 256 elements, use an address in
the middle of the previous texture data as the texture address that is specified in the Texture Control
Word, and then store index data only for the values that correspond to the code book data that was
stored.

Code Book-0
256*64 bit

Index-0
64*64*8 bit

Code Book-1
128*64 bit

Index-1
32*32*8 bit

Sta r t ing address of
VQ textu re-0

Sta r t ing address of
VQ textu re-10x400

Index va lue is 0x80
to 0xFF on ly

Example: Creating a code book with 128 elements:

Fig. 3-45

It is possible to use the method for creating a code book with less than 256 elements in order to

- 145 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

compress and store as individual elements data with a texture size of 32 × 32 or less prior to
compression. When doing so, the interval between the code book data starting address that is to be used
and the corresponding index data starting address must be 2Kbytes (= 256 × 64 bits), so the size of the
code book data and the size of the index data must be identical as shown in the table below. (If they are
not the same size, memory space will be wasted.)
The compression rate for data with a 64 × 64 texture size before compression can be increased by
reducing the code book data in the same manner.

Texture size
before

compression
U ｘ V

Amount of data
before

compression
（byte）

Amount of data
after

compression
（byte）

Compression
factor (%)

Index data
amount
（byte）

Code book data
amount
（byte）

16 ｘ 16 512 128 25.00 64 8 ｘ 8
32 ｘ 32 2,048 512 25.00 256 32 ｘ 8
64 ｘ 64 8,192 2,048 25.00 1,024 128 ｘ 8

2Kbyte

2Kbyte

Code Book 2 (8x64bit)
Code Book 3 (8x64bit)

Code Book 4 (32x64bit)

Index 0 (8x8x8bit)
Index 1 (8x8x8bit)

Code Book 5 (32x64bit)

Code Book 6 (32x64bit)

Code Book 1 (8x64bit)
Code Book 0 (8x64bit)

Code Book 7 (128x64bit)

Index 2 (8x8x8bit)
Index 3 (8x8x8bit)

Index 4 (16x16x8bit)

Index 5 (16x16x8bit)

Index 6 (16x16x8bit)

Index 7 (32x32x8bit)

Nor mal code
book da ta size

(256x64bit)

VQ-textu re 0 t extu re address
VQ-textu re 1 t extu re address

Index va lue is from 0x00 to 0x07 on ly

Example: Storing small VQ textures independently

VQ-textu re 7 t extu re address

VQ-textu re 6 t extu re address

Index va lue is nor mally from 0x00 to 0x07 only

Index va lue is nor mally from 0x00 to 0x1F on ly

Index va lue is nor mally from 0x00 to 0x07 only

Fig. 3-46

When a VQ texture is stored in this way, it is possible for one index data element to be common to
several code book data elements. For example, in the case illustrated above, Index 1 can use Code
books 1 through 7, and Index 4 can use Code Books 4 through 7. This is because the hardware regards
256 elements starting from the specified texture address as code book data.

§3.6.2.4 MIPMAP Texture

A MIPMAP texture stores several textures, from 1 × 1 up to a specified size, in texture memory, in
order from small to large. However, because YUV textures have one data item per two texels, the 1 × 1

- 146 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

size texture (only) is stored in RGB565 format. MIPMAP textures are only supported for Twiddle
format squares; whether a texture is a MIPMAP texture or not is specified through "MIP Mapped" in the
Texture Control Word.

32x32

16x16

8x8

4x4
2x2 1x1

Fig. 3-47

The texture address that is specified in the Texture Control Word is the starting address of the 1 × 1
texture data. In the case of a VQ texture, the starting address of the code book data is specified.

In addition, the data in texel-3 is used for the code book data for the minimum size MIPMAP texture
for VQ textures.

Code Book

Code Book
256x4x16 bit

Textu re 1x1
Textu re 2x2
Textu re 4x4

Textu re 8x8

Texture 16x16

Index 1x1 (Texture 1x1)
Index 1x1 (Texture 2x2)
Index 2x2 (Texture 4x4)
Index 4x4 (Texture 8x8)

Index 8x8 (Textu re16x16)

VQ textureNormal texture

0 2

1 3bit 63-48
texel-3

bit 47-32
texel-2

bit 31-16
texel-1

bit 15-0
t exel-0

Index
8bit

Fig. 3-48

- 147 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The following tables list the offset values for the starting addresses where texture data is stored for
each size of texture. In the case of a VQ texture, however, these values are the offset values for the
starting address of the index data.

4BPP palette textures 8BPP palette textures
Texture size 4-bit offset value for

starting address
Texture size Byte offset value for

starting address
1x1 0x00003 1x1 0x00003
2x2 0x00004 2x2 0x00004
4x4 0x00008 4x4 0x00008
8x8 0x00018 8x8 0x00018

16x16 0x00058 16x16 0x00058
32x32 0x00158 32x32 0x00158
64x64 0x00558 64x64 0x00558

128x128 0x01558 128x128 0x01558
256x256 0x05558 256x256 0x05558
512x512 0x15558 512x512 0x15558

1024x1024 0x55558 1024x1024 0x55558

Non-palette textures VQ textures
Texture size Byte offset value for

starting address
Texture size Byte offset value for

starting address
1x1 0x00006 1x1 0x00000
2x2 0x00008 2x2 0x00001
4x4 0x00010 4x4 0x00002
8x8 0x00030 8x8 0x00006

16x16 0x000B0 16x16 0x00016
32x32 0x002B0 32x32 0x00056
64x64 0x00AB0 64x64 0x00156

128x128 0x02AB0 128x128 0x00556
256x256 0x0AAB0 256x256 0x01556
512x512 0x2AAB0 512x512 0x05556

1024x1024 0xAAAB0 1024x1024 0x15556

- 148 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.3 Color Data Extension
Texture data that is loaded is handled within the CORE as 8-bit values for α, R, G, and B, respectively.

<In Twiddled format>
In the case of a Twiddled format texture, the deficiency in the number of bits is made up by

appending the high-order bits (starting from the MSB) of the value at the low-order end of the value so
that there are 8 bits present, as shown in the diagram below. An α value of 0x00 indicates complete
transparency, while an α value of 0x00 indicates complete opacity.

C4
Color (5bit)
C3 C2 C1 C0

Color (8bit)
C4 C3 C2 C1 C0 C4 C3 C2

Color (4bit)
C3 C2 C1 C0

Color (8bit)
C3 C2 C1 C0 C3 C2 C1 C0

Color (8bit)
C0 C0 C0 C0 C0 C0 C0 C0

Color (1bit)

C0

Internal dataTexture data
Color (8bit)

C5 C4 C3 C2 C1 C0 C5 C4C5 C4
Color (6bit)

C3 C2 C1 C0

Fig. 3-49

<In Non-Twiddled format>
In the case of a Non-Twiddled format texture, zeroes are appended at the low-order end of each

value, as shown in the diagram below. However, when there is only one bit, that bit is repeated for the
remaining seven bits similar to the case for Twiddled format.

Non-Twiddled format textures are used in order to use as a texture an image that was drawn by the
CORE. If the dithering function is used when the image that was drawn is stored in texture memory, the
data that is drawn may be the original texture data "+ 1." If this is repeated, the "+ 1" error accumulates
in the data for the drawn image, with the possibility that the result will be completely different from the
original texture data. Therefore, when color data for a Non-Twiddled format texture is extended, adding
zeroes at the low-order end of the data minimizes this color data error.

C4
Color (5bit)
C3 C2 C1 C0

Color (8bit)
C4 C3 C2 C1 C0 0 0 0

Color (4bit)
C3 C2 C1 C0

Color (8bit)
C3 C2 C1 C0 0 0 0 0

Color (8bit)
C0 C0 C0 C0 C0 C0 C0 C0

Color (1bit)

C0

Internal dataTexture data
Color (8bit)

C5 C4 C3 C2 C1 C0 0 0C5 C4
Color (6bit)

C3 C2 C1 C0

Fig. 3-50

§3.6.4 Texture Format Combinations

- 149 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Texture Control Word Supplement
bit29-27 bit 31 30 26 25
Pixel
Format

MIP
Mapped

VQ
Compressed

Scan
Order

Stride
Select

Any of
RGB1555,
RGB565,
RGB4444,
YUV422, or
Bump Map

0 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0 RGB only
1 0 0 0 Square only
1 1 0 0 RGB Square only

4BPP or
8BPP palette

0 0 - - Twiddled format
0 1 - - Twiddled format
1 0 - - Twiddled format & square
1 1 - - Twiddled format & square

<Notes>
• When "scan order" is "0," "stride select" is ignored.
• When "scan order" is "1," "MIP mapped" is ignored.
• When "scan order" is "1" and "stride select" is "1," the texture U size is specified by the stride value

(bits 4 to 0) in the TEXT_CONTROL register.
• When "MIP mapped" is "1," "V size" in the TSP Instruction Word is ignored and the texture is

square.

- 150 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.6.5 Efficient Storage in Texture Memory
The storage status of texture data in texture memory has a major impact on drawing performance.

Texture memory is divided into hardware "pages" (2048-byte areas), and in order to avoid having a
negative effect on drawing performance it is important to store texture data within one page. 2048 bytes of
data is equivalent to one 16-bit texture with a size of 32 × 32.

When storing textures of varying sizes, drawing performance can be kept at a maximum by storing
combinations of sizes in a well-planned manner so that no texture spans a page boundary. Even if one
texture has 2K or more of data, a deterioration of drawing performance can be prevented by avoiding
having texture data span page boundaries as much as possible.

In the case of VQ textures, the code book size is 2K, so it is most efficient to locate the starting address
of a code book at a 2K boundary.

8x8 RGB
16x16 8BPP P a let t e

16x16 RGB

8x8 RGB

16x16 RGB

32x32 8BPP P a let t e

8x8 RGB

16x16 8BP P P a let t e

16x16 RGB

8x8 RGB

16x16 RGB

32x32 8BP P P a let t e

1 pa ge = 2048 bytes

Example of efficient storage Example of inefficient storage

Fig. 3-51

- 151 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7 Display List Details
HOLLY includes two drawing blocks among its rendering blocks: the Tile Accelerator (TA), which assists in

display list generation, and the CORE, which draws polygons in individual 32 × 32-pixel Tiles.
HOLLY polygon drawing display lists include three types of data for the CORE ("Region Array," "Object

List," and "ISP/TSP Parameters"), and three types of data for the TA ("Control Parameters," "Global
Parameters," and "Vertex Parameters"). The data for the CORE is stored in the texture memory that is
connected to the HOLLY. From its three types of data, the TA generates the Object List and ISP/TSP
Parameters for the CORE and stores them in texture memory.

Therefore, four types of data are normally required: the Control Parameters, Global Parameters, and Vertex
Parameters that are input to the TA, and the Region Array that the CPU stores directly in texture memory.
Furthermore, the texture data is stored in texture memory in the format specified by the CORE.

HOLLY Texture Mem ory

Control Parameter

Global Parameter

Ver tex Parameter

Region Array

Object List

ISP/TSP Parameter

CORE

TA

Frame Buffer

Texture Data

(Direct Pa th)

Fig. 3-52

The ISP/TSP Parameters include polygon vertex data and shading data, and the Object List is a collection of
the starting address of the data (ISP/TSP Parameters) for the polygons that are included within the same Tile.
The Region Array specifies the positions of the Tiles on the screen and the starting addresses in the Object List
that correspond to those Tiles.

Region Array

Region X1,Y1

Region X2,Y1

Object Poin ter

Object List ISP/TSP Parameter

Object Poin ter

ISP Vert ex Data
Text ure/Shading Data

ISP Vert ex Data
Text ure/Shading Data

Fig. 3-53

Normally, a display list that is stored in texture memory is used by switching between two buffers: one for
the current screen, which is read by the CORE in order to draw, and one for the next screen, which is written
by the CPU through the TA. The data for these two buffers can be switched for each frame through the
REGION_BASE register and the PARAM_BASE register for the CORE and the TA_OL_BASE register and
the TA_ISP_BASE register for the TA.

In addition, because the data values in the Region Array are determined uniquely on the basis of the number
of screen Tiles, etc., they only need to be overwritten when the scene that is displayed changes, for example. In
other words, once the initial two buffers' worth of Region Array data have been stored, they normally can be
left as is until there is a need to overwrite them.

There are three types of data that are stored in the texture memory: the CORE display list, the texture data,

- 152 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

and the frame buffer or strip buffer. Some of this data is used on the 64-bit bus, and some is used on the 32-bit
bus. Therefore, it is necessary to store the data in texture memory in either the 64-bit access area or the 32-bit
access area, whichever is appropriate.

Data being stored Mapping area where stored
Display list 32-bit access area
Texture data 64-bit access area

Frame buffer or
strip buffer

32-bit access area
(64-bit access area*)

* Used when using data that was already drawn as texture data.

There are two types of paths from the CPU bus to texture memory: one through the TA and one through a
circuit called the PVR I/F. The paths through the TA permit only 32-byte burst writes through the SH4 store
queue or through DMA; reading is not possible. Although reading and writing are both possible with the path
through the PVR interface, this path is slower than the paths through the TA. Therefore, data transfers to
texture memory are normally performed on the paths through the TA. There are four paths through the TA:

(1) A path that generates the Object List and ISP/TSP Parameters, and stores them in the 32-bit access
area

(2) A path that converts YUV data into YUV-422 data and stores the result in the 64-bit access area
(3) A direct path to the 64-bit access area
(4) A direct path to the 32-bit access area

Path 1 is used to generate the Object List and ISP/TSP Parameters from the three types of TA input
parameters (Control Parameters, Global Parameters, and Vertex Parameters), and then store the results in
texture memory. Polygon data is normally transferred on this path. Note that the CPU creates the Region
Array, and transfers it to texture memory through path 4. Path 2 is used to convert YUV data that was input in
macro block units (16 pixels × 16 pixels) into YUV-422 texture data for the CORE, and then store the results in
texture memory. MPEG data is transferred on this path. Other texture data is transferred to texture memory
through path 3. This path specification is made through the address of the transfer destination. For details,
refer to "2.6 Data Transfers."

Wr it e On ly
64bit @100MH z

CPU

System
Memory

Texture
Memory

TA

PVR I/F

HOLLY

Rea d/Writ e
32bit@50MH z

Fig. 3-54

- 153 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Three types of data are input to the TA:

(1) Polygon data: TA input parameters for the display list
(2) YUV data: YUV data for individual macro blocks
(3) Direct data: Data that is written directly into texture memory (64 bits or 32 bits)

Distinctions are made between each type of data through the address (mapping area) indicated when the data
is input to the TA. Regarding the input order, polygon data and other data (YUV data and direct data) can be
combined freely, in units of 32 bytes. However, if YUV data and direct data are to be input together, the direct
data must not be input until a macro block of YUV data (384 bytes of YUV420 data or 512 bytes of YUV422
data) has been input.

Polygon data (128 bytes)

Direct data (32 bytes)

Polygon data (32 bytes)

Direct data (64 bytes)

YUV420 data (160 bytes)

Direct data (128 bytes)

Direct data (32 bytes)

Polygon data (32 bytes)

YUV data (32 bytes)

Polygon data (32 bytes)

YUV data (32 bytes)

Polygon data (64 bytes)

YUV data (128 bytes)

Polygon data (64 bytes)

Polygon + YUV

Polygon data (32 bytes)

Direct data (32 bytes)

Polygon data (32 bytes)

Direct data (64 bytes)

Polygon data (32 bytes)

Direct data (96 bytes)

Polygon data (64 bytes)

Polygon + Direct

Direct data (32 bytes)

Direct data (32 bytes)

YUV420 data (384 bytes)

YUV420 data (384 bytes)

Direct data (64 bytes)

YUV420 + Direct

Example

Direct data (64 bytes)

Direct data (32 bytes)

YUV422 data (512 bytes)

YUV420 data (512 bytes)

Direct data (32 bytes)

YUV422 + Direct

Polygon data (64 bytes)

YUV420 data (128 bytes)

Polygon data (96 bytes)

YUV420 data (64 bytes)

Polygon data (256 bytes)

YUV420 data (32 bytes)

Polygon data (32 bytes)

Polygon + YUV420 + Direct

1 macro block

of YUV420

Fig. 3-55

- 154 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.1 Polygon List Input
HOLLY utilizes the following five polygon lists. "Punch Through" is an Opaque polygon that uses

texture data that only has texels with an alpha value of either 0.0 (transparent) or 1.0 (opaque)).
(1) Opaque: Opaque polygon
(2) Opaque Modifier Volume: Opaque polygon & Punch Through Modifier Volume
(3) Translusent: Translucent polygon
(4) Translusent Modifier Volume: Translucent polygon Modifier Volume
(5) Punch Through*: Punch Through polygon (*added for HOLLY2)

When inputting the polygon data to the TA, it is necessary to first perform a "TA reset" or a "list
initialization," and then input the polygons grouped, by type. Only those lists of the necessary types need to
be input; it is not necessary to input polygon lists for all five (five, in the case of HOLLY2) types. The
order in which each list is input does not matter. However, each list can only be input once; a list of the
same type of polygons cannot be input twice or more.

Exam ple 1

Opaque inpu t

*Punch Through inpu t

Translucen t inpu t

TA reset and list in it ia liza t ion

Opaque Modifier Volume inpu t

Polygon list input example (*Punch Through input is for HOLLY2)

Exam ple 2

Opaque input

*Punch Through inpu t

Translucen t inpu t

TA reset and list in it ia liza t ion

Translucen t Modifier Volume inpu t

Fig. 3-56

The flow for inputting polygon lists to the TA (and parameters for the TA) is shown below (HOLLY1
only):

Following figure is deleted.

TA register set t ing
TA_GLOB_TILE_CLIP
TA_ALLOC_CTRL
TA_OL_BASE
TA_ISP_BASE
TA_OL_LIMIT
TA_ISP_LIMIT
Set the a bove registers

List in it ializat ion
Write 0x80000000 to
 the TA_LIST_INIT r egister
Read (dummy r ea d)

the TA_LIST_INIT r egister

TA param eter inpu t
Opa que,
Opa que Modifier Volume,
Translucen t ,
Translucen t Modifier Volume,
Inpu t on ly the list s of the
necessary types, in any order

In terrupt ou tpu t wait
Wait for in ter rupt tha t indica tes
the end of TA processing of the
list tha t wa s input la st

TA reset
Execu te a TA soft reset th rough

the SOFTRESET r egister.

* The dummy r ea d du r ing TA
in it ia liza t ion is in ser ted in order to
preven t the TA parameter input
opera t ion from being per formed
before the wr ite to the TA r egisters
due to differences in the da t a pa th s
with in the cir cu it r y.

Fig. 3-57

- 155 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The following description, and the description from section 3.7.1.1 to 3.7.1.4 apply to HOLLY2.)

HOLLY2 HOLLY supports "multipass operation," in which polygon lists are input several times in
succession. In multipass operation, "list continuation processing" is inserted after a list is input, and then
processing continues with the input of the next list. This allows a list of the same type of polygon to be
divided into several lists and input as more than one list of the same type.

Example of list input with multipass
processing

Example of list input that is not
allowed:

Opaque inpu t

Punch Through inpu t

Translucen t inpu t

TA reset and list in it ia liza t ion

Opaque Modifier Volum e inpu t

Opaque inpu t

Punch Through inpu t

Translucen t inpu t

TA reset and list in it ia liza t ion

Translucen t Modifier Volum e inpu t

List con t inua t ion processing

Translucen t inpu t

Opaque Modifier Volum e inpu t

Tra nslucen t Modifier Volum e inpu t

Punch Through inpu t

Punch Through inpu t

Translucen t inpu t

Fig. 3 -58

- 156 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.1.1 TA Parameter Input Flow
The flow of polygon list input to the TA (TA parameter input) is shown below.

Repea t for th ird
and subsequen t

t imes, if necessa r y
TA regist er set t ing

TA_GLOB_TILE_CLIP
TA_ALLOC_CTRL
TA_OL_BASE
TA_ISP_BASE
TA_OL_LIMIT
TA_ISP_LIMIT
TA_NE XT_OPB_INIT
Set th e above register s

List in it ializat ion
Write 0x80000000 to th e
 TA_LIST_INIT register
Read (dummy read) the
 TA_LIST_INIT register

TA param eter inpu t
Opaqu e,
Opaqu e Modifier Volum e,
Translucen t ,
Translucen t Modifier Volume,
Punch Through
Inpu t on ly the list s of t he
 necessar y types, in any order
必 要 な リ ス ト の み 入 力

TA register ch an ges
If it is necessar y to chan ge the
va lue in the TA_OL_BASE
register, chan ge th e following
register a lso:

TA_GLOB_TILE_CLIP
TA_ALLOC_CTRL

List con t in uat ion processin g
Write 0x80000000 to the
 TA_LIST_CONT register
Read (dummy read) the
 TA_LIST_CONT register
TA_LIST_CONT レ ジ ス タ を

リ ー ド す る （ ダ ミ ー リ ー ド ）
TA param eter in pu t

Opaqu e,
Opaqu e Modifier Volume,
Translu cen t ,
Translu cen t Modifier Volume,
Punch Throu gh
Inpu t on ly the list s of t he
n ecessa r y types, in any order

Continued input of second and
subsequent lists

In t errupt ou t pu t wait
Wait for in t er r upt tha t indica tes
the en d of TA processin g of th e
list th a t wa s inpu t last

In terrupt ou t pu t wait
Wait for in ter r upt tha t indica t es
the end of TA processin g of t he
list tha t was inpu t last

1st list input

TA reset
Execu te a TA soft reset th rou gh
 the SOFTRE SET register.

Fig. 3-59

The total OPB size for all of the lists that will be input to the TA must be taken into consideration
when determining the value that is to be set in the TA_NEXT_OPB_INIT register before list
initialization. In addition, before performing the continuation processing for the second and subsequent
lists, it is necessary to change the value in the TA_OL_BASE register to the OPB starting address for
that list. If necessary, also change the value in the TA_GLOB_TILE_CLIP register and in the
TA_ALLOC_CTRL register.

The dummy read during TA initialization and list continuation processing is inserted in order to
prevent the TA parameter input operation from being performed before the write to the TA registers due
to differences in the data paths within the circuitry. Therefore, the dummy read does not have to be
performed specifically on the register indicated above; any TA register is fine.

§3.7.1.2 TA Register Settings for List Input

- 157 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

When list initialization is performed via the TA_LIST_INIT register, the TA sets up the area from the
address that is specified in the TA_OL_BASE register to the address that is specified in the
TA_NEXT_OPB_INIT register as the OPB initial area in texture memory. The OPB initial area size
that is needed for one TA input list is the product of the total OPB size for all lists specified by the
TA_ALLOC_CTRL register before the input of that list, multiplied by the number of Tiles in the Global
Tile Clip area that is specified by the TA_GLOB_TILE_CLIP register. The amount of memory that
should be reserved in texture memory as the OPB initial area is the sum of the OPB initial area size for
the one list added together for each of the polygon lists that are input to the TA.

(OPB initial area size for one list) = {(Opaque list OPB size)
+ (Opaque Modifier Volume list OPB size)
+ (Translucent List OPB size)
+ (Translucent Modifier Volume list OPB size)
+ (Punch Through list OPB size)
x (Number of Tiles in Global Tile Clip area) x 4 bytes
x 4byte

(OPB initial area size for list initialization) = (OPB initial area size for first list input)
+ (OPB initial area size for second list input)
+ (OPB initial area size for third list input)
+ + +...

The value in the TA_NEXT_OPB_INIT register, which should be set prior to list initialization, is the
sum starting address value of the Object List that is stored in texture memory and the OPB initial area
size.

(TA_NEXT_OPB_INIT register value) = (TA_OL_BASE register value at list initialization)
+ (OPB initial area size at list initialization)

In addition, it is necessary to change the value in the TA_OL_BASE register before the list
continuation processing that is performed through the TA_LIST_CONT register; the value is the sum of
the Object List starting address and the total of the previously input OPB initial area sizes.

(TA_OL_BASE register value prior to list continuation processing)
= (Value in the TA_OL_BASE register at list initialization)
+ (total of the previously input OPB initial area sizes)

When the values in the TA_GLOB_TILE_CLIP register and the TA_ALLOC_CTRL register are
changed for each list, be certain to change them prior to the list continuation processing that is
performed through the TA_LIST_CONT register.

- 158 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

An example of the processing for inputting TA parameters twice described below.

TA_OL_BASE
(pass 1)

OPB in it ia l
a rea

(pass 2))

OPB in it ia l
a rea

(pass 1)

Object List

Addit iona l OPB
(pass 1 & 2)

OP OPB
16poin ter*4t ile

TR OPB
16poin ter*4t ile

OMV OPB
8poin ter*4t ile

TMV OPB
8poin ter*4t ile

PT OPB
16poin ter*4t ile

OP OPB
16poin ter*4t ile

PT OPB
16poin ter*4t ile

TA_OL_BASE
(pass 2)

TA_NEXT_
 OPB_INIT

pass 1: First input
1) TA register set t ings

TA_GLOB_TILE_CLIP = 0x00010001
TA_ALLOC_CTRL = 0x00021212
TA_OL_BASE = 0x00200000
TA_ISP_BASE = 0x00280000
TA_OL_LIMIT = 0x0027FFE0
TA_ISP_BASE = 0x00300000
TA_NE XT_OPB_INIT = 0x00200600

2) List in it ializat ion
TA_LIST_INIT = 0x80000000

3) TA param eter inpu t
OP PT TR OMV TMV

4) In ter r upt ou tpu t wa it
Wait for in ter r upt a t end of TMV
processing

 pass 2: Second input
1) TA register set t ing changes

TA_ALLOC_CTRL = 0x00020002
TA_OL_BASE = 0x00200400

2) List con t inuat ion processing
TA_LIST_CONT = 0x80000000

3) TA param eter inpu t
OP PT

4) In ter r upt ou tpu t wa it
Wait for in ter r upt a t end of PT
processing

Example: When list input to the TA is done twice

OP = Opaque, TR = Tran slucent , PT = Punch Through ,
OMV = Opaque Modifier Volume,
TMV = Translucen t Modifier Volume

Fig. 3-60

In this example, the settings for each register are determined as follows:

(1) Determine the starting address and limit address for storing the Object List and the ISP/TSP
Parameters.

TA_OL_BASE = 0x00200000, TA_OL_LIMIT = 0x0027FFE0,
TA_ISP_BASE = 0x00280000, TA_ISP_LIMIT = 0x00300000

(2) Determine the drawing enabled areas for the polygon lists that will be input first and second.
In both cases: 2 Tiles × 2 Tiles → TA_GLOB_TILE_CLIP = 0x00010001

(3) Determine the list types and OPB sizes for the polygon lists that will be input first and second.
First list: Input all five types; OPB sizes: OP = 16, OMV = 8, TR = 16, TMV = 8,

and PT = 16
→ first TA_ALLOC_CTRL = 0x00021212

Second list: Input OP and PT; OPB sizes: OP = 16, PT = 16
→ second TA_ALLOC_CTRL = 0x00020002

(4) Based on the drawing enabled area and the input list OPB size, calculate the total OPB initial area
for the two lists.

First list: (16 + 8 + 16 + 8 + 16) x 4 Tiles x 4 bytes = 1024 bytes = 0x400
 → second TA_OL_BASE = 0x00200400
Second list: (16 + 16) × 4 Tiles × 4 bytes = 512 bytes
Total: 1024 + 512 = 1536 bytes = 0x600 → TA_NEXT_OPB_INIT =

0x00200600
§3.7.1.3 Region Array Data Storage

The TA creates Object Lists and ISP/TSP Parameters for the same number of groups as the number of
times that a list was input, basing the parameters on a polygon list that was input in several passes using

- 159 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

the multipass function. The same quantity of Region Array data in this instance is as the number of lists
that were input for one Tile is required.

Object List ISP/TS P Param eter

Tile-1

Tile-0

Polygon list inpu t (1)

Polygon list inpu t (2)

Polygon list inpu t (3)

Relationship between the TA input polygon lists and the CORE display list

TA

For list (1)
For list (2)
For list (3)

For list (1)
For list (2)
For list (3)

For list (1)

For list (2)

For list (3)

Tile-N
For list (1)
For list (2)
For list (3)

Region Array

Tile-1

Tile-0
For list (1)
For list (2)
For list (3)

For list (1)
For list (2)
For list (3)

Tile-N
For list (1)
For list (2)
For list (3)

Fig. 3-61

When drawing using a CORE display list that was created from a polygon list that was input in
several pieces to the TA, drawing must continue in the same Tile. Therefore, it is necessary to store
Region Array data for the same Tile in consecutive areas in texture memory. The Z Clear bit and Flush
Accumulate bit within the Region Array data must be controlled according to whether the data is for the
first drawing or last drawing to the same Tile.

Region array in multi-pass processing

Fir st for dr awing in t ile 1
(Z Clea r = 0, F lush Accumula te = 1)

F ir st for dr awing in t ile 0
(Z Clea r = 0, F lush Accumula te = 1)

Second for dr awing in t ile 0
(Z Clea r = 1, F lush Accumula te = 1)

Th ird for dr awing in t ile 0
(Z Clea r = 1, F lush Accumula te = 1)

La st for dr awing in t ile 0
(Z Clea r = 1, F lush Accumula te = 0)

Region array when only one list is input

For drawing in t ile 0
(Z Clea r = 0, F lush Accumula te = 0)

For drawing in t ile 1
(Z Clea r = 0, F lush Accumula te = 0)

For drawing in t ile 2
(Z Clea r = 0, F lush Accumula te = 0)

Fig. 3-62

- 160 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.1.4 Object List Starting Address for Each List
The TA stores the first OPB for each Tile from the polygon lists that were input in texture memory

according to consistent rules. If a list was input in several pieces through multipass processing, a new
OPB is stored each time.

The Object List starting addresses (List Pointers) for the five types of lists that are specified in the
Region Array data for each Tile corresponding to each list input can be determined through the
following calculations:

(Opaque List Pointer for Nth list input)
= OL_base + OP_size x T_num x 0x4

(Opaque Modifier Volume List Pointer for Nth list input)
= OL_base + (OP_size × GC_Tile + OM_size × T_num) × 0x4

(Translucent List Pointer for Nth list input)
= OL_base + [(OP_size + OM_size) × GC_Tile + TR_size × T_num) × 0x4

(Translucent Modifier Volume List Pointer for Nth list input)
= OL_base + [(OP_size + OM_size + TR_size) × GC_Tile + TM_size × T_num) × 0x4

(Punch through List Pointer for Nth list input)
= OL_base + [(OP_size + OM_size + TR_size + TM_size) × GC_Tile + PT_size × T_num) × 0x4

OL_base: Object list starting address for Nth list input (TA_OL_BASE register value)
GC_Tile: Total number of Tiles in Global Tile Clip area for Nth list input
OP_size: Opaque list OPB size for Nth list input
OM_size: Opaque Modifier Volume list OPB size for Nth list input
TR_size: Translucent List OPB size for Nth list input
TM_size: Translucent Modifier Volume list OPB size for Nth list input
PT_size: Punch Through list OPB size for Nth list input
T_num: Number of Tiles in Global Tile Clip area prior to the Tile for which the address is being derived

Exam ple: GC_t ile and T_num values

13

20 1 3 4

5 6 7 8 9

10 11 12 14

15 16 17 18 19

The gr ay por t ion indicates t iles in the
globa l t ile clip a r ea
(TA_GLOB_TILE_CLIP = 0x00040004)

In th is case, GC_t ile = 20, a nd the number
in dica ted in each t ile is T_num.

Fig. 3-63

Storage of OPBs for each Tile by TA is done in the horizontal direction, starting from the upper left
corner of the screen and continuing until the Tile on the right edge of the screen, followed by the Tiles
one row down, starting from the left end again, and so on.

- 161 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

An example of Region Array data for an Object List that was created when TA parameters were input
three times is shown below. (Refer to section 3.7.7.)

For th ird t ime
for t ile (0, 0)

For second
t ime for t ile

(0, 0)

For fir st t ime
for t ile (0, 0)

Region Array

0x10000000
0x00200000
0x00200100
0x00200180
0x00200280
0x00200300

First list input
<TA register set t ings>

TA_GLOB_TILE_CLIP = 0x00010001
TA_ALLOC_CTRL = 0x00021212
TA_OL_BASE = 0x00200000
TA_ISP_BASE = 0x00280000
TA_OL_LIMIT = 0x0027FFE0
TA_ISP_BASE = 0x00300000
TA_NEXT_OPB_INIT = 0x00200700

<Inpu t list >
Opaque
Opaque Modifier Volume
Translucen t
Translucen t Modifier Volume
Punch Through

Second list input
<TA register set t ings>

TA_ALLOC_CTRL = 0x00020002
TA_OL_BASE = 0x00200400

<Inpu t list >
Opaque
Punch Through

Third list input
<TA register set t ings>

TA_ALLOC_CTRL = 0x00000200
TA_OL_BASE = 0x00200600

<Inpu t list >
Translucen t

Example: List input to the TA three times

0x50000000
0x00200400
0x80000000
0x80000000
0x80000000
0x00200500
0x40000000
0x80000000
0x80000000
0x00200600
0x80000000
0x80000000

For th ird t ime
for t ile (1, 0)

For second
t ime for t ile

(1, 0)

For fir st t ime
for t ile (1, 0)

0x10000004
0x00200040
0x00200120
0x002001C0
0x002002A0
0x00200340
0x50000004
0x00200440
0x80000000
0x80000000
0x80000000
0x00200540
0x40000004
0x80000000
0x80000000
0x00200640
0x80000000
0x80000000

For th ird t ime
for t ile (0, 1)

For second
time for t ile

(0, 1)

For fir st t im e
for t ile (0, 1)

0x10000100
0x00200080
0x00200140
0x00200200
0x002002C0
0x00200380
0x50000100
0x00200480
0x80000000
0x80000000
0x80000000
0x00200580
0x40000100
0x80000000
0x80000000
0x00200680
0x80000000
0x80000000

For th ird t ime
for t ile (1, 1)

For second
t ime for t ile

(1, 1)

For fir st t im e
for t ile (1, 1)

0x10000104
0x002000C0
0x00200160
0x00200240
0x002002C0
0x002003C0
0x50000104
0x002004C0
0x80000000
0x80000000
0x80000000
0x002005C0
0xC0000104
0x80000000
0x80000000
0x002006C0
0x80000000
0x80000000

Fig. 3-64

For example, the calculations for the List Pointers that specify Region Array for the first time for
Tile (1, 0) are as follows:

（Opaque List Pointer）
= 0x00200000 + 16 × 2 × 0x4 ＝ 0x00200080

（Opaque Modifier Volume List Pointer）
= 0x00200000 +（16 × 4 +8 × 2） 0x4 ＝ 0x00200140

（Translucent List Pointer）
= 0x00200000 + ｛（16＋8） 4 + 16 × 2｝ 0x4 ＝ 0x00200200

（Translucent Modifier Volume List Pointer）
= 0x00200000 + ｛（16 + 8 + 16） 4＋8 × 2｝ 0x4 ＝ 0x002002C0

（Punch Through List Pointer）
= 0x00200000 + ｛（16 + 8 + 16 + 8） 4 + 16 × 2｝ 0x4 ＝ 0x00200380

- 162 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.2 Tile Arrangement
The Region Array is the first data that the CORE reads when drawing Tiles; the Region Array data

indicates the positions of the Tiles in the screen. Because the CORE draws the Tiles in the order indicated
in the Region Array data that is stored in texture memory, the user can freely specify the direction in which
drawing proceeds within a screen. This order in which the Region Array data is stored in texture memory is
called the "Tile arrangement."

Because the CPU creates the Region Array directly and stores it in texture memory, the Tile arrangement
can be set freely, but the two methods that are used normally are "vertical arrangement" and "horizontal
arrangement."

Region Array Direction in which t iles are drawn on screen
Tile (0, 0)
Tile (0, 1)
Tile (0, 2)

Tile (1, 0)
Tile (1, 1)
Tile (0, 2)

◆ Vertical arrangement

Region Array
Direct ion in which t iles are drawn on
screen

Tile (0, 0)
Tile (1, 0)
Tile (2, 0)

Tile (0, 1)
Tile (1, 1)
Tile (2, 1)

◆ Horizontal arrangement

Fig. 3-65

The starting address of the Object List data is also specified in the Region Array data. Because the TA
generates the Object List automatically, the address must be set accordingly. (Refer to section 3.7.3.4.)
Because storage of Object List data by the TA in texture memory is done in the horizontal direction, address
calculation requires special care when stacking Tiles vertically.

The drawing performance of the CORE can vary slightly, depending on the Tile arrangement. For
reasons concerning the CORE's internal parameter cache hit rate, arranging the Tiles in the Y direction
offers slightly better drawing performance than the X direction.

Note also that the Tile arrangement may be restricted, depending on the functions that are being used. If
Y-direction filtering is to performed, it will not be performed correctly if the Tiles are not arranged in the Y
direction. (Refer to section 3.4.10.) When using the strip buffer, the Tiles must be arranged in the X
direction. (Refer to section 3.4.13.)

- 163 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.3 Tile Accelerator
The TA performs the following processing in order to generate the CORE display list (Object List and

ISP/TSP Parameters).

• Partitioning infinite strip polygon data

• Dividing polygons into Tiles

• Clipping Tiles

• Generating the Object List

• Generating the ISP/TSP Parameters

§3.7.3.1 Strip Partitioning
Polygon data (Triangle polygons) that is input to the TA is compatible with infinite strips, but the

CORE only supports strips with a maximum number of six triangles. Therefore, the TA partitions
infinite strip polygon data into strips of 1 to 6 triangles, and then stores the data in texture memory. The
number of triangles (the strip number) in the partitioned strips can be specified within the polygon data
that is input. In addition, the "end of strip" bit must be set in the last vertex data in the strip. If the last
partitioned strip has fewer triangles than the number specified, then when the vertex data at the end of
the strip is input, the TA generates the polygon data with that strip number.

The TA does not support strips of Spites (Quad polygons) or Modifier Volumes (Triangle polygons).

B

A C

D

E

F

A

B

C

D

E

F

A

B

C

D

L (E nd of st r ip)

K

J

I

H

GE

F
D

C

B

A

Example: When strip number = 4

Fig. 3-66

- 164 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.3.2 Tile Division

The TA supports a drawing screen of up to 1280 pixels (H) × 480 pixels (V). Because the Tile size is
fixed at 32 pixels × 32 pixels, the number of Tiles on the screen is 40 Tiles (H) × 15 Tiles (V) (for a total
of 600 Tiles).

480 pixel

Tile No.(0,0) Tile No.(39,0)

Tile No.(39,14)Tile No.(0,14)

Screen size that can be
processed by the TA

(total : 600tiles)

1280 pixel

Fig. 3-67

The CORE requires an Object List that shows the starting address of the polygon data (the ISP/TSP
Parameters) that is included in each Tile. In order to generate this Object List, the TA divides the
polygons that are input into Tiles. This processing converts the floating-point X and Y vertex
coordinates that were input into integer values by truncating the decimal portion, then determines the
rectangle area (which consists of all of the individual Tiles that enclose the entire polygon) on the basis
of the minimum and maximum X and Y coordinates. All of the Tiles within the area are deemed to
contain part of the polygon.

After being input to the TA and then partitioned into strips, the polygon data is registered in the
Object List for the Tiles inside the bounding box. Therefore, the polygon is registered even in the
Object List for Tiles which do not actually contain part of the polygon, so the amount of Object List
data may be larger than what might be expected. Note especially that in the case of a long, thin polygon
that is displayed on an angle will result in most Tiles being such "wasted" Tiles.

Area tha t encompasses the en t ire polygon (bounding box)

"Wasted" t iles may
also be r egistered

Fig. 3-68

- 165 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.3.3 Tile Clipping
When dividing a polygon into Tiles, it is possible to specify the clipping area in units of Tiles. Each

polygon is then registered in Object Lists only for Tiles within the valid drawing area. There are two
types of clipping areas that can be specified: a Global Tile Clipping area (that is valid for all polygons)
and a User Tile Clipping area (that can be specified for individual polygons). For each type, the
rectangular area is specified through the numbers of the Tiles that occupy the upper left and lower right
corners. The Global Tile Clipping area values are specified through the TA_GLOB_TILE_CLIP
register, and the User Tile Clipping area values are specified through the User Tile Clipping parameter
(a Control Parameter). The inside of the Global Tile Clipping area is always the valid area, while for
the User Tile Clipping area it is possible to select either "off," "inside valid," or "outside valid." The
valid drawing area is determined by ANDing these two areas together (i.e., by taking the logical
product).

The Global Tile Clipping and User Tile Clipping areas are both used for Modifier Volume polygons.

Tile No. (Clip_X_Max, Clip_Y_Max)

Tile No. (Clip_X_Min, Clip_Y_Min)

User t ile clipping area (inside)

User t ile clippin g area (ou t side)

Global t ile clippin g area

Tile No. (Tile_X_Num, Tile_Y_Num)

Tile No. (0, 0) [fixed]

Global Tile Clip & U ser Tile Clip

Fig. 3-69

Clipped a rea Valid a rea

Parameter Control Word
User_Clip=10
 User Tile Clipping inside enable

Clipped a rea

Parameter Control Word
User_Clip=11
 User Tile Clipping outside enable

User t ile clipping a rea

Globa l t ile clipping a rea

Valid a rea

Fig. 3-70

§3.7.3.4 Object List Generation
Polygons that are input to the TA are registered in an Object List that corresponds to the Tiles that are

located in the bounding box as a result of Tile division. The TA has a built-in 600-Tile buffer, called the

- 166 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

"object List Pointer buffer," that is used to retain individual Tile data that is necessary in order to
generate the Object List. The CPU can read this information by using the TA_OL_POINTERS register.

The Object List consists of a data block that ranges in size from 8, 16, 32 × 32 bits, called the "Object
Pointer Block (OPB);" the size of the OPB can be specified for each type of list through the
TA_ALLOC_CTRL register. The OPB that the TA stores in texture memory corresponds to the Tiles in
the Global Tile Clipping area; no Object List is stored for Tiles outside of the area. Note that no
parameters are input to the TA for lists of a type for which "no list" was specified for the OPB size.

Once the list that is currently being input is ended by inputting the "end of list" Control Parameter,
the TA automatically stores the "end of list" data (Refer to "Object Pointer Block Link Data" in section
3.7.8) in the Object Pointer Block for each Tile.

§3.7.3.4.1 List Initialization Processing and List Continuation Processing

The description in this section is separate for HOLLY1 and HOLLY2, because the processing is
different.

In HOLLY1, if list initialization is performed through the TA_LIST_INIT register, the TA
allocates an Object List data area in texture memory, starting from the address that is specified in the
TA_OL_BASE register. The amount of memory that is allocated is twice the number of Tiles in the
Global Tile Clipping area specified in the TA_GLOB_TILE_CLIP register for the OPB size that was
specified in the TA_ALLOC_CTRL register for each list type. In addition, the order of the Tiles
stored in memory is (1) from left to right and (2) from top to bottom. The order of the lists is (1)
opaque, (2) opaque Modifier Volume, (3) translucent, and (4) translucent Modifier Volume.

The amount of memory allocated for the Object List upon initialization =
 ｛ (OPB size for Opaque Lists)
 (OPB size for opaque Modifier Volume lists)
 (OPB size for translucent lists)
 (OPB size for translucent Modifier Volume lists)｝

 × (number of Tiles in the Global Tile Clipping area)
 × 32 bits

Opaque

Tr anslucen t

16*32bit

8*32bit

Example: Object List upon initialization

・ Tile No. of lower r igh t t ile in globa l
t ile clipping ar ea = (1, 1)

・ Object Poin ter Block sizes
Opaque=16
Opaque Modifier Volume=0
Tr anslucen t=8
Tr anslucen t Modifier Volume=0

For t ile No. (0,0)

For t ile No. (1,0)

For t ile No. (0,1)

For t ile No. (1,1)

For t ile No. (0,0)
For t ile No. (1,0)
For t ile No. (0,1)
For t ile No. (1,1)

Object List B ase address

Fig. 3-71
In this way, the TA stores the initial Object Pointer Block for each Tile in texture memory

according to fixed rules. Therefore, the starting addresses of the Object Lists for the four lists that
must be set in the Region Array can be derived according to the following calculations:

(Object list starting address for Opaque List)
= OL_base ＋ OP_size × TP_num × 4h

(Object list starting address for opaque Modifier Volume list)
= OL_base ＋（OP_size × GC_Tile ＋ OM_size × T_num） 4h

- 167 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(Object list starting address for translucent list)
= OL_base ＋｛（OP_size＋OM_size） GC_Tile ＋ TP_size×T_num｝ 4h

(Object list starting address for translucent Modifier Volume list)
= OL_base ＋｛（OP_size＋OM_size＋TP_size） GC_Tile ＋ TP_size × T_num｝ 4h

OL_base: Object list base address
OL_base: Object list base address
GC_Tile: Total number of Tiles in the Global Tile Clipping area
OP_size: OPB size for Opaque List
OM_size: OPB size for opaque Modifier Volume list
TP_size: OPB size for translucent list
TM_size: OPB size for translucent Modifier Volume list
T_num: Number of Tiles in the Global Tile Clipping area prior to the Tile in question

Exam ple: GC_t ile and T_nu m
values

13

20 1 3 4

5 6 7 8 9

10 11 12 14

15 16 17 18 19

The gr ay a r ea indicates th ose t iles that a r e with in
the Globa l Tile Clip a r ea .

In th is ca se, GC_t ile = 20, a nd the
number indicated in each t ile is
T_num.

Fig. 3-72

- 168 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

In HOLLY2, list continuation processing has been added to the HOLLY1 specifications; If list
initialization is performed through the TA_LIST_INIT register, the TA initializes its internal status,
loads the value in the TA_NEXT_OPB_INIT register into the TA_NEXT_OPB register, and then
allocates space in texture memory as the OPB initial area, from the address that is specified in the
TA_OL_BASE register to the address that is specified in the TA_NEXT_OPB_INIT register.

If list continuation processing is performed through the TA_LIST_CONT register, the TA
initializes its internal status in the same manner as before, but leaves the TA_NEXT_OPB register
unchanged. As a result, the additional OPB for the list that is continuing to be input is stored after
the OPB that was input last time.

The sequence of the Tile OPBs that are stored in texture memory is the same as when Tiles are
arranged horizontally. The order of the lists is: (1) Opaque (2) Opaque Modifier Volume (3)
Translucent (4) Translucent Modifier Volume (5) Punch Through.

Tile OPB storage order

Object L ist data that is stored

OPB for
first list input

For Opaque t ile 2

With in Global Tile Clip
area

0 1 2

N

For Opaque t ile 0
For Opaque t ile 1

For Opaque t ile N
For Opaque Modifier volume

(N + 1 t ile)

For Translucen t Modifier volume
(N + 1 t ile)

For Translucen t
(N + 1 t ile)

For Punch Th rough
(N + 1 t ile)

OPB for second list inpu t

TA_OL_BASE
(fir st t ime)

Positions where each OPB is
stored after initialization

(Note)
No OPB is stored for list s tha t a re not
input . Tile OPBs ou t side of the
Globa l Tile Clip area are not stored.

Fig. 3-73

- 169 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.3.4.2 Adding an OPB

The number of objects that can be registered in one Object Pointer Block is (OPB size - 1).
In HOLLY1, if the number of objects that are included in that Tile exceeds that value, the TA adds

a new Object Pointer Block in texture memory. The TA automatically stores the starting address for
the newly added OPB in the final data of the OPB. (Refer to "Object Pointer Block Link Data" in
section 3.7.8.)

Following figure is deleted.

N ewly added OPB
Object 16 pointer data

Object 1 poin ter data

Object 2 poin ter data

Object 15 poin ter data
Star t ing address of new OPB

After adding the 16th object

Object 1 pointer data

Object 2 poin ter data

Object 15 poin ter data

Before register ing the 16th object

Example: Adding a new OPB (when the OPB size is 16)

Fig. 3-74

When adding a new Object Pointer Block, the address direction can be specified through the
TA_ALLOC_CTRL register.

Adding in th e direct ion of increasing addresses
(OPB_Mode = 0)

+S

+S

Other dat a

Addit iona l OPB
(S)

Addit iona l OPB
(S)

Object List
when list was

in it ia lized
(S * T)

S: Object poin ter block size of the list that is being processed
T: Tota l number of t iles in the global t ile clipping area

TA_OL_BASE

TA_OL_LIMIT

-S

-S

Other da ta

Addit iona l OPB
(S)

Addit iona l OPB
(S)

Object List dur ing
list in it ia lizat ion

(S * T)

TA_OL_LIMIT

TA_OL_BASE

Example: Address direction for the additional OPB

Adding in t he direct ion of decreasing addresses
(OPB_Mode = 0)

Fig. 3-75
In HOLLY2, If the number of objects that are included in a Tile exceed that value, the TA allocates

- 170 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

an additional OPB area sufficient for the OPB size of that list, starting form the address indicated by
the TA_NEXT_OPB register, and stores a pointer for the excess object in that address. At the same
time, the value in the TA_NEXT_OPB register, which is the starting address of the additional OPB,
is automatically stored in the last address of the OPB that was stored previously. (Refer to "Object
Pointer Block Link Data," section 3.7.8.) In addition, the value in the TA_NEXT_OPB register is
updated to the starting address of the next additional OPB.

When a list is input on a continuation basis, the additional OPB is added after the address where
the previous OPB was stored.

link

(unused)

A fter registerin g th e 16th ObjectB efore regist erin g t h e 16th Object

(unused)

N ew ly added OPB

Object-16 poin ter data

Object-1 poin ter data
Object-2 poin ter data

Object-15 poin ter data
Star t ing address of the new OPB

Object -1 pointer data
Object -2 pointer data

Object-15 poin ter data

Example: Adding a new OPB (when the OPB s ize is 16)

TA_NEXT_OPB

TA_NEXT_OPB
after OPB
addit ion

Fig. 3-76

- 171 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The direction of the addresses when adding a new OPB can be specified in the
TA_ALLOC_CTRL register.]

Adding in the direct ion of increasing
addresses (OPB_Mode = 0)

+S

+S

Other da ta

Addit ional OPB
(S)

Addit ional OPB
(S)

Object List for list
in it ia liza t ion

(S*T*N)

S: OPB size in list being processed
T: Tota l number of t iles in globa l t ile clip a rea
N: List input count

TA_OL_BASE
(first t ime)

TA_OL_LIMIT

-S

-S

Other da ta

Addit ional OPB
(S)

Addit ional OPB
(S)

Object List for list
in it ia liza t ion

(S*T*N)

TA_OL_LIMIT

TA_OL_BASE
(first time)

Example: Additional OPB address direction

Adding in the direct ion of decreasing
addresses（OPB_Mode = 1）

 TA_NEXT_
 OPB_INIT

 TA_NEXT_
 OPB_INIT

Fig. 3-77

- 172 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.3.4.3 Processing When a Limit Address Is Exceeded

If the Object List data storage address has exceeded the Object List limit address specified in the
TA_OL_LIMIT register, that Object List data is not stored in texture memory. In this event, the TA
stores the "End of List" Object List data at the limit address, and links to this "End of List" the OPBs
for all of the Tiles for which additional OPBs could not be stored. Therefore, the address that is
specified in the TA_OL_LIMIT register cannot be used for other data, etc.

no da ta

Other data

Object Poin ter

no da ta
End of List

Poin ter Block Link

End of List

Object Poin ter

Poin ter Block Link
Object Poin ter

Poin ter Block Link
Object Poin ter

Object Poin ter

TA_OL_LIMIT

TA_OL_BASE

OPB for
Tile A

Actual limit

address value

W hen OPB Mode = 0

Other data

Object Poin ter

no da ta
End of List

Poin ter Block Link

End of List

Object Poin ter

Poin ter Block Link

Object Poin ter

Poin ter Block Link

Object Poin ter

Object Poin ter

TA_OL_BASE

&

*TA_NEXT_

OPB_INIT

TA_OL_LIMIT

(Actual limit

address value)

W hen OPB Mode = 1

Example of processing when the limit address has been exceeded by other than an
additional OPB for Tile A (*Additional specification in HOLLY2)

OPB for
Tile B

OPB for
Tile X

Addit ional
OPB for Tile

A
Limit da t a

Limit da ta

Additional
OPB for

Tile A

OPB for
Tile X

OPB for
Tile B

OPB for
Tile A

* TA_NEXT_

OPB_INIT

Fig. 3-78

- 173 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.3.5 ISP/TSP Parameter Generation
Polygon lists that are input from the CPU are rearranged by the TA into ISP/TSP Parameter format,

and are stored in texture memory in order, starting from the address that is specified in the
TA_ISP_BASE register. In HOLLY2, When a list is input on a continuation basis, the ISP/TSP
Parameters are stored after the address where the parameters were stored the previous time. However,
data for polygons that do not exist at all within the effective drawing area jointly defined by the Global
Tile Clipping area and the User Tile Clipping areas is discarded and is not stored in texture memory.

Furthermore, polygon data is not stored in an address that exceeds the ISP/TSP Parameter limit
address that was specified in the TA_ISP_LIMIT register. Therefore, a display list in which the limit
address was exceeded cannot be used for drawing. Users must take into consideration the size of the
ISP/TSP Parameter data that will be stored in texture memory, based on number of polygons that are to
be input to the TA, when specifying the limit address.

Three formats are supported for the Shading Color data within the polygon data that is input to the
TA: "Packed Color," "Floating Color," and "intensity." However, the CORE supports "Packed Color"
only. Therefore, the TA converts the shading data that is input into 32-bit Packed Color format before
storing the data in texture memory.

<Shading data conversion>
Floating Color → Packed Color

The TA converts each element of ARGB data into a fixed decimal value between 0.0 and 1.0,
multiples the value by 255, and packs the result in a 32-bit value.

Intensity → Packed Color
Regarding alpha values, the TA converts the specified Face Color Alpha value into a fixed

decimal value between 0.0 and 1.0, multiples the value by 255, and derives an 8-bit value.
Regarding RGB values, the TA converts the specified Face Color R/G/B value into a fixed
decimal value between 0.0 and 1.0, multiples the value by 255, converts the intensity value into a
fixed decimal value between 0.0 and 1.0, multiplies the converted R/G/B value and the converted
intensity value together, multiplies that result by 255, and derives an 8-bit value for each of R, G,
and B. Finally, the TA packs each 8-bit value into a 32-bit value.

- 174 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.4 Explanation of TA Parameters
There are three types of polygon data that are input to the TA: Control Parameters, Global Parameters,

and Vertex Parameters. One data element consists of 32 or 64 bytes of each. The first four bytes of each
type of parameter are called the Parameter Control Word, which is used for determining the parameter
settings and type.

The Control Parameters are used for special processing, such as ending the Object List. The Global
Parameters consist of various settings that apply to the polygons that are expressed by the Vertex
Parameters, which are input after the Global Parameters. In the case of a Triangle polygon, a minimum of
at least three Vertex Parameters is required. The Vertex Parameters contain vertex data for polygons that
also use the settings in the Global Parameters that were input previously.

The Global Parameters and Vertex Parameters must be grouped together for input by list type (opaque,
translucent, etc.) Furthermore, although there are no restrictions on the input order for the four types of
lists (opaque, etc.), parameters for polygons of one particular type may only be input once.

§3.7.4.1 Control Parameter
The Control Parameters are used for special processing, such as ending the Object List.

Parameter
type

Processing

End Of List Ends the list for the type (opaque, translucent, etc.) that is currently being
input. This parameter must be input last in the list for each type.

User Tile
Clip

Specifies the User Tile Clipping values. The specified values remain valid until
they are updated. The clipping values specify the Tile number for the Tiles in the
upper left and lower right corners of the rectangular area. Only the lower six bits
are valid for Tile numbers in the X direction. Only the upper four bits are valid
for Tile numbers in the Y direction. In addition, do not specify a value greater
than 39 (0x27) for the Tile number in the X direction, or greater than 14 (0xE)
for the Tile number in the Y direction.

User Clip X Min: Upper left Tile number in the X direction (0 to 39)
User Clip Y Min: Upper left Tile number in the Y direction (0 to 14)
User Clip X Max: Lower right Tile number in the X direction (0 to 39)

User Clip Y Max: Lower right Tile number in the Y direction (0 to 14)
Object List

Set
This is used to register polygons of a type that is not supported by the TA, or to
register just an Object List. The specified Object Pointer data is stored in the
Object List for the Tiles in the specified bounding box.
In the Object Pointer value, specify the data that is to be stored in the Object List.
In the bounding box values, specify the upper left and lower right Tile numbers

that define the rectangulararea that includesthe object. Only the lower six bits are
valid for Tile numbers in the X direction. Only the upper four bits are valid for

Tile numbersin the Y direction. In addition,do not specifya value greaterthan 39
(0x27) for the Tile number in the X direction, or greater than 14 (0xE) for the Tile
number in the Y direction.

Bounding Box X Min: Upper left Tile number in the X direction (0 to 39)
Bounding Box Y Min: Upper left Tile number in the Y direction (0 to 14)
Bounding Box X Max: Lower right Tile number in the X direction (0 to 39)

Bounding Box Y Max: Lower right Tile number in the Y direction (0 to 14)

Once the End of List parameter has been input and all of the data for polygons of the type currently
being input have been stored in texture memory, one of four types of interrupt signals (corresponding to
the polygon type) is output. As a result of this interrupt request, the CPU knows that the TA has
completed processing for that polygon type.

When performing clipping processing that uses a User Tile Clipping area, the clipping values must
already be specified beforehand through the User Tile Clip parameters.

<Using Object List Set>

- 175 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Use the Object List Set parameters in the following cases:

(1) When you only want to register an Object List, without storing the ISP/TSP Parameters again for
polygons that will be absolutely unchanged on the screen

(2) When you only want to register a type of polygon that the TA does not support (such as a Gouraud
shaded Quad polygon)

Input the Object List Set parameters after the list has been initialized by the TA_LIST_INIT
register, or after the End Of List parameter. First, store the ISP/TSP Parameters that were generated
by the CPU directly in the texture memory, and then set the last address value in the TA_ISP_BASE
register. For the data in the parameters, set the values for the bounding box for the polygon to be
registered under the ISP/TSP Parameters that were already stored, and set the Object Pointer value
that specifies the starting address, etc., for the ISP/TSP Parameters. Once the Object List Set
parameters have been completely input, input the remaining polygon data as normal parameters.

- 176 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.4.2 Global Parameter
The Global Parameters consist of three types of control data that are stored in texture memory as the

ISP/TSP Parameters, and parameters that specify the data configuration of the Vertex Parameters that
are input subsequently.

Parameter type Processing
Polygon This is used when the list type is either Opaque or Translucent. There are

five types of parameters with different data configurations. The Vertex
Parameters that are input subsequently are used to generate Triangle
polygon data for the strip number that is specified in the Parameter Control
Word.

These parameters specify the Face Color when the Shading Color type in the
Vertex Parameters is "Intensity" format. The Face Color is the color data (a
32-bit floating-point decimal value) that is multiplied by the vertex intensity
value. There are two types of Face Colors: one for the Base Color and one
for the Offset Color.
 Face Color: for Base Color
 Face Offset Color: for Offset Color
Input polygons for which the settings will change inside and outside of the
volume in "with Two Volumes" format. In "with Two Volumes" format, two
TSP Instruction Words, two Texture Control Words, and two Face Colors are
set.
Also specify Sort-DMA data, if necessary.

Sprite This is used when the list type is either Opaque or Translucent.
The Vertex Parameters that are input subsequently are used to generate flat
shaded independent Quad polygon data.

Specify the Base Color and Offset Color for Flat Shading. (Both use 32-bit
packed ARGB data.)
Also specify Sort DMA data, if necessary.

Modifier
Volume

This is used when the list type is either Opaque Modifier Volume or
Translucent Modifier Volume.
The Vertex Parameters that are input subsequently are used to generate
independent Triangle polygon data. The Triangle polygon data in the Vertex
Parameters that are input after the Global Parameter that was specified as the
end of the volume in the Parameter Control Word is registered in all of the Tile
Object Lists that encompass the entire volume.

- 177 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

When transferring translucent polygon data by using the Sort-DMA function (refer to 2.6.5.3), it is
necessary to set the Sort-DMA data. In addition, when using the Sort-DMA function, the "Polygon
Type 1" Global Parameter must not be used.

Data Description
Data Size
for Sort-DMA

This specifies in 32-byte units the data size (including the Control Parameters,
the Global Parameters, and the Vertex Parameters) of the objects that includes the
Global Parameters in question. Only the lower 8 bits are valid; if "0" is specified,
it is treated as "256." Note that "1" through "3" may not be specified.

Next Address
for Sort-DMA

This specifies the offset address value for the object parameters that are to be
transferred next. The actual address is the sum of the base address value
specified in the SB_SDBAAW (0x005F 6814) register plus this value. Only the
lower 27 bits are valid. The SB_SDLAS register (0x005F 681C) is used to
specify whether this value is specified in 1-byte or 32-byte units. The following
values have special meanings:

Link End Code (0x0000 0001): Link table read
Link All End Code (0x0000 0002): Sort-DMA end

§3.7.4.3 Vertex Parameter
The Vertex Parameters specify a variety of data for the vertices. The Vertex Parameters must always

be input after the Global Parameters. The data configuration of the Vertex Parameters is determined by
the type of Global Parameters (Polygon/Sprite/Volume Modifier) that were input previously and the
Parameter Control Word.

Parameter type Processing
Polygon This is used when the Global Parameters that were input previously were

of the Polygon type.
There are 15 types of parameters with different data configurations, and it is
necessary to input a minimum of three. "End of Strip" must be specified at
t h e e n d o f t h e o b j e c t . I f t h e p a r a m e t e r s a r e t o b e i n p u t i n " w i t h T w o
V o l u m e s " f o r m a t , s e t t w o e a c h o f t h e U V , B a s e / O f f s e t C o l o r , a n d
Base/Offset Intensity parameters for the inside and outside of the volume.

Sprite This is used when the Global Parameters that were input previously were
of the Sprite type.

T h e r e a r e t w o t y p e s o f p a r a m e t e r s w i t h d i f f e r e n t d a t a c o n f i g u r a t i o n s .
S p e c i f y d a t a f o r f o u r v e r t i c e s f o r o n e p o l y g o n t o g e n e r a t e F l a t - S h a d e d
independent Quad polygon data.

Modifier
Volume

This is used when the Global Parameters that were input previously were
of the Modifier Volume type.

S p e c i f y d a t a f o r t h r e e v e r t i c e s f o r o n e p o l y g o n t o g e n e r a t e i n d e p e n d e n t
Triangle polygon data for the Modifier Volume.

Data Data
X, Y, Z Vertex coordinates (IEEE single-precision floating point values)

Specify the screen coordinates for X and Y, and a reciprocal (1/z or 1/w) for
Z.

U, V Texture coordinates (16-bit or 32-bit floating point values)
For 32-bit UV, specify IEEE single-precision floating point values. For 16-bit
UV, extract the upper 16 bits of the 32-bit floating point values for U and V
respectively, and specify a 32-bit value consisting of U as the upper 16 bits
and V as the lower 16 bits.

Base/Offset Color Shading Color data (32-bit integers) for Packed Color format
Store these values as is in the ISP/TSP Parameters.

Base/Offset Color
Alpha/R/G/B

Shading Color data (32-bit floating-point values) for Floating Color format
Convert each data element into an 8-bit integer (0 to 255), group them into
32-bit values, and store them in the ISP/TSP Parameters.

- 178 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Base/Offset
Intensity

Shading Color data (32-bit floating-point values) for Intensity format
Convert the Face Color alpha values specified in the Global Parameters into
8-bit integers (0 to 255). Multiply the RGB values by the corresponding Face
Color R/G/B value, and convert the result into an 8-bit integer (0 to 255).
Combine each 8-bit value thus obtained into a 32-bit value and store it in the
ISP/TSP Parameters.

In the case of the Polygon type, the last Vertex Parameter for an object must have "End of Strip"
specified. If Vertex Parameters with the "End of Strip" specification were not input, but parameters
other than the Vertex Parameters were input, the polygon data in question is ignored and an interrupt
signal is output.

When using Bump Mapping, input the Bump Map parameters instead of the Offset Color. The
Shading Color type must be set to something other than Intensity format. The Bump Map parameters
are valid for the third and subsequent vertices from the start of the strip.

In the case of a flat-shaded polygon, the Shading Color data (the Base Color, Offset Color, and Bump
Map parameters) become valid starting with the third vertex after the start of the strip.

§3.7.4.4 Parameter Control Word
This data is used to determine the data configuration and type of each parameter. The Parameter

Control Word is added to the first four bytes.

bit 31-24 23-16 15-0
Para Control Group Control Obj Control

§3.7.4.4.1 Para Control

This is the control data for all of the parameters. The End Of Strip bit (only) is valid only in the
Vertex Parameters.

bit 31-29 28 27-26 25-24
Para Type End Of Strip Reserved List Type

The control data for HOLLY2 is shown below.
bit 31-29 28 27 26-24

Para Type End Of Strip Reserved List Type

Para Type
Specifies the parameter type.

Parameter type Parameter Hex Code
Control Parameter End Of List 0

User Tile Clip 1
Object List Set 2
Reserved 3

Global Parameter Polygon or Modifier Volume 4
Sprite 5
Reserved 6

Vertex Parameter 7

End Of Strip
Valid only in the Vertex Parameters. A parameter in which this bit is "1" ends a strip. The

Spite and Modifier Volume Vertex Parameter must be set to "1".

List_Type
Specifies the Object List type. This value is valid in the following four cases:

(a) The first Global Parameter that was input after list initialization through the

- 179 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TA_LIST_INIT register or after list continuation processing through the
TA_LIST_CONT register.

(b) The first Global Parameter that was input after an End Of List parameter was input

(c) The first Object List Set parameter that was input after list initialization through the
TA_LIST_INIT register or after list continuation processing through the
TA_LIST_CONT register.

(d) The first Object List Set parameter that was input after an End Of List parameter was
input

List type Code Parameters that can be used
Opaque 0 Polygon or Sprite
Opaque Modifier Volume 1 Modifier Volume
Translucent 2 Polygon または Sprite
Translucent Modifier Volume 3 Modifier Volume
Punch Through (HOLLY2) 4 Polygon or Sprite
Reserved (HOLLY2) 5~7 Prohibited

§3.7.4.4.2 Group Control

This is the control data for an object group. This is valid only in Global Parameters.

bit 23 22-20 19-18 17-16
Group_En Reserved Strip_Len User_Clip

Group_En
Set "1" in order to update the Strip_Len and User_Clip settings. If "0" is set, the existing

settings are used.

Strip_Len
Specifies the length of the strip that is to be partitioned. This is valid only when Group_En

is "1".

Code strip 分割数

0 1 strip
1 2 strip
2 4 strip
3 6 strip

User_Clip
Specifies how the User Tile Clipping area is to be used. This is valid only when Group_En

is "1".

Code User Tile Clipping
0 Disable
1 Reserved
2 Inside enable
3 Outside enable

§3.7.4.4.3 Obj Control

This data sets an object. This is valid only in Global Parameters.

bit 15-8 7 6 5-4 3 2 1 0
Reserved Shadow Volume Col_Type Texture Offset Gouraud 16bit_UV

- 180 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Shadow
The value of this bit is used in "Shadow bit (bit 24)" of the Object List. This bit must be

set to "1" for parameters in "with Two Volumes" format. In Intensity Volume Mode, set this
bit to "1" in order to perform shadow processing on a polygon.

Volume
This specifies whether the parameters are in "with Two Volumes" format, or whether or not

the polygon is the last Triangle polygon in the volume. In the case of the Modifier Volume
type, the Volume Instruction (bits 31 to 29) in the ISP/TSP Instruction Word must be set
correctly, along with this bit. In the case of the Sprite type, set this bit to "0."

Parameter type Bit Value Explanation
Polygon 0 For a format other than "with Two Volumes"

1 For "with Two Volumes" format
Modifier Volume 0 For a Triangle polygon that is not the last in

the volume
1 For a Triangle polygon that is the last in the

volume

Shadow Bit and Volume Bit Combinations
Shadow Volume Explanation

Polygon Modifier Volume
0 0 Normal polygons, or polygons

for which shadow processing
is not performed (in Intensity
Volume mode)

Triangle polygons that are not
the last in the volume

0 1 Reserved Triangle polygon that is the
last in the volume

1 0 Polygons for which shadow
processing is performed (in
Intensity Volume mode)

Reserved

1 1 Polygons in "with Two
Volumes" format

Reserved

- 181 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Col_Type
Specifies the format for the Shading Color data that is to be input. For Intensity format, if

the Face Color that was used for the previous object is to be used for the current object, the
amount of data that has to be transferred can be reduced by specifying "Intensity Mode 2,"
since the same Face Color data does not have to be input again.

Code Color data format Description
0 Packed Color 8-bit values for each of A, R, G, and B
1 Floating Color 32-bit floating-point values for each of A, R,

G, and B
2 Intensity Mode 1 The Face Color is specified by the immediately

preceding Global Parameters.
3 Intensity Mode 2 The previous Face Color value that was

specified by Global Parameters in Intensity
Mode 1 is used for the Face Color. Note that a
polygon for which this mode is used must only
be input after a Mode 1 polygon has been input
at least once. It is not necessary for the Mode
1 polygon to have immediately preceded this
polygon.

Texture
Set this bit to "1" when using a texture. The value of this bit is used in the Texture bit in

the TSP Instruction Word in the ISP/TSP Parameters.

Offset
Set this bit to "1" when using an Offset Color. The value of this bit is used in the Offset

bit in the TSP Instruction Word in the ISP/TSP Parameters.
Set this bit to "1" for a Bump Mapped polygon.

Gouraud
Set this bit to "1" when using Gouraud Shading. When this bit is "0," Flat Shading is set

and the Shading Color data for the third and subsequent vertices becomes valid. The value of
this bit is used in the Gouraud Shading bit in the TSP Instruction Word in the ISP/TSP
Parameters.

Set "0" in the case of a Spite.

16bit_UV
Set this bit to "1" when using 16-bit values for the Texture UV coordinate values. If this

bit is "0," 32-bit values are used. The value of this bit is used in the 16-bit UV bit in the TSP
Instruction Word in the ISP/TSP Parameters.

Set "1" in the case of a Spite.

Four bits in the ISP/TSP Instruction Word are overwritten with the corresponding bit values from
the Parameter Control Word.

Parameter Control Word ISP/TSP Instruction Word
Bit 3 Texture Bit 25 Texture
Bit 2 Offset Bit 24 Offset
Bit 1 Gouraud Bit 23 Gouraud shading
Bit 0 16bit_UV Bit 22 16 Bit UV

- 182 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.5 Parameter Format
The three types of parameters (Control Parameters, Global Parameters, and Vertex Parameters) are

actually input to the TA in the form of 64-bit data. The data configuration used is shown below.

bit 63-32 bit 31-0
0x04 0x00
0x0C 0x08
0x14 0x10
0x1C 0x18
0x24 0x20
0x2C 0x28
0x34 0x30
0x3C 0x38

§3.7.5.1 Control Parameter Format

End Of List
0x00 Parameter Control Word(0x0000 0000)
0x04 (ignored)
0x08 (ignored)
0x0C (ignored)
0x10 (ignored)
0x14 (ignored)
0x18 (ignored)
0x1C (ignored)

User Tile Clip
0x00 Parameter Control Word(0x2000 0000)
0x04 (ignored)
0x08 (ignored)
0x0C (ignored)
0x10 User Clip_X_Min invalid bit 5-0
0x14 User Clip_Y_Min invalid bit 3-0
0x18 User Clip_X_Max invalid bit 5-0
0x1C User Clip_Y_Max invalid bit 3-0

Object List Set
0x00 Parameter Control Word(0x4000 0000)
0x04 Object Pointer
0x08 (ignored)
0x0C (ignored)
0x10 Bounding Box X_Min invalid bit 5-0
0x14 Bounding Box Y_Min invalid bit 3-0
0x18 Bounding Box X_Max invalid bit 5-0
0x1C Bounding Box Y_Max invalid bit 3-0

- 183 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.5.2 Global Parameter Format

Polygon Type 0
(Packed/Floating Color)

Polygon Type 1
(Intensity, no Offset Color)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 ISP/TSP Instruction Word 0x04 ISP/TSP Instruction Word
0x08 TSP Instruction Word 0x08 TSP Instruction Word
0x0C Texture Control Word 0x0C Texture Control Word
0x10 (ignored) 0x10 Face Color Alpha
0x14 (ignored) 0x14 Face Color R
0x18 Data Size for Sort DMA 0x18 Face Color G
0x1C Next Address for Sort DMA 0x1C Face Color B

Polygon Type 2
(Intensity, use Offset Color)

Polygon Type 3
(Packed Color, with Two Volumes)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 ISP/TSP Instruction Word 0x04 ISP/TSP Instruction Word
0x08 TSP Instruction Word 0x08 TSP Instruction Word 0
0x0C Texture Control Word 0x0C Texture Control Word 0
0x10 (ignored) 0x10 TSP Instruction Word 1
0x14 (ignored) 0x14 Texture Control Word 1
0x18 Data Size for Sort DMA 0x18 Data Size for Sort DMA
0x1C Next Address for Sort DMA 0x1C Next Address for Sort DMA
0x20 Face Color Alpha
0x24 Face Color R
0x28 Face Color G
0x2C Face Color B
0x30 Face Offset Color Alpha
0x34 Face Offset Color R
0x38 Face Offset Color G
0x3C Face Offset Color B

Polygon Type 4
(Intensity, with Two Volumes)

0x00 Parameter Control Word
0x04 ISP/TSP Instruction Word
0x08 TSP Instruction Word 0
0x0C Texture Control Word 0
0x10 TSP Instruction Word 1
0x14 Texture Control Word 1
0x18 Data Size for Sort DMA
0x1C Next Address for Sort DMA
0x20 Face Color Alpha 0
0x24 Face Color R 0
0x28 Face Color G 0
0x2C Face Color B 0
0x30 Face Color Alpha 1
0x34 Face Color R 1
0x38 Face Color G 1
0x3C Face Color B 1

- 184 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Sprite (Packed Color)
0x00 Parameter Control Word
0x04 ISP/TSP Instruction Word
0x08 TSP Instruction Word
0x0C Texture Control Word
0x10 Base Color
0x14 Offset color
0x18 Data Size for Sort DMA
0x1C Next Address for Sort DMA

Modifier Volume
0x00 Parameter Control Word
0x04 ISP/TSP Instruction Word
0x08 (ignored)
0x0C (ignored)
0x10 (ignored)
0x14 (ignored)
0x18 (ignored)
0x1C (ignored)

<Notes>

•
If textures are not used, the Texture Control Word is ignored.

•
In the case of Polygon Type 4 (Intensity, with Two Volumes), the Face Color is used in both the Base

Color and the Offset Color.

•
The seventh (0x18) and eighth (0x1C) data items in all Global Parameter configurations, except for

P o l y g o n Ty p e 1 a n d M o d i f i e r Vo l u m e , a r e S o r t - D M A p a r a m e t e r s . I t i s n e c e s s a r y t o s e t t h e s e
parameters if data is to be transferred using Sort-DMA.

- 185 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.5.3 Vertex Parameter Format
In HOLLY2, there are changes to the parameters for polygon types 0 and 2. Refer to the end of this

section for details.

Polygon Type 0
(Non-Textured, Packed Color)

Polygon Type 1
(Non-Textured, Floating Color)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 (ignored) 0x10 Base Color Alpha
0x14 (ignored) 0x14 Base Color R
0x18 Base Color 0x18 Base Color G
0x1C (ignored) 0x1C Base Color B

Polygon Type 2
(Non-Textured, Intensity)

0x00 Parameter Control Word
0x04 X
0x08 Y
0x0C Z
0x10 (ignored)
0x14 (ignored)
0x18 Base Intensity
0x1C (ignored)

Polygon Type 3
(Packed Color)

Polygon Type 4
(Packed Color, 16bit UV)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 U 0x10 U / V
0x14 V 0x14 (ignored)
0x18 Base Color 0x18 Base Color
0x1C Offset Color 0x1C Offset Color

Polygon Type 5
(Floating Color)

Polygon Type 6
(Floating Color, 16bit UV)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 U 0x10 U / V
0x14 V 0x14 (ignored)
0x18 (ignored) 0x18 (ignored)
0x1C (ignored) 0x1C (ignored)
0x20 Base Color Alpha 0x20 Base Color Alpha
0x24 Base Color R 0x24 Base Color R
0x28 Base Color G 0x28 Base Color G
0x2C Base Color B 0x2C Base Color B
0x30 Offset Color Alpha 0x30 Offset Color Alpha
0x34 Offset Color R 0x34 Offset Color R
0x38 Offset Color G 0x38 Offset Color G
0x3C Offset Color B 0x3C Offset Color B

Polygon Type 7
(Intensity)

Polygon Type 8
(Intensity, 16bit UV)

- 186 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 U 0x10 U / V
0x14 V 0x14 (ignored)
0x18 Base Intensity 0x18 Base Intensity
0x1C Offset Intensity 0x1C Offset Intensity

Polygon Type 9
(Non-Textured, Packed Color,

with Two Volumes)

Polygon Type 10
(Non-Textured, Intensity,

with Two Volumes)
0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 Base Color 0 0x10 Base Intensity 0
0x14 Base Color 1 0x14 Base Intensity 1
0x18 (ignored) 0x18 (ignored)
0x1C (ignored) 0x1C (ignored)

Polygon Type 11
(Textured, Packed Color,

with Two Volumes)

Polygon Type 12
(Textured, Packed Color, 16bit UV,

with Two Volumes)
0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 U0 0x10 U0 / V0
0x14 V0 0x14 (ignored)
0x18 Base Color 0 0x18 Base Color 0
0x1C Offset Color 0 0x1C Offset Color 0
0x20 U1 0x20 U1 / V1
0x24 V1 0x24 (ignored)
0x28 Base Color 1 0x28 Base Color 1
0x2C Offset Color 1 0x2C Offset Color 1
0x30 (ignored) 0x30 (ignored)
0x34 (ignored) 0x34 (ignored)
0x38 (ignored) 0x38 (ignored)
0x3C (ignored) 0x3C (ignored)

- 187 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Polygon Type 13
(Textured, Intensity,

with Two Volumes)

Polygon Type 14
(Textured, Intensity, 16bit UV,

with Two Volumes)
0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 U0 0x10 U0 / V0
0x14 V0 0x14 (ignored)
0x18 Base Intensity 0 0x18 Base Intensity 0
0x1C Offset Intensity 0 0x1C Offset Intensity 0
0x20 U1 0x20 U1 / V1
0x24 V1 0x24 (ignored)
0x28 Base Intensity 1 0x28 Base Intensity 1
0x2C Offset Intensity 1 0x2C Offset Intensity 1
0x30 (ignored) 0x30 (ignored)
0x34 (ignored) 0x34 (ignored)
0x38 (ignored) 0x38 (ignored)
0x3C (ignored) 0x3C (ignored)

Sprite Type 0
(for Line)

Sprite Type 1
(for Sprite)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 AX 0x04 AX
0x08 AY 0x08 AY
0x0C AZ 0x0C AZ
0x10 BX 0x10 BX
0x14 BY 0x14 BY
0x18 BZ 0x18 BZ
0x1C CX 0x1C CX
0x20 CY 0x20 CY
0x24 CZ 0x24 CZ
0x28 DX 0x28 DX
0x2C DY 0x2C DY
0x30 (ignored) 0x30 (ignored)
0x34 (ignored) 0x34 AU / AV
0x38 (ignored) 0x38 BU / BV
0x3C (ignored) 0x3C CU / CV

Modifier Volume
0x00 Parameter Control Word
0x04 AX
0x08 AY
0x0C AZ
0x10 BX
0x14 BY
0x18 BZ
0x1C CX
0x20 CY
0x24 CZ
0x28 (ignored)
0x2C (ignored)
0x30 (ignored)
0x34 (ignored)
0x38 (ignored)
0x3C (ignored)

The polygon type 0 and 2 parameter formats that were changed in HOLLY2 are shown below.
* In both polygon type 0 and type 2, 0x10 and 0x18 are reversed, compared with HOLLY1.

- 188 -

<Notes>
• The data configuration that is used is

determined by the Parameter Control
Word in the Global Parameters;
unnecessary data is automatically
ignored.

• When using Bump Mapping, the Offset
Color data is used as the Bump Map
parameters (K1K2K3Q). The Bump
Map parameters are valid for the third
and subsequent vertices from the start of
the strip.

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Polygon Type 0
(Non-Textured, Packed Color)

Polygon Type 2
(Non-Textured, Intensity)

0x00 Parameter Control Word 0x00 Parameter Control Word
0x04 X 0x04 X
0x08 Y 0x08 Y
0x0C Z 0x0C Z
0x10 *(ignored) 0x10 * (ignored)
0x14 (ignored) 0x14 (ignored)
0x18 * Base Color 0x18 * Base Intensity
0x1C (ignored) 0x1C (ignored)

- 189 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.6 Overview of TA Parameters

§3.7.6.1 Notes When Using the TA
The following points must be noted when using the Tile Accelerator to generate display lists for the

CORE.

<Register-related>
• Set the TA_GLOB_TILE_CLIP register, the TA_ALLOC_CTRL register and the

TA_NEXT_OPB_INIT register in HOLLY2 before initializing lists through the TA_LIST_INIT
register.

• In HOLLY2, be certain to change the TA_OL_BASE register to the correct address before
performing list continuation processing through the TA_LIST_CONT register.

• If the address in texture memory where the Object List is stored exceeds the address specified in
the TA_OL_LIMIT register, respectively, the TA outputs an interrupt. Although the display list
is generated correctly in this case, the resulting image will not appear as expected.

• If the address in texture memory where the ISP/TSP Parameters are stored exceeds the address
specified in the TA_ISP_LIMIT register, the TA outputs an interrupt. The display list (ISP/TSP
Parameters) is not generated correctly in this case, and therefore should not be used for drawing.
It is necessary in this case to reconsider the memory allocations and to start over from list
initialization. Users must take into consideration the size of the memory needed for the ISP/TSP
Parameters, based on number of polygons that are to be input to the TA, when allocating
memory.

<Parameter input-related>
• The five types of polygon data (Opaque, Opaque Modifier Volume, Translucent, Translucent

Modifier Volume, and Punch Through) (five types in the case of HOLLY2,) must all be grouped
and input together. The End Of List parameter must also be input at the end of each list.

• Although there are no restrictions concerning the order in which the five types of lists are input
(five types, in the case of HOLLY2), only one list of each type may be input. In HOLLY2,
when inputting a list in several pieces, list continuation processing through the
TA_LIST_CONT register must be used.

• If "No List" is specified for the Object Pointer Block size in the TA_ALLOC_CTRL register for
a certain type of list, parameters for that type of list may not be input.

• After initializing the lists through the TA_LIST_INIT register, input the User Tile Clipping area
parameters first so that the User Tile Clipping values are set.

• Input the Object List Set parameter either after initializing the lists through the TA_LIST_INIT
register, or after an End Of List parameter.

• When inputting data for a Triangle polygon, input at least three Vertex Parameters.
• When inputting data for a strip of Triangle polygons, End Of Strip must be specified in the last

Vertex Parameter of the strip.
• If there is no need to change the Global Parameters, a Vertex Parameter for the next polygon

may be input immediately after inputting a Vertex Parameter for which "End of Strip" was
specified.

• When inputting polygon data using Intensity Mode 2, it is essential for polygon data in Intensity
Mode 1 to already have been input at least once. It is not necessary, however, for the Mode 1
polygon to have immediately preceded the Mode 2 polygon.

• When inputting data for a Modifier Volume, input Global Parameters that indicate that the data
being input is for a Modifier Volume, before inputting the Vertex Parameters for the last polygon
of the Volume.

- 190 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<Miscellaneous>
• The TA generates Object Lists and the ISP/TSP Parameters; the Region Array is created by the

CPU and then stored directly in texture memory.
• When inputting data for an independent Triangle polygon or Quad polygon, efficient display

lists will be generated if data for polygons that are likely to be included in the same Tiles are
input together.

• In order to prevent memory space that will not be used from being allocated for the Object
Pointer Block for a list of a type that will not be displayed on the screen, it is recommended that
"No List" be set in the TA_ALLOC_CTRL register.

§3.7.6.2 Parameter Combinations
The data configurations and combinations of the Global Parameters and the Vertex Parameters are

determined according to the Parameter Control Word setting in the Global Parameters.

List_Type Parameter Control Word Global
Parameter

Vertex
Parameter

bit 6 5-4 3 2 1 0

Volume Col_Type Texture Offset Gouraud 16bit_UV
Opaque 0 0 0 (0) x invalid Polygon Type 0 Polygon Type 0
/Translucent 0 1 0 (0) x invalid Polygon Type 0 Polygon Type 1

0 2 0 (0) x invalid Polygon Type 1 Polygon Type 2
0 3 0 (0) x invalid Polygon Type 0 Polygon Type 2
1 0 0 (0) x invalid Polygon Type 3 Polygon Type 9
1 2 0 (0) x invalid Polygon Type 4 Polygon Type 10
1 3 0 (0) x invalid Polygon Type 3 Polygon Type 10
0 0 1 x x 0 Polygon Type 0 Polygon Type 3
0 0 1 x x 1 Polygon Type 0 Polygon Type 4
0 1 1 x x 0 Polygon Type 0 Polygon Type 5
0 1 1 x x 1 Polygon Type 0 Polygon Type 6
0 2 1 0 x 0 Polygon Type 1 Polygon Type 7
0 2 1 1 x 0 Polygon Type 2 Polygon Type 7
0 2 1 0 x 1 Polygon Type 1 Polygon Type 8
0 2 1 1 x 1 Polygon Type 2 Polygon Type 8
0 3 1 x x 0 Polygon Type 0 Polygon Type 7
0 3 1 x x 1 Polygon Type 0 Polygon Type 8
1 0 1 x x 0 Polygon Type 3 Polygon Type 11
1 0 1 x x 1 Polygon Type 3 Polygon Type 12
1 2 1 x x 0 Polygon Type 4 Polygon Type 13
1 2 1 x x 1 Polygon Type 4 Polygon Type 14
1 3 1 x x 0 Polygon Type 3 Polygon Type 13
1 3 1 x x 1 Polygon Type 3 Polygon Type 14

(0) (0) 0 (0) (0) invalid Sprite Sprite Type 0
(0) (0) 1 x (0) (1) Sprite Sprite Type 1

Opaque
/Translucent
Modifier

Volume

All invalid Modifier Volume Modifier Volume

<Note>
• "x" in the table indicates "Don't care."
• A value in parentheses indicates that the setting in question is fixed at that value, and that the

Parameter Control Word setting will be ignored.
• When in "Non-Textured" mode (i.e., the Texture bit is "0"), the set value for the Offset bit is

ignored; the value is fixed at "0."

§3.7.6.3 Parameter Input Example

- 191 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Input Parameter Description
The values in parentheses are the Parameter Control Word settings.

O
pa

qu
e

po
ly

go
n Control Parameter

 (User Tile Clip)
User Tile clipping value set (0x2000 0000)

Global Parameter 0
(Polygon Type 2)

Global Parameters for object 0 (0x8086 002E)
2strip, Clip inside enable, Intensity, Textured, use Offset, Gouraud, 32bitUV

Vertex Parameter 0
(Polygon Type 7)

Vertex data 0 (0xE000 0000)

Vertex Parameter 1
(Polygon Type 7)

Vertex data 1 (0xE000 0000)

Vertex Parameter 2
(Polygon Type 7)

Vertex data 2 (0xE000 0000)

Vertex Parameter 3
(Polygon Type 7)

Vertex data 3 (0xE000 0000)

Vertex Parameter 4
(Polygon Type 7)

Vertex data 4 (0xFFFF FFFF)
End Of Strip

Global Parameter 1
(Polygon Type 0)

Global Parameters for object 1（ 0x8000 003E）
2strip, Clip inside enable, Intensity, Textured, use Offset, Gouraud, 32bitUV

Vertex Parameter 0
(Polygon Type 7)

Vertex data 0 (0xE000 0000)

Vertex Parameter 1
(Polygon Type 7)

Vertex data 1 (0xE000 0000)

Vertex Parameter 2
(Polygon Type 7)

Vertex data 2 (0xE000 0000)

Vertex Parameter 3
(Polygon Type 7)

Vertex data 3 (0xE000 0000)

Vertex Parameter 4
(Polygon Type 7)

Vertex data 4 (0xE000 0000)

Vertex Parameter 5
(Polygon Type 7)

Vertex data 5 (0xE000 0000)

Vertex Parameter 6
(Polygon Type 7)

Vertex data 6 (0xFFFF FFFF)
End Of Strip

Vertex Parameter 0
(Polygon Type 7)

Vertex data 0 (0xE000 0000)

Vertex Parameter 1
(Polygon Type 7)

Vertex data 1 (0xE000 0000)

Vertex Parameter 2
(Polygon Type 7)

Vertex data 2 (0xE000 0000)

Vertex Parameter 3
(Polygon Type 7)

Vertex data 3 (0xFFFF FFFF)
End Of Strip

Global Parameter 2
(Polygon Type 3)

Global Parameters for object 2（ 0x8088 004A）

4strip, Clip disable, Two Volume, Packed, Textured, no Offset, Gouraud, 32bitUV
Vertex Parameter 0

(Polygon Type 11)
Vertex data 0 (0xE000 0000)

Vertex Parameter 1
(Polygon Type 11)

Vertex data 1 (0xE000 0000)

Vertex Parameter 2
(Polygon Type 11)

Vertex data 2 (0xE000 0000)

Vertex Parameter 3
(Polygon Type 11)

Vertex data 3 (0xE000 0000)

Vertex Parameter 4
(Polygon Type 11)

Vertex data 4 (0xE000 0000)

Vertex Parameter 5
(Polygon Type 11)

Vertex data 5 (0xE000 0000)

Vertex Parameter 6
(Polygon Type 11)

Vertex data 6 (0xFFFF FFFF)

Vertex Parameter 7
(Polygon Type 11)

Vertex data 7 (0xFFFF FFFF)
End Of Strip

- 192 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Control Parameter
(End Of List)

End of Opaque polygon list (0x0000 0000)

Continued on next page

- 193 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Continued from previous page

Tr
an

sl
uc

en
t P

ol
yg

on Control Parameter
(Object List Set)

Object list setting for object-3 (0x4000 0000)

Control Parameter
(Object List Set)

Object list setting for object-4 (0x4000 0000)

Control Parameter
(Object List Set)

Object list setting for object-5 (0x4000 0000)

Global Parameter 6
(Polygon Type 0)

Global Parameters for object-6 (0x828C 0010)
6strip, Clip disable, Floating Color, Non-Textured, no Offset, Flat

Vertex Parameter 0
(Polygon Type 6)

Vertex data 0 (0xE000 0000)

Vertex Parameter 1
(Polygon Type 6)

Vertex data 1 (0xE000 0000)

Vertex Parameter 2
(Polygon Type 6)

Vertex data 2 (0xE000 0000)

Vertex Parameter 3
(Polygon Type 6)

Vertex data 3 (0xE000 0000)

Vertex Parameter 4
(Polygon Type 6)

Vertex data 4 (0xFFFF FFFF)
End Of Strip

Control Parameter
(User Tile Clip)

User Tile clipping value set (0x2000 0000)

Global Parameter 7
(Sprite)

Global Parameters for object-7 (0xA283 000D)
Clip outside enable, Packed Color, Textured, use Offset, Flat, 16bit UV

Vertex Parameter
(Sprite Type 1)

Quad polygon vertex data 0 (0xF000 0000)

Vertex Parameter
(Sprite Type 1)

Quad polygon vertex data 1 (0xF000 0000)

Vertex Parameter
(Sprite Type 1)

Quad polygon vertex data 2 (0xF000 0000)

Global Parameter 8
(Sprite)

Global Parameters for object-8 (0xA200 000D)
Clip outside enable, Packed Color, Textured, use Offset, Flat, 16bit UV

Vertex Parameter
(Sprite Type 1)

Quad polygon vertex data 0 (0xF000 0000)

Global Parameter 9
(Sprite)

Global Parameters for object-9 (0xA200 000D)
Clip outside enable, Packed Color, Textured, use Offset, Flat, 16bit UV

Vertex Parameter
(Sprite Type 1)

Quad polygon vertex data 0 (0xF000 0000)

Global Parameter 10
(Sprite)

Global Parameters for object-10 (0xA280 0000)
Clip disable, Packed Color, Non-Textured, no Offset, Flat

Vertex Parameter
(Sprite Type 0)

Quad polygon vertex data 0 (0xF000 0000)

Control Parameter
(End Of List)

End of translucent polygon list (0x0000 0000)

O
pa

qu
e

M
od

ifi
er

 V
ol

um
e Control Parameter

(User Tile Clip)
User Tile clipping value set (0x2000 0000)

Global Parameter 0
(Modifier Volume)

Global Parameters for Modifier Volume 0 (0x8182 0000)
Clip inside enable, normal triangle in the volume

Vertex Parameter 0
(Modifier Volume)

Triangle polygon vertex data 0 (0xF000 0000)

Vertex Parameter 1
(Modifier Volume)

Triangle polygon vertex data 1 (0xF000 0000)

Vertex Parameter 2
(Modifier Volume)

Triangle polygon vertex data 2 (0xF000 0000)

Vertex Parameter 3
(Modifier Volume)

Triangle polygon vertex data 3 (0xF000 0000)

Vertex Parameter 4 Triangle polygon vertex data 4 (0xF000 0000)

- 194 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(Modifier Volume)
Global Parameter 0

(Modifier Volume)
Global Parameters for Modifier Volume 0 (0x8100 0040)

Clip inside enable, last triangle in the volume
Vertex Parameter 5

(Modifier Volume)
Triangle polygon vertex data 5 (0xF000 0000)

Control Parameter
(End Of List)

End of Opaque Modifier Volume list (0x0000 0000)

- 195 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.7 Region Array Data Configuration
The Region Array stores Pointer data that points to the starting addresses of the Object Lists when the

five types (five types, in HOLLY2) of lists are being drawn in individual Tiles. The CPU creates the
Region Array and stores it directly in texture memory.

In HOLLY1, The data for one Tile consists of 5 x 32-bit pieces of data, as shown below: the header word
and four pointers.

In addition, the starting address that is used when the CORE reads the Region Array is specified by the
REGION_BASE register.

bit 31 30-14 13-8 7-2 1-0
Last
Regio
 n

Reserved Tile Y
position (× 32)

Tile X
position (× 32)

Reserved

Opaque List Pointer
Opaque Modifier Volume List Pointer
Translucent List Pointer
Translucent Modifier Volume List Pointer

Last Region
Specifies the end of the Tiles to be drawn. This bit must be set to "1" for the last Tile.

Tile Y & X
Specifies the position of the upper left corner coordinates of the Tile on the drawing screen. The

actual values are the specified values multiplied by 32.

List Pointer
The bit configuration of the four types of List Pointers is as shown below.

bit 31 30-24 23-2 1-0
Empty

PTR
Reserved Pointer to Object List

(32bit resolution)
00

Empty PTR
Set a "1" when the type of list in question does not exist. Set "1" for a polygon list that was

input to the TA with "No List" specified in the TA_ALLOC_CTRL register. When this bit is "1,"
the other bits have no meaning. Therefore, setting "1" is sufficient.

Pointer to Object List
Specifies the absolute address of the first Object List for that type of list (the starting address

of the Object List corresponding to each Tile). Specify this value on a 32-bit boundary.

- 196 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

In HOLLY2, there are two types of data configurations for one Tile: type 1 and type 2. The type
selection can be made through the FPU_PARAM_CFG register. Just as in HOLLY1, the starting address
for when the CORE loads the Region Array is specified by the REGION_BASE register.

[Type 1]
bit 31 30 29 28 27-14 13-8 7-2 1-0
Last

Region
Z
Clea

r

0 Flush
Accumulate

Reserved Tile Y
position (ｘ 32)

Tile X
position (ｘ

32)

Reserved

Opaque List Pointer
Opaque Modifier Volume List Pointer
Translucent List Pointer
Translucent Modifier Volume List Pointer

[Type 2]
bit 31 30 29 28 27-14 13-8 7-2 1-0
Last

Region
Z
Clea

r

Pre
Sort

Flush
Accumulate

Reserved Tile Y
position (ｘ 32)

Tile X
position (ｘ

32)

Reserved

Opaque List Pointer
Opaque Modifier Volume List Pointer
Translucent List Pointer
Translucent Modifier Volume List Pointer
Punch Through List Pointer

Last Region
Specifies whether the region is the final drawing data for the screen. When drawing several times

in the same Tile (multipass processing), specify "1" for this bit only in the very last drawing data for
the Tile that is being drawn last on the screen.

Setting Description of processing
0 Normal drawing data
1 End of screen drawing data

Z Clear
Specifies whether to clear the internal Z buffer or not before performing drawing processing for

this Tile. When drawing several times in the same Tile (multipass processing), specify "0" for this
bit only in the first drawing data to a given Tile.

Setting Description of processing
0 Clear Z buffer
1 Do not clear Z buffer

Pre Sort
Specifies the Translucent polygon sort mode for drawing processing for this Tile. This bit is

valid only in the type 2 data configuration.
Setting Description of processing

0 Auto-sort mode
1 Pre-sort mode

Flush Accumulate
Specifies whether to copy the drawing results to the frame buffer or not after completing drawing

processing for this Tile. When drawing several times in the same Tile (multipass processing),
specify "1" for this bit only in the very last drawing data for the Tile.

Setting Description of processing
0 Copy to the frame buffer
1 Do not copy to the frame buffer

- 197 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Tile Y & X
Specifies the position of the upper left corner coordinates of the Tile on the drawing screen the

same as HOLLY1. Actual coordinates are 32 times the specified value.

List Pointer
In HOLLY1 there are four types of lists, but in HOLLY2, with the addition of Punch Through,

there are five types. The bit configuration and contents of the List Pointer are the same as in
HOLLY1.

The bit structure of the five types of List Pointers is as follows:

Bit 31 30 to 24 23 to 2 1 and 0
Empty PTR Reserved Pointer to Object List (32-bit

resolution)
00

Empty PTR
Set a "1" when the type of list in question does not exists. Set "1" for a polygon list that was input

to the TA with "No List" specified in the TA_ALLOC_CTRL register. When this bit is "1," the other
bits have no meaning. Therefore setting "1" is sufficient.

Pointer to Object List
Specifies the absolute address of the first Object List for that type of list (the starting address of

the Object List corresponding to each Tile). Specify this value on a 32-bit boundary.

In both HOLLY1 and HOLLY2, the Region Array is not generated by the TA; instead, it has to be created
by the CPU and stored directly in texture memory.(refer to 3.7.1) Normally, when the TA is used to create
the display list for the CORE, the Region Array data is created in the following manner:

• Only data for Tiles within the Global Tile Clipping area are stored.

• "1" is set in the Empty PTR bit for List Pointers of types that are not used on the screen. "1"
should also be set for the List Pointers of Tiles that definitely do not contain a polygon in that
list.

• The address values that were calculated on the basis of the Object Lists generated by the TA are
set as the data for the Pointer to Object List data in the List Pointers.

- 198 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.8 Object List Data Configuration
Object lists contain pointers (for the starting addresses of the ISP/TSP Parameters) for the objects that are

included in each Tile. Object lists consist of a grouping of Object Pointer Blocks of a size specified by the
TA_ALLOC_CTRL register. The TA automatically creates Object Lists from the polygon data that was
input, and stores them in texture memory. An Object List consists of 32-bits per object, and includes the
following four types:

When the list is generated by the TA, this data is generated automatically on the basis of the parameters
that were input to the TA.

Triangle Strip: Used for Triangle polygons in a strip.
Bit 31 30-25 24 23-21 20-0

0 Mask Shadow Skip Triangle Strip Start

T0 T1 T2 T3 T4 T5
(32bit word address)

Triangle Array: Used for an independent Triangle polygon.
Bit 31-29 28-25 24 23-21 20-0

100 Number of Triangles Shadow Skip Triangle Array Start
(32bit word address)

Quad Array: Used for an independent Quad polygon.
Bit 31-29 28-25 24 23-21 20-0

101 Number of Quads Shadow Skip Quad Array Start
(32bit word address)

Object Pointer Block Link: Used when linking to an Object Pointer Block, and at the end of a list.
bit 31-29 28 27-24 23-2 1-0

111 End of
List

Reserved Next Pointer Block
(32bit word address)

00

Mask
Set only those bits that correspond to those stripped Triangle polygons that are included in the

Tile in question. When the list is generated by the TA, this determination is made by the TA for
each polygon, and this bit is set automatically.

Shadow
This bit is set to "1" for objects for which the TSP parameters are switched, depending on

whether the object is inside or outside of a Modifier Volume. In Intensity Shadow Mode, this bit
specifies whether shadow processing is performed or not. When the list is generated by the TA,
the value of the Shadow bit in the Parameter Control Word is automatically set.

Skip
Specifies the data size (× 32 bits) for one vertex in the ISP/TSP Parameters. Normally, the

actual data size is "Skip + 3," but if Parameter Selection Volume Mode is enabled and the
Shadow bit described above is set to "1," the actual data size is "Skip × 2 + 3." When the list is
generated by the TA, the value shown in the table below is set automatically, based on the value
of the Parameter Control Word in the TA parameters.

Parameter Control Word Skip value
Texture Offset 16bit_UV

0 invalid invalid 001
1 0 0 011
1 0 1 010
1 1 0 100
1 1 1 011

Number of Triangles/Quads
When the ISP/TSP Parameters for polygon data that is included within the same Tile is stored

contiguously in texture memory, this field specifies the number that are contiguous. This value

- 199 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

is "0" in the case of only one (noncontiguous) polygon, and "1" in the case of two contiguous
polygons. Normally, this field is only used with independent Triangle polygons or Quad
polygons. When the list is generated by the TA, this value is set automatically.

End of List
Set this bit to "1" at the end of the Object List data for the Tile in question. When the list is

generated by the TA, this value is set automatically according to the End Of List parameter.

Triangle Strip Start
Triangle/Quad Array Start

Specifies the starting address of the object data (the ISP/TSP Parameters) at a 32-bit boundary.
The actual address in texture memory is derived by adding this value to the value in the
PARAM_BASE register. When the list is generated by the TA, this value is set automatically.

Next Pointer Block
Specifies the starting address of the next Object Pointer Block at a 32-bit boundary. When the

list is generated by the TA, this value is set automatically.

- 200 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.9 ISP/TSP Parameter Data Configuration
The ISP/TSP Parameters consist of the ISP/TSP Instruction Word, the TSP Instruction Word, the Texture

Control Word, and, for strips with a strip number of 1 to 6, vertex coordinates, Texture UV coordinates, and
Shading Colors (Base, Offset).

ISP/TSP Instruction Word
TSP Instruction Word
Texture Control Word

Vertex X
Vertex Y
Vertex Z

Texture U
Texture V
Base Color

Offset Color
For triangle strips, the gray area is repeated up to 7 times.

For a polygon with two volumes, the Texture UV and the Shading Color are both needed for each vertex.

Vertex X, Y, Z
The vertex coordinates are IEEE single-precision floating point values. Set the screen coordinates

for X and Y, and either 1/z or 1/w for Z. The Z value for the fourth vertex of a Quad polygon does not
need to be specified because it is generated in the CORE. When the list is generated by the TA, the
Vertex Parameter values are set automatically.

Texture U, V
If a texture is used on a polygon, the UV coordinates of the texture have to be specified. These

coordinates can be specified in two formats. If the "16-bit UV" bit in the ISP/TSP Instruction Word is
"0," set two IEEE single-precision floating point values. If the "16-bit UV" bit is "1," extract the
upper 16 bits of each of the 32-bit floating point values U and V, and set them as one data item, with
U as the upper 16 bits and V as the lower 16 bits. When the list is generated by the TA, the Vertex
Parameter values are set automatically.

Base Color, Offset Color
Shading Color data includes Base Color, Offset color, and Bump Map parameters. If a polygon

does not use a texture, or if the Offset bit (in the ISP/TSP Instruction Word) is "0," the Offset Color is
not needed. In addition, the Bump Map parameters (K1K2K3Q) are stored instead of the Offset
Color when a Bump Map texture is used, and the data is valid for the third and subsequent vertices.

In the case of a Flat-Shaded polygon, the data is valid for the third and subsequent vertices. The
alpha value of the Base/Offset Color is valid only when the "Use Alpha" bit (in the TSP Instruction
Word) is "1." An alpha value of "0x00" indicates that the polygon is completely transparent, while an
alpha value of "0xFF" indicates that the polygon is completely opaque. In addition, the alpha value of
the Offset Color is used as the Fog coefficient when Fog Control (in the TSP Instruction Word) is set
to Per Vertex mode. The values for the fourth vertex in a Quad polygon do not need to be specified
because they are generated within the CORE. When the list is generated by the TA, the Vertex
Parameter values are set automatically.

Base/Offset Color （Packed Color）
bit 31-24 23-16 15-8 7-0
Alpha Red Green Blue

Bump Map Parameter
bit 31-24 23-16 15-8 7-0

K1 K2 K3 Q

- 201 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Examples of ISP/TSP Parameters for various types of polygons are shown below.

ISP/TSP Inst ruct ion Word
TSP Inst ruct ion Word
Textu re Con t rol Word

Ver tex A：Vertex X
Ver tex A：Ver tex Y
Ver tex A：Ver tex Z

Ver tex A：Textu re U
Ver tex A：Textu re V
Ver tex A：Ba se Color

Ver tex A：Offset Color
Ver tex B：Ver tex X
Ver tex B：Ver tex Y
Ver tex B：Ver tex Z

Ver tex B：Textu re U
Ver tex B：Textu re V
Ver tex B：Ba se Color

Ver tex B：Offset Color
Ver tex C：Ver tex X
Ver tex C：Ver tex Y
Ver tex C：Ver tex Z

Ver tex C：Textu re U
Ver tex C：Textu re V
Ver tex C：Ba se Color

Ver tex C：Offset Color

Single Triangle Polygon
(Textured, Gouraud, 32bit UV,

 use Offset)

Ver tex D：Base Color (inva lid)

Ver tex D：Vertex Z (inva lid)
Vertex D：Texture U/V (inva lid)

Ver tex D：Vertex Y
Ver tex D：Vertex X

ISP/TSP Inst ruct ion Word
TSP Inst ruct ion Word
Textu re Con t rol Word

Ver tex A：Ver tex X
Ver tex A：Ver tex Y
Ver tex A：Vertex Z

Ver tex A：Textu re U/V
Ver tex A：Ba se Color (inva lid)

Ver tex B：Ver tex X
Ver tex B：Vertex Y
Ver tex B：Vertex Z

Ver tex B：Textu re U/V
Ver tex B：Base Color (inva lid)

Ver tex C：Ver tex X
Ver tex C：Vertex Y
Ver tex C：Vertex Z

Ver tex C：Textu re U/V
Ver tex C：Base Color

Single Quad Polygon
(Textured, Flat , 16bit UV,

 no Offset)

Ver tex D：Offset Color 1
Ver tex D：Base Color 1

Ver tex D：Textu re U1/V1
Ver tex D：Offset Color 0

Ver tex C：Offset Color 1
Ver tex C：Base Color 1

Ver tex C：Textu re U1/V1
Ver tex C：Offset Color 0

Ver tex B：Offset Color 1
Ver tex B：Base Color 1

Ver tex B：Textu re U1/V1
Ver tex B：Offset Color 0

Ver tex A：Offset Color 1
Ver tex A：Ba se Color 1

Ver tex A：Textu re U1/V1
Ver tex A：Offset Color 0

Ver tex D：Base Color 0

Ver tex D：Ver tex Z
Ver tex D：Textu re U0/V0

Ver tex D：Ver tex Y
Ver tex D：Ver tex X

ISP/TSP Inst ruct ion Word
TSP Inst ruct ion Word
Textu re Con t rol Word

Ver tex A：Vertex X
Ver tex A：Vertex Y
Ver tex A：Ver tex Z

Ver tex A：Textu re U0/V0
Ver tex A：Ba se Color 0

Ver tex B：Vertex X
Ver tex B：Ver tex Y
Ver tex B：Ver tex Z

Ver tex B：Textu re U0/V0
Ver tex B：Base Color 0

Ver tex C：Vertex X
Ver tex C：Ver tex Y
Ver tex C：Ver tex Z

Ver tex C：Textu re U0/V0
Ver tex C：Base Color 0

2 St ripped Triangle Polygon
(Textured, Gouraud, 16bit UV,
 use Offset , w ith Tw o Volum es)

ISP/TSP Inst ruct ion Word
TSP Inst ruct ion Word

Texture Con trol Word (invalid)
Ver tex A：Ver tex X
Ver tex A：Ver tex Y
Ver tex A：Ver tex Z

Ver tex A：Ba se Color
Ver tex B：Ver tex X
Ver tex B：Ver tex Y
Ver tex B：Ver tex Z

Ver tex B：Ba se Color
Ver tex C：Ver tex X
Ver tex C：Ver tex Y
Ver tex C：Ver tex Z

Ver tex C：Ba se Color

2 St ripped Triangle Polygon
(Non-Textured, Gouraud)

Ver tex D：Ver tex X
Ver tex D：Ver tex Y
Ver tex D：Ver tex Z

Ver tex D：Ba se Color

Ver tex C：K1K2K3Q

Ver tex B：K1K2K3Q (inva lid)

Ver tex A：K1K2K3Q (inva lid)

ISP/TSP Inst ruct ion Word
TSP Inst ruct ion Word
Textu re Con t rol Word

Ver tex A：Ver tex X
Ver tex A：Ver tex Y
Ver tex A：Ver tex Z

Ver tex A：Textu re U/V
Ver tex A：Ba se Color (inva lid)

Ver tex B：Ver tex X
Ver tex B：Ver tex Y
Ver tex B：Vertex Z

Ver tex B：Textu re U/V
Ver tex B：Base Color (inva lid)

Ver tex C：Ver tex X
Ver tex C：Ver tex Y
Ver tex C：Vertex Z

Ver tex C：Textu re U/V
Ver tex C：Base Color

Single Triangle Polygon
(Bum p Mapped, Flat , 16bit UV)

Fig. 3-79

- 202 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.9.1 ISP/TSP Instruction Word
When the list is generated by the TA, the ISP/TSP Instruction Word in the Global Parameters is used

for the ISP/TSP Instruction Word that is stored in texture memory. However, bits 3 through 0 (Texture/
Offset/Gouraud/16bit_UV) of the Parameter Control Word in the Global Parameters are used for bits 25
through 22 of the ISP/TSP Instruction Word (Texture/Offset/Gouraud shading/16bit_UV).

Opaque or Translucent
bit 31-29 28-27 26 25 24 23 22 21 20 19-0

Depth
Compare

mode

Culling
Mode

Z Write
Disable

Texture Offset Gouraud
shading

16Bit
UV

Cache
Bypas

s

Dcalc
Ctrl

Reserved

Opaque Modifier Volume or Translucent Modifier Volume
bit 31-29 28-27 26-0
Volume
Instruction

Culling
Mode

Reserved

Depth Compare Mode
This bit is used in combination with the Z Write Disable bit, and supports compare processing,

which is required for OpenGL and D3D versus Z buffer updates. It is important to note that,
because the value of either 1/z or 1/w is referenced for the Z value, the closer that the polygon is,
the larger that the Z value will be.

This setting is ignored for Translucent polygons in Auto-sort mode; the comparison must be
made on a "Greater or Equal" basis. This setting is also ignored for Punch Through polygons in
HOLLY2; the comparison must be made on a "Less or Equal" basis.

Setting Depth Function
0 Never
1 Less
2 Equal
3 Less Or Equal
4 Greater
5 Not Equal
6 Greater Or Equal
7 Always

Culling Mode
This specifies the back-face culling mode. The "No Culling" specification means that culling

is not performed. The value that is specified in the FPU_CULL_VAL register is used in the
remaining three specifications.

Setting Culling Mode Processing
0 No culling no culling
1 Cull if Small Cull if (|det| < fpu_cull_val)
2 Cull if Negative Cull if (|det| < 0) or

(|det| <
fpu_cull_val)

3 Cull if Positive Cull if (|det| > 0) or
(|det| <

fpu_cull_val)

This specification eliminates extremely small Triangle and Quad polygons, in addition to
normal back-face culling. The FPU_CULL_VAL register requires at least a 4-bit mantissa (plus
an 8-bit index), and the value must be positive. The "det" value is a Triangle Adjoint Matrix, and
is equal to the screen area for the Triangle.

The adjoint matrix is derived in the manner described below.

- 203 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Transform a plane equation ax + by + c = d into Ax + By + 1 = C, and find the values A, B,
and C that simultaneously satisfy the three vertices (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2) that
were given. First, from the three vertices we can derive the following matrix:

(A, B, C)

x0 x1 x2

y0 y1 y2

1 1 1

= (z0, z1, z2)

Solving this inverse matrix yields the values A, B, and C that express the plane that passes
through the three vertices. That result is:

(A, B, C) = (z0, z1, z2) Adj

Δ

1

Therefore:

Adj =

y1 - y2 x2 - x1 x1y2 - x2y1

y2 - y0 x0 - x2 x2y0 - x0y2

y0 - y1 x1 - x0 x0y1 - x1y0

Δ = x0 (y1 - y2) + x1 (y2 - y0) + x2 (y0 - y1)

 This ∆ becomes "det." (In the case of a homogenous coordinate system (the screen
coordinates), the above values are all multiplied by 1/W.)

Z Write Disable
If the Z Write Disable bit is set to "1," the Z value comparison is executed normally and the

image is drawn, but the Z value is not updated, even if the polygon is visible, for example. This
is used for OpenGL depth masking.

Texture
This specifies whether a texture is to be used on a polygon or not. Set "1" if a texture is to be

used. When the list is generated by the TA, the Texture bit in the Parameter Control Word is
automatically set here.

Offset
This specifies whether an Offset Color is to be used or not. When this bit is set to "1," the

offset value is added to the shading calculation; if this bit is "0," an offset value of "0" is added to
the calculation. In the case of Gouraud shading, the offset value is interpolated between vertices.
When the list is generated by the TA, the Offset bit in the Parameter Control Word is
automatically set here.

In the case of a Bump Mapped polygon, this setting must be set to use Offset Color. Set the
Bump Map parameters (K1K2K3Q) instead of the Offset Color value.

Gouraud shading
This specifies the type of shading. If this bit is set to "1," Gouraud shading is used, in which

each of the vertex colors is interpolated according to the perspective. If this bit is set to "0," Flat
Shading is used with the color from the third vertex. Note that the amount of data stored in
memory is the same in either case. When the list is generated by the TA, the Gouraud bit in the
Parameter Control Word is automatically set here.

Note that the amount of data for the ISP/TSP Parameters that is stored in texture memory is
the same, whether Flat Shading is specified or Gouraud shading is specified. When Flat Shading
is specified, the Base Color and Offset Color from the third vertex are valid.

In the case of a Bump Mapped polygon, Flat Shading must be specified.

16Bit UV
This specifies the number of bits that are used for the Texture UV values. If the Texture bit is

"1" and this bit is "1," a pair of UV values is set as a single 32-bit data item by discarding the
lower 16 bits of the 32-bit floating point values and combining the remaining bits. When the list
is generated by the TA, the 16bit_UV bit in the Parameter Control Word is automatically set
here.

- 204 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

When the UV value is 16 bits, the bit configuration is as shown below.

bit 31-16 15-0
16bit U 16bit V

Cache Bypass
This bit specifies whether or not to use the TSP parameter cache; if the cache is not to be used,

set this bit to "1." Because the TSP parameters for polygons that are not included in any Tiles
except for just one are only used once, there is no need to store those parameters in the cache.
Therefore, this bit is used to prevent performance from suffering due to such TSP parameters
being needlessly stored in the cache. When the list is generated by the TA, this bit is set
automatically.

Dcalc Ctrl
This bit specifies the precision of the calculations that are performed when calculating the D

value that is used as an indicator of when to change textures in MIPMAP processing.
When this bit is set to "0," the calculations are as shown below. "a," "b," "c," "d," "e," "f," "p,"

"q," and "r" are texture mapping coefficients, and "X" and "Y" are screen coordinates.

dudx
ar pc

pX qY r

dvdx
dr pf

pX qY r

dudy
br qc

pX qY r

dvdy
er qf

pX qY r

=
−

+ +

=
−

+ +

=
−

+ +

=
−

+ +

()

()

()

()

2

2

2

2

When this bit is set to "1," the calculations are as shown below. "X'" and "Y'" are the screen
coordinates for the first vertex.

dudx
a pX qY r p aX bY c

pX qY r

dvdx
d pX qY r p dX eY f

pX qY r

dudy
b pX qY r q aX bY c

pX qY r

dvdy
e pX qY r q dX eY f

pX qY r

=
+ + − + +

+ +

=
+ + − + +

+ +

=
+ + − + +

+ +

=
+ + − + +

+ +

(' ') (' ')
()

(' ') (' ')
()

(' ') (' ')
()

(' ') (' ')
()

2

2

2

2

Setting this bit to "1" results in more precise calculations for small polygons, but the
calculation time (drawing time) is longer.

Volume Instruction
The CORE supports inclusion and exclusion volumes that are formed by Triangle polygons,

and inclusion and exclusion volumes that are formed by Quad polygons. It is necessary, for each
object, to specify the type and the last of the polygons that form a volume. However, the TA
only supports volumes that are formed by Triangle polygons.

Because the Z comparison must be consistent for polygons that form a volume, the bit that is
used to specify the Depth Compare Mode in data for a normal object is used to specify the
Volume Instruction in data for a Modifier Volume object.

- 205 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Setting Volume Instruction
0 ‘Normal’ Polygon
1 Inside Last Polygon
2 Outside Last Polygon

3-7 Reserved

"Normal Polygon" indicates a polygon other than the last polygon that forms the volume.
"Inside Last Polygon" indicates the last polygon that forms an inclusion volume. "Outside Last
Polygon" indicates the last polygon that forms an exclusion volume. When the list is generated
by the TA, this bit must be set properly by the CPU.

The Culling Mode bit is the same as for data for a normal object, but if any but the very
smallest polygons are culled, the display image may not appear as expected.

- 206 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.9.2 TSP Instruction Word
The TSP Instruction Word that was input to the TA in the Global Parameters is used as is for the TSP

Instruction Word that is stored in texture memory.

bit 31-29 28-26 25 24 23-22 21 20 19 18-17
SRC Alpha

Instr
DST Alpha

Instr
SRC
Select

DST
Select

Fog
Control

Color
Clam

p

Use
Alpha

Ignore Tex.
Alpha

Flip UV

bit 16-15 14-13 12 11-8 7-6 5-3 2-0
Clamp UV Filter Mode Super-Sample

Texture
MIP-Map ‘D’

adjust
Texture/Shading

‘Instruction’
Texture

U Size
Texture
V Size

SRC/DST Alpha Instruction
Accumulation buffer control is performed through two 3-bit values (SRC Alpha Instr and DST

Alpha Instr) and two 1-bit values (SRC Select and DST Select). The first two 3-bit values
specify the α blending function for the source and the destination, respectively, and the two 1-bit
values specify the source and the destination. Used in combination, these bits can support all
OpenGL and D3D texture blending functions.

The SRC Select bit and the DST Select bit specify whether or not to use the secondary
accumulation buffer that can be used for polygons that have multiple textures, such as Bump
Mapped polygons. This type of special effect can be implemented by using the secondary
accumulation buffer while repeating opaque operations in a different texture/shading mode.

With the blending function, the RGBA values of the SRC and the DST are combined and then
written back to the DST. A mathematical representation of the write-back function is shown
below.

 DST := SRC × BlendFunction(SRC Alpha Instruction) +
 DST × BlendFunction(DST Alpha Instruction)

In this equation, "BlendFunction(Instruction)" returns the RGBA coefficient that was
calculated from the SRC and DST color data in accordance with the 3-bit instructions that were
specified in the SRC Alpha Instr and the DST Alpha Instr. The instruction codes are listed
below.

Setting Instruction Coefficient
0 Zero (0, 0, 0, 0)
1 One (1, 1, 1, 1)
2 ‘Other’ Color (OR, OG, OB, OA)
3 Inverse ‘Other’ Color (1-OR, 1-OG, 1-OB, 1-OA)
4 SRC Alpha (SA, SA, SA, SA)
5 Inverse SRC Alpha (1-SA, 1-SA, 1-SA, 1-SA)
6 DST Alpha (DA, DA, DA, DA)
7 Inverse DST Alpha (1-DA, 1-DA, 1-DA, 1-DA)

"Other Color" and "Inverse Other color" mean that the DST color is to be used when specified
for an SRC instruction, and that the SRC color data is to be used when specified for a DST
instruction.

After the coefficients have been determined and have been multiplied with SRC/DST,
respectively, the addition operation is selected. At this point, check for overflows and clamp the
derived value as appropriate.

In the case of an Opaque polygon, "1" must be specified in the SRC instruction and "0" must
be specified in the DST instruction.

In the case of a HOLLY2 Punch Through polygon, "4" (SRC Alpha) must be specified in the

- 207 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SRC instruction and "5" (Inverse SRC Alpha) must be specified in the DST instruction.

SRC/DST Select
These two bits select the source/destination data for the blending function.
When the SRC Select bit is "1," the contents of the secondary accumulation buffer are used as

the source data instead of the color data that resulted from the shading/texturing calculations for
the current polygon. The value in the Secondary Accumulation Buffer is also used for the pixel
alpha value. This function is used to blend the result (that was stored in the secondary
accumulation buffer) of operations performed on multiple textures with the current polygon
color data and then return the new result to the primary accumulation buffer.

When the DST Select bit is "1," the contents of the secondary accumulation buffer are used as
the destination data instead of the Shading/Texturing color data that is stored in the primary
accumulation buffer. This function is used to blend the current polygon color data with the
contents of the secondary accumulation buffer and then return the results to the secondary
accumulation buffer. This specification applies to all DST data resulting from the blending
calculations described earlier.

Fog Control
There are separate Fog Color registers for Look Up Table mode and Per Vertex mode (the

FOG_COL_RAM register and the FOG_COL_VERT register).

Setting Fog Mode Explanation
00 Look Up Table Generates the Fog α value through linear

interpolation of the table data corresponding to
the depth value.

01 Per Vertex Uses the Offset Color α value for the Fog α
value. This value is interpolated if the Gouraud
bit is set to "1," and is constant if Flat Shading is
specified. If the Offset bit is not set to "1," "No
Fog" mode is in effect.

10 No Fog Fog processing is not performed.
11 Look Up Table

Mode 2
Substitutes the polygon color for the Fog Color,
and the polygon α value for the Fog α value.

Color Clamp
Color clamp processing is performed before Fog processing. There are two registers, one for

underflows and one for overflows (the FOG_CLAMP_MIN register and the
FOG_CLAMP_MAX register).

Use Alpha
When this bit is "1," the α value in the vertex's Shading Color data is valid; if Gouraud

Shading is in effect, then values between vertices are interpolated. If this bit is "0," the polygon
is regarded to be completely opaque (α value = 1.0).

Ignore Texture Alpha
If a texture has an α value, this bit can be used to ignore that α value. When this bit is "1," the

α value of the texture is regarded to be completely opaque (α value = 1.0). This bit is valid only
in regards to the α value of textures.

- 208 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Flip UV
These bits specify whether or not to use the flip function for each individual texture size, in

either the U direction or the V direction. Bit 18 is used for the U direction, and bit 17 is used for
the V direction; if the bit in question is "1," the texture flips in that direction.

(1, 0)

(0, 1)

(0, 0)

Example: When flipped in the U direction

U

V

Fig. 3-80

Clamp UV
These bits specify whether or not to use the clamp function in either the U direction or the V

direction. The clamp function is used if the bit is "1." If the clamp function is enabled, the flip
function is disabled.

Filter Mode
These bits specify the mode of the texture filter function.

Setting Filter mode
00 Point Sampled
01 Bilinear Filter
10 Tri-linear Pass A
11 Tri-linear Pass B

The tri-linear filter consists of two processes; one object results from Pass A and Pass B. In
order to implement the Tri-linear filter, the CPU needs to register the object twice (once as an
object with the "Pass A" specification, and once as an object with the "Pass B" specification.
The Tri-linear filter is valid only when MIPMAP is specified for a texture, but in other Filter
Modes, textures for which MIPMAP is not specified can also be used. In the case of a texture
for which MIPMAP is specified, the CORE automatically selects the appropriate MIPMAP level.

If an attempt is made to apply tri-linear filter processing to an object for which the "MIP
Mapped" bit is not set to "1," the object is processed in "Point Sampled" mode.

Super-Sample texture
If this bit is set to "1," the quality of the texture filter function is enhanced through super-

sampling. However, drawing time is extended considerably. If MIPMAP is being used, the
CORE automatically selects the MIPMAP level with the next highest resolution.

- 209 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

MIP-map D Adjust
The D value used for MIPMAP is calculated internally by the CORE, but fine adjustments are

necessary when forcibly enlarging or reducing the image in order to find where aliasing and
blurring occur. The D value calculated by the core is multiplied by the specified adjustment
value. This value is a 4-bit unsigned fixed decimal value, with a 2-bit decimal portion. Example
values are shown in the table below.

Example
setting

Actual value

00.00 Illegal
00.01 0.25
01.00 1.0
11.11 3.75

<Note> Because a value of "0.0" is invalid for D, it must not be specified.

The D value is determined according to the following equation.

D2 ＝ Max

du 2

dx
dv2

dx
+

du 2

dy
dv2

dy
+

,

For example, if the D value is "1," a full-resolution texture map is used. If the D value is "2,"
a half-resolution texture map is used.

Texture/Shading Instruction
This determines the method for combining the Shading Color values (Base Colors α, and

Offset Colors) interpolated between vertices with texture α values and texture color values.
However, this setting is invalid for Non-Textured polygons.

Setting Mode Explanation
0 Decal PIXRGB = TEXRGB + OFFSETRGB

PIXA = TEXA

1 Modulate The texture color value is multiplied by the Shading
Color value. The texture α value is substituted for the
Shading α value.

PIXRGB = COLRGB × TEXRGB + OFFSETRGB

PIXA = TEXA

2 Decal Alpha The texture color value is blended with the Shading
Color value according to the texture α value.

PIXRGB = (TEXRGB × TEXA) +
(COLRGB × (1- TEXA)) +

OFFSETRGB

PIXA = COLA

3 Modulate
Alpha

The texture color value is multiplied by the Shading
Color value. The texture α value is multiplied by the
Shading α value.

PIXRGB= COLRGB × TEXRGB + OFFSETRGB

PIXA = COLA × TEXA

In HOLLY2, In the case of a Punch Through polygon, only those pixels for which the shading
alpha value (PIX[A]) that results from this instruction is 1.0 (0xFF) are drawn.

- 210 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

U Size
This specifies the U size of the texture.

Setting Size (texels)
0 8
1 16
2 32
3 64
4 128
5 256
6 512
7 1024

In the case of a stride texture (where Scan Order = 1 and Stride Select = 1 in the Texture
Control Word), the texture U size is specified by the stride value (bits 4 through 0) in the
TEXT_CONTROL register. However, this U size value is the value that is used for calculating
the texture coordinates. The value that is specified here must be greater than the U size of the
stride texture.

<Example: Polygon that uses a 320 x 240 stride texture>
・ TEXT_CONTROL register: stride = 0xA
・ TSP Instruction Word: U Size = 0x6, V Size = 0x5(512×256)
・ 2 stripped polygon UV coordinates: [Vertex 1] U = 0.0, V = 240/256

[Vertex 2] U = 0.0, V = 0.0
[Vertex 3] U = 320/512, V = 240/256
[Vertex 4] U = 320/512, V = 0.0

V Size
This specifies the V size of the texture. However, this value is ignored and the V size becomes

the same as the U size if the Scan Order bit is "0" and the MIP mapped bit is "1." The
correspondence between the settings and the actual size is the same as shown for U Size above.

- 211 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.7.9.3 Texture Control Word
The Texture Control Word in the Global Parameters that were input to the TA are used as is for the

Texture Control Word that is stored in texture memory.

RGB/YUV Texture or Bump Map
bit 31 30 29-27 26 25 24-21 20-0
MIP
Mappe

d

VQ
Compressed

Pixel Format Scan
Order

Stride
Select

Reserved Texture Address
(64bit word address)

Palette Texture
bit 31 30 29-27 26-21 20-0
MIP
Mappe

d

VQ
Compressed

Pixel Format Palette
Selector

Texture Address
(64bit word address)

MIP Mapped
If the texture is being MIP-mapped, set this bit to "1." This bit is valid only when the Scan

Order bit is "0."

VQ Compressed
If the texture is a VQ texture, set this bit to "1." A VQ texture is a texture that has been

compressed using a code book with 256 codes that correspond to 2 × 2 pixels.
In the case of a palette texture, the texture is compressed using a code book that corresponds

to 2 × 4 pixels (8BPP) or 4 × 4 pixels (4BPP).

Pixel Format
This specifies the pixel format of the texture.

Setting Pixel Format Description
0 1555 α value: 1 bit; RGB values: 5 bits each
1 565 R value: 5 bits; G value: 6 bits; B value: 5 bits
2 4444 α value: 4 bits; RGB values: 4 bits each
3 YUV422 32 bits per 2 pixels; YUYV values: 8 bits each
4 Bump Map 16 bits/pixel; S value: 8 bits; R value: 8 bits
5 4 BPP Palette Palette texture with 4 bits/pixel
6 8 BPP Palette Palette texture with 8 bits/pixel
7 Reserved Regarded as 1555

If the Filter Mode is a mode other than Point Sampling, twice as much processing time per
pixel is required for a YUV422 texture.

Scan Order
Set this bit to "1" when the texture is Non-Twiddled format. When this bit is set to "0," the

texture is Twiddled format. When this bit is "1," the MIP Mapped bit is ignored. Using Non-
Twiddled format textures results in lower processing performance than when Twiddled format is
used.

Stride Select
When this bit is "1," the U size of the texture is specified by the TEXT_CONTROL register

(i.e., the U Size bit is ignored). The U size is then the value in the register multiplied by 32.
This bit is valid only when the Scan Order bit is "1."

- 212 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Texture Address
This address value, given in units of 64-bits, is the starting address for the texture data. In the

case of a VQ texture, this specifies the starting address of the Code Book.

Palette Selector
This specifies the palette number. The actual palette address is the upper portion of the texture

value (4 bits or 8 bits) with this value appended. In 8BPP Palette mode, however, only the upper
two bits are valid.

4BPP Palette
bit 9-4 3-0

Palette Selector
(bit 26-21)

Texture data
(4 bits)

8BPP Palette
bit 9-8 7-0

Palette Selector
(bit 26-25)

Texture data
(8 bits)

The color format for a palette format texture is specified by the PAL_RAM_CTRL register,
and can be selected from among four types: 1555, 565, 4444, and 8888. When the color format
is 8888 mode, texture filtering performance is reduced by half.

- 213 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§3.8 Details on Miscellaneous Functions

§3.8.1 YUV-data Converter
The Tile Accelerator has a YUV-data converter that converts YUV420- or YUV422-format data into

YUV422-format texture data in macro block units (16 pixels × 16 pixels), and then stores the data in
texture memory. DMA transfers from system memory to the TA are performed one macro block of YUV
data at a time. The transfer order of each type of data must be as shown below.

For YUV420 format

(1) Transfer U data for 16 × 16 pixels (64 bytes).

(2) Transfer V data for 16 × 16 pixels (64 bytes).

(3) Transfer Y data for 16 × 16 pixels (256 bytes).

The U and V data are each stored in the internal buffer one time; once half of the Y data has been
loaded into the internal buffer, transfer to texture memory begins. Once texture data for 16 × 8 pixels
has been output, the other half of the Y data is loaded into the internal buffer and then the texture data
for the remaining 16 × 8 pixels is transferred to texture memory.

For YUV422 format

(1) Transfer U data for 16 × 8 pixels (64 bytes).

(2) Transfer V data for 16 × 8 pixels (64 bytes).

(3) Transfer Y data for 16 × 8 pixels (128 bytes).

(4) Transfer remaining U data for 16 × 8 pixels (64 bytes).

(5) Transfer remaining V data for 16 × 8 pixels (64 bytes).

(6) Transfer remaining Y data for 16 × 8 pixels (128 bytes).

The U and V data are each stored in the internal buffer one time; once the Y data has been loaded into
the internal buffer, transfer to texture memory begins. Once texture data for 16 × 8 pixels has been
output, the other half of the U, V, and Y data is loaded into the internal buffer and then the texture data
for the remaining 16 × 8 pixels is transferred to texture memory.

If the TA_YUV_TEX_BASE register is written to, the YUV-data Converter initializes the address where
data is stored in texture memory to the value stored in the TA_YUV_TEX_BASE register, and then begins
operating, assuming the first data that is input to be U data.

Once the number of macro blocks of texture data specified by YUV_U_Size and YUV_V_Size in the
TA_YUV_TEX_CTRL register have been stored in texture memory, the YUV Data Converter outputs an
interrupt and then automatically resets the storage address to the value stored in the TA_YUV_TEX_BASE
register. Note that the texture data is transferred to texture memory in Non-Twiddled format.

- 214 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The order in which YUV data is stored in system memory is shown below. The data is transferred
consecutively through DMA transfer.

< For YUV420 format>
(1) U-data(16 × 16pixel) (2) V-data(16 × 16pixel)
(3) Y0-data(8 × 8pixel) (4) Y1-data(8 × 8pixel) (5) Y2-data(8 × 8pixel) (6)Y3-data(8 × 8pixel)

< For YUV422 format>
(1) U0-data(16 × 8pixel) (2) V0-data(16 × 8pixel) (3) Y0-data(8 × 8pixel) (4) Y1-data(8 × 8pixel)
(5) U1-data(16 × 8pixel) (6) V1-data(16 × 8pixel) (7) Y2-data(8 × 8pixel) (8) Y3-data(8 × 8pixel)

0x1C0

0x1F8

0x1B8

U(7,15)~U(0,15)

U(7,9)~U(0,9)
U(7,8)~U(0,8)

0x038

U(7,0)~U(0,0)
U(7,1)~U(0,1)

U(7,7)~U(0,7)

YUV420-data
in System m emory

(16*16pixel)

V(7,0)~V(0,0)
V(7,1)~V(0,1)

V(7,7)~V(0,7)
Y(7,0)~Y(0,0)
Y(7,1)~Y(0,1)

Y(7,7)~Y(0,7)
Y(15,0)~Y(8,0)
Y(15,1)~Y(8,1)

Y(15,7)~Y(8,7)
Y(7,8)~Y(0,8)
Y(7,9)~Y(0,9)

Y(7,15)~Y(0,15)
Y(15,8)~Y(8,8)
Y(15,9)~Y(8,9)

Y(15,15)~Y(8,15)

U-data 8*8
(64byte)

V-data 8*8
(64byte)

Y0-da t a 8*8
(64byte)

Y1-da t a 8*8
(64byte)

Y2-da t a 8*8
(64byte)

Y3-da t a 8*8
(64byte)

0x000

0x040

0x078
0x080

0x0B8
0x0C0

0x0F8
0x100

0x138
0x140

0x178

0x038

U(7,0)~U(0,0)
U(7,1)~U(0,1)

U(7,7)~U(0,7)

YUV422-data
in System mem ory

(16*16pixel)

V(7,0)~V(0,0)
V(7,1)~V(0,1)

V(7,7)~V(0,7)
Y(7,0)~Y(0,0)
Y(7,1)~Y(0,1)

Y(7,7)~Y(0,7)
Y(15,0)~Y(8,0)
Y(15,1)~Y(8,1)

Y(15,7)~Y(8,7)

Y(7,8)~Y(0,8)
Y(7,9)~Y(0,9)

V(7,8)~V(0,8)
Y(7,9)~Y(0,9)

Y(7,15)~Y(0,15)

U0-da ta 8*8
(64byte)

V0-da ta 8*8
(64byte)

Y0-da t a 8*8
(64byte)

Y1-da t a 8*8
(64byte)

U1-da ta 8*8
(64byte)

V1-da ta 8*8
(64byte)

0x000

0x040

0x078
0x080

0x0B8
0x0C0

0x0F8
0x100

0x138
0x140

0x178

Y(7,15)~Y(0,15)
Y(15,8)~Y(8,8)
Y(15,9)~Y(8,9)

Y(15,15)~Y(8,15)

Y2-da t a 8*8
(64byte)

Y3-da t a 8*8
(64byte)

0x180

<Note>
ｘ an d ｙ is pixel posit ion in Macro Block(16 × 16pixel).

YUV420: Y(x, y), U(x/2, y/2), V(x/2, y/2)
YUV422: Y(x, y), U(x/2, y), V(x/2, y)

Fig. 3-81

- 215 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

DMA transfer of macro blocks from system memory is performed in the order shown below, starting
form the upper left corner of the screen and continuing for the amount specified by YUV_U_Size and
YUV_V_Size in the TA_YUV_TEX_CTRL register.

Turn of YUV-data(Macro Block) transfer

Y
U

V
_V

_S
iz

e

16pixel

16pixel

t u rn of t r ansfer

YUV_U_Size

Fig. 3-82

The YUV data that is input is stored in 16 × 16-pixel units in texture memory by the method specified in
the TA_YUV_TEX_CTRL register.

< YUV_Tex = 0:>
The YUV data that is input is stored in texture memory as one texture with a size of [(YUV_U_Size

+ 1) × 16] (H) × [(YUV_V_Size + 1) × 16] (V). This format has a weakness in that storage time is
longer because the storage addresses in texture memory will not be continuous every 16 pixels (32
bytes) in the horizontal direction.

< When YUV_Tex = 1:>
[(YUV_U_Size + 1) × (YUV_V_Size + 1)] textures of the macro size (16 × 16 pixels) are stored in

texture memory. Storage time is shorter, because the storage addresses in texture memory are
continuous. However, each texture must be used with a different polygon and arranged on screen.

Turn of YUV-texture(Macro Block) storage
Y

U
V

_V
_S

iz
e

16pixel

16pixel

turn of storage

YUV_U_Size

Fig. 3-83

- 216 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4 Peripheral Interface

- 217 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

This system is equipped with two bus interfaces, the G1 Bus and the G2 Bus, for interfacing with peripheral
devices such as the audio chip AICA, the GD-ROM (the name for the CD-ROM drive in this system), and a
modem. The devices are grouped into asynchronous and synchronous devices, and each device is assigned to one
of these interfaces. The interfaces are described below.

§4.1 G1 Bus
The G1 Bus is used to read country codes and access asynchronous devices that are connected to the G1

Bus, such as the GD-ROM, system ROM, and FLASH memory. This interface is designed to handle large
volumes of data from the GD-ROM, for system bootup, and to access environment settings, etc. Each of the
devices connected to this bus is accessed by a different method, as described below.

The general setting registers for the G1 Bus are located in the SB block; the only type of access that is
possible from the SH4 is 4-byte access in the non-cache area. There are separate device setting registers for
the GD-ROM.

The only interrupts from external devices connected to the G1 Bus are those from the GD-ROM device;
these are level interrupts that are input from the device. The interrupt source can be determined by reading the
GD-ROM device registers; reading the drive's status register clears the interrupt. (For details on interrupt
sources, refer to section 8.5.2.)

§4.1.1 GD-ROM
The CD-ROM that is installed in the Dreamcast System is called the "GD-ROM," and is used to supply

large amounts of music data, game data, and program source code to the host system from Sega's
proprietary "GD-ROM" discs. The music data (CD-DA) from the GD-ROM is output as digital audio data
to the AICA audio chip on a 48Fs (Fs = 44.1KHz) cycle. The GD-ROM also supplies a 33.8688MHz clock
signal (the audio clock source) to the AICA. The GD-ROM is located on the system's G1 Bus, and in
addition to the digital audio music data, the GD-ROM supplies program source code and data to the system
through the G1 Bus. The Dreamcast System's main program can only be started up from CD media. The
GD-ROM also supports a wide variety of proprietary media.

The main specifications of the GD-ROM drive are listed below:

• Access time (1/3 stroke): 250ms or less
• Normal area: 4x; high-density area: 6 to 12x (CAV: 2000rpm)
• Buffer memory: 128K
• CD-DA shock-proof function built in
• Ball chucking
• Multiple security functions
• Can read the following types of discs:

- GD-ROM
- CD-DA, CD-ROM
- Photo CD, video CD
- CD Extra, CD + G, CD + EG

• The following disc types are rejected:
- CD-I, CD-I Ready (playback possible)

Regarding the disc specifications, the basic physical formats have separate audio and data tracks, and a
single disc includes both a "single-density (program) area," which consists of normal density tracks, and a
"high-density (program) area," which consists of high density tracks

The physical format of the "single-density (program) area" conforms with the "RED BOOK" and
"YELLOW BOOK" CD-ROM standards, and the physical format conforms with ISO9660. This format
can be played back by a normal CD-ROM drive.

The physical format of the "high-density (program) area" conforms with a proprietary Sega standard, and
the physical format conforms with ISO9660. This format can only be played back by a CD-ROM drive
that conforms with the Sega standard.

§4.1.1.1 Register Map
Regarding register access for the GD-ROM device, read/write accesses to data registers are made in

16-bit (2-byte) sizes, while read/write accesses to other registers are made in 8-bit (1-byte) sizes. The
GD-ROM device register map is shown below.

- 218 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Address Function (Read / Write)
0x005F 7000 Reserved
0x005F 7018 Alternate Status / Device Control

: Reserved
0x005F 7080 Data / Data
0x005F 7084 Error / Features
0x005F 7088 Interrupt Reason / Sector Count
0x005F 708C Sector Number / Sector Number
0x005F 7090 Byte Control Low / Byte Control Low
0x005F 7094 Byte Control High / Byte Control High
0x005F 7098 Drive Select / Drive Select
0x005F 709C Status / Command

Table 4-1

§4.1.1.2 Access Methods
Although the GD-ROM access timing is based on the ATA standard (the electrical interface conforms

with ATA-3), the GD-ROM supports only the timing modes listed below. (The GD-ROM does not
support "Single Word-DMA" from the ATA standard.)

(1) PIO Modes 0 to 4
Accesses to the GD-ROM by the CPU are only possible as byte or word accesses at 4-byte
boundaries in the non-cacheable area. In this case, external accesses are single byte or word
accesses.

(2) Multi Word DMA Modes 0 to 2
Read accesses from the GD-ROM by means of DMA permit transfer of any number of bytes at 1-
byte boundaries. However, because internal operation is based on 32-byte burst access, if a number
of bytes that is not evenly divisible by 32 are transferred, the excess transfer capacity is filled with
zeroes. In this case, external accesses are performed as (number of transfer bytes/2) word accesses.
If the GD-ROM is accessed in the middle of a DMA transfer, the bus is released for the access
(*interrupting the transfer) as long as the G1 Bus signals G1DREQ and G1DACKN are not active.

For details on access methods, refer to the GD-ROM protocol SPI specifications.

§4.1.1.3 Initial Settings

§4.1.1.4 Access Procedure

- 219 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.1.2 System ROM
The system ROM stores the system data and boot routines for the Dreamcast System, and is accessed by

the CPU. The following data is stored in the system ROM:

(1) IPL codes: Boot processing and system configuration

(2) Multiplayer interface

(3) Dreamcast-OS core

The system ROM is mapped in SH4 area 0, and the duration of the address setup and hold times and the
read and write pulses in the bus cycle can be specified through register settings. Access is possible as 1-,
2-, 4-, or 32-byte access.

The following table shows the contents of the ROM specifications that are used in the Dreamcast system.

Type Mask ROM
ROM size (capacity) 16Mbit
Bus width 8/16bit
Access time 100ns～ 240ns

Table 4-2 ROM Specifications

§4.1.2.1 Access Methods
Access to ROM and the FLASH memory (described later) is always performed from the CPU, and is

possible as 1-, 2-, 4-, or 32-byte access. Note that 32-byte access can only be made to the cache area.

§4.1.2.2 System Initial Settings

§4.1.2.3 Access Procedure

- 220 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.1.3 FLASH Memory
FLASH memory is used for backing up data for hermits, IDs, and communications. The size of FLASH

memory is 128K (8-bit bus) and has an 8K protected area. Data can be written/erased a minimum of
100,000 times.

§4.1.3.1 System Initial Settings

§4.1.3.2 Access Procedure

- 221 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.1.4 System Code
The system code is set by pull-up/pull-down resistors connected to the A/D lines (HOLLY pins:

G1MRA[18:11]) on the G1 Bus on the board. The CPU can read the system code that is set on the board
by reading SB_G1SYSM (0x005F74B0) in the G1 Interface Block Control Registers. For details on the
register, refer to section 8.4.1.3, "G1 Interface."

The system code includes four bits, G1MRA [18:15], which identifies the unit as a product or a
development unit. The system code settings are described below. (Note that in the table "0" indicates that
the line is pulled down, and"1" indicates that the line is pulled up. Any settings that are not shown in the
table below are reserved.

G1MRA System
18 17 16 15
0 0 0 0 Mass production unit
1 1 0 0 SET4-8M
1 0 0 0 SET4-32M
1 0 0 1 Dev.Box-16M
1 0 1 0 Dev.Box-32M
1 1 0 1 Graphics box

Other codes Reserved

Table 4-3

G1MRA[14:11] is the country code. The settings are described below.
(Note that, in the table, "0" signifies "pull down" and "1" signifies "pull up;" any settings not shown in

the table are "Reserved.")

G1MRA Destination region
14 13 12 11
0 0 0 1 Japan, South Korea, Asia NTSC
0 1 0 0 North America, Brazil, Argentina
1 1 0 0 Europe

Table 4-4

Note that the language that is shown on the initial setting screen is Japanese for both Asia NTSC and
South Korea, and English for the Brazil PAL/M region and the Argentina PAL/N region.

§4.1.4.1 Initial Setting
None.

§4.1.4.2 Access Procedure
This register can only be accessed by 32-bit access, because it is a HOLLY internal register.

- 222 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2 G2 Interface
The G2 interface is used to access the AICA audio chip, a modem, and any expansion devices that are

connected to the G2 Bus, which is synchronized with a 25MHz clock.

§4.2.1 Interface
The G2 bus is an expansion bus (a bus for the connection of expansion devices) that is used for

connection with the audio IC AICA or a modem.
The control block for this bus does not have a target function (a function that would permit access by a

device connected to the G2 bus), only a master function (a function that permits access to a device that is
connected to the G2 bus). In other words, devices that are connected to the G2 bus only function as targets.

Therefore, a device that is connected to the G2 bus cannot be accessed directly from buses other than the
G2 bus, such as the CPU bus. In addition, a device that is connected to the G2 bus cannot transfer data to
another device that is connected to the G2 bus. Data transfers between devices that are connected to the G2
bus are accomplished through repeated read/write operations by the CPU, etc.

Data transfers involving devices that are connected to the G2 bus are conducted with a 16-bit data bus.
The bus operation clock is 25MHz, so accesses to expansion devices are made using 1/16 or less of the
CPU bandwidth. (The CPU's internal clock is 200MHz, and the register width is 32 bits.)

The G2 bus control block includes a CPU write FIFO buffer that operates either as 8 levels x 4 bytes or 1
level x 32 bytes. Writes to the G2 bus registers and to devices that are connected to the G2 bus are
performed through the write FIFO buffer. Reads can only be initiated once the write FIFO is empty.
Therefore, if an attempt is made to perform a read from the G2 bus after having performed a write to a slow
device that is connected to the G2 bus, all functions that link the CPU to the G2 bus (CPU bus <-> SB <->
G2 bus) will lock up until the read is completed. In order to prevent the buses from locking up, it is
necessary to check the state of the write FIFO buffer when accessing a slow device.

The G2 bus control block includes a DMA transfer function ("G2-DMA," hereafter) that is used to
transfer data via the G2 bus without depending on the CPU. G2-DMA is supported for four channels that
operate independently, and are used for data transfers between system memory and devices that are
connected to the G2 bus. Data is transferred in units of 32 bytes. The G2 bus also includes a control input
line that is used to initiate G2-DMA transfers. G2-DMA operates without regard to the status of the write
FIFO buffer. when G2-DMA and the CPU are both accessing the G2 bus, their priority ranking alternates.
In addition, the priority among the G2-DMA channels is switched on a round-robin basis.

The G2 bus includes three interrupt inputs: the AICA and the modem each control one, and the third is
used by external expansion devices connected to the G2 bus. When multiple external expansion devices
are connected to the G2 bus, the one interrupt input is shared by all of the devices.

If an interrupt is generated because the CPU accessed a device that is connected to the G2 bus, but the
area being accessed has no corresponding device that is connected, or if a CPU timeout interrupt is
generated during a G2-DMA transfer, the interrupt is generated even if G2-DMA has completed its data
transfer.

Furthermore, an interrupt is generated and G2-DMA is not initiated: if an invalid value is set in the G2-
DMA register; if an invalid value is set in the SB_ADSTAG register or the SB_ADSTAR register (when
ch0:AICA in either case) and G2-DMA is enabled; or an address that is outside of the range set by the
SB_G2APRO register is set in the SB_ADSTAR register (when ch0:AICA) and G2-DMA is enabled.

For details on setting up and using interrupts, refer to sections 2.7, 8.4.1.1, and 8.5.

For details on AICA and modem devices for connection to the G2 bus, and for explanations of
restrictions concerning the creation of new devices for connection to the G2 bus, refer to the corresponding
sections.

The term "CPU" refers to a controller that is not the G2 control block and is not a device that is
connected to the G2 bus.

<<Addresses Used for the G2 Bus>>

- 223 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The addresses listed below (Table 4-5) are allocated to the G2 bus. Table 4-6 indicates valid addresses.
(Note that the addresses that are indicated are physical addresses, and are different from the logical
addresses that the CPU uses.)

Address range Size Contents
0x005F7800 - 0x005F7BFF 1KB G2 bus control register area
0x00600000 - 0x0067FFFF 512KB G2 bus access area (primarily for modem)
0x00700000 - 0x01FFFFFF 25MB G2 bus access area (primarily for AICA)
0x02700000 - 0x03FFFFFF 25MB G2 bus access area (AICA image)
0x14000000 - 0x17FFFFFF 64MB G2 bus access area (unused; for expansion)

Table 4-5

Address range Size Access Contents
0x005F7800 - 0x005F78FF 256B 4 G2 bus control registers
0x00600000 - 0x006007FF 2KB 1/2/4 Asynchronous cycle area (for modem)... Note 2
0x00620000 - 0x0062FFFF 64KB 1/2/4 /32 Synchronous cycle 16-bit address area (unused; for

expansion)
0x00700000 - 0x00FFFFFF 9MB 1/2/4 /32 Synchronous cycle 32-bit address area (for

AICA)...Note 3
0x01000000 - 0x01FFFFFF 16MB 1/2/4 /32 Synchronous cycle 32-bit address area (unused; for

expansion)
0x02700000 - 0x02FFFFFF 9MB 1/2/4 /32 Synchronous cycle 32-bit address area (AICA image)
0x03000000 - 0x03FFFFFF 16MB 1/2/4 /32 Synchronous cycle 32-bit address area (unused; for

expansion)
0x14000000 - 0x17FFFFFF 64MB 1/2/4 /32 Synchronous cycle 32-bit address area (unused; for

expansion)
Note 1: "Access" indicates the byte size that can be accessed, as follows:

32: 32-byte continuous access permitted
4: 4-byte (long word) access permitted
2: 2-byte (word) access permitted
1: 1-byte access permitted
- : Access not permitted

Note 2: In the asynchronous cycle area, only 1-/2-/4-byte access is permitted, at +0 addresses. Byte access at +1,
+2, and +3 addresses, 2-byte (word) access at +2 addresses and 32-byte continuous access is prohibited.

Note 3: Access to AICA areas is as shown in the above table, but refer to the section corresponding to the actual
AICA chip.

Table 4-6

- 224 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Access to the following addresses is prohibited:

Address range Size Contents
0x005F7900 - 0x005F7BFF 768B Test area
0x00600800 - 0x0061FFFF 126KB Test area
0x00630000 - 0x0067FFFF 340KB Test area

Table 4-7

Accesses to addresses other than those listed in the above tables are not G2 bus accesses.

<<Restrictions Concerning the G2 Bus>>

・ Access to the G2 bus control registers must be made as 4-byte long word access.

・ In the asynchronous cycle area, access to addresses for which address bits A1 and A0 are 0b00
(0x00600000, 0x00600004, etc.) is performed as 1-/2-/4-byte accesses, and the lower 8-bits of data
are valid. 1-/2-byte accesses to addresses for which address bits A1 and A0 are not 0b00 are
prohibited.

・ Synchronous cycle 16-bit address areas can be accessed either through 1-byte, 2-byte (word), 4-byte
(long-word) or 32-byte continuous access. However, these areas are unused in the standard
configuration.

・ Synchronous cycle 32-bit address areas can be accessed either through 1-byte, 2-byte (word), 4-byte
(long-word) or 32-byte continuous access. However, these areas are unused in the standard
configuration, except for AICA. note that there are restrictions on usage for AICA; refer to the
corresponding sections.

・ The availability of DMA on the G2 bus is indicated below.

The folowing DMA transfers are usble:
1) AICA-DMA: System memory → AICA (Mode that appears empty at CPU initiation)
2) EXT-DMA0: System memory → External expansion device (Mode that appears empty at CPU

initiation)
External expansion device → System memory (Mode that appears empty at CPU
initiation)

3) EXT-DMA1 System memory → External expansion device (Mode that appears empty at CPU
initiation)
External expansion device → System memory (Mode that appears empty at CPU
initiation)

4) GD-DMA: GD-ROM → external expansion device

Use of the following DMA transfers is prohibited:
1) AICA-DMA: System memory → AICA (Any mode other than the mode that appears empty at

CPU initiation)
AICA → system memory

2) EXT-DMA0: (Any mode other than the mode that appears empty at CPU initiation)
3) EXT-DMA1: (Any mode other than the mode that appears empty at CPU initiation)
4) GD-DMA: External expansion device → GD-ROM

AICA → GD-ROM

- 225 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

・ Software access restrictions are listed below:

－ If the SH4 accesses the G2 bus at the same time that GD-DMA <<GD -> AICA>> or <<GD →
EXT>> is being executed, a 16[micro]s or longer cycle may be generated on the Root bus (the
internal bus) causing Maple to overflow. Therefore, access to the G2 bus should wait until GD-
DMA ends and after the buffer has been confirmed as being empty. Details are provided below:
→ GD-DMA <<GD-ROM → AICA>> and an SH4 G2 bus access cannot both occur at the same

time. If the SH4 accesses the G2 bus while there is burst write data for AICA in the G2
interface buffer and the AICA buffer, the SH4 needs to wait only for the duration of the AICA
32-byte transfer. (This is because, if there is burst data in the G2 buffer, the next data is not
accepted from the SH4 interface until the buffer becomes empty.)

→ GD-DMA <<GD-ROM -> EXT>> and an SH4 AICA read access cannot both occur at the
same time. If the SH4 performs an AICA read while there is write data for an external
expansion device in the G2 interface buffer, the SH4 needs to wait only for the duration of the
write to the external expansion device and the AICA read.

- 226 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2.2 AICA
The AICA chip controls the sound system.
The main specifications for the AICA sound chip are listed below.

 Sampling frequency: 44.1KHz

 Dedicated sound processor (ARM7DI) on chip; provides seven interrupts with priority levels through
register flags

 Parallel processing DSP that is specialized for voice processing

− 128 steps; includes ring buffer function

 PCM sound source on chip

− PCM data format: 8-, 16-bit linear/4-bit ADPCM (ADPCM is a proprietary format established by
YAMAHA)

 A maximum of 64 voices

− Independent LFO (Low Frequency Oscillators) function and EG (Envelope Generator) function for
all channels

− LPF with a cutoff frequency that can be varied over time for all channels

− Pitch change possible on all channels

− Forward loop function

 Supports one external digital audio input

 Provides an SDRAM interface as external memory, permits common access by the AICA's internal
sound processor, the sound source, the DSP, and the system (SH4)

 Digital mixer on chip permits digital mixing of signals from the DSP, a PCM sound source and an
external digital audio input

 Supports a Real Time Clock (RTC) by means of a secondary battery

A summary of the chip specifications and configuration is provided below.
The AICA is an audio chip with its own internal 64-channel PCM/ADPCM sound source, supports sound

effects produced by its 128-step/sample (1 sample = 44.1KHz) DSP and dedicated sound processor,
generates sound data, and processes waveform data from the host system. The sound data that is generated
by the AICA can be mixed as digital audio output with one external digital audio input. At the output stage,
the signal can be output as 64Fs digital audio to an audio DAC/AMP that is external to the chip. In the
Dreamcast system, 48Fs digital audio from the GD-ROM is input to the AICA as external audio. The
digital audio output (64Fs) that is generated by the AICA passes through the audio DAC and AMP, and is
output as stereo sound through the RCA and expansion VGA connectors, along with the video signals from
the graphics system.

The AICA chip configuration consists of 2MB of wave memory (SDRAM) for wave data from the
internal sound source and the host system, etc.; an RTC (Real Time Clock), and a MIDI interface for
development purposes. A 3V lithium battery and a 32.768KHz crystal are added externally for backup of
the RTC. The AICA also provides access to the video mode settings (switches) for the DVE (video
DAC/encoder).

Regarding the clock system, the interface block and the audio block use different clock frequencies. The
audio block uses a 22.5792MHz clock that is generated by passing the 33.8688MHz clock signal that is
supplied from the GD-ROM through a PLL in the audio block. The host system interface block uses a
25MHz clock that is supplied from the G2 Bus.

- 227 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The chip configuration and connections with peripheral devices are illustrated below.

AICA

HOLLY

Memory

Contoroller

DAC

Interface

Synthesizer

DSP

Mixer

ARM7DI
SDRAM

Memory

GD-ROM

Fig. 4-1 Internal Block Diagram of the AICA

§4.2.2.1 Memory/Register Map
The following table describes the memory/register area for the AICA for physical memory accesses

by the SH4 on the system side, and the area that is accessed by the ARM, which is the AICA's internal
sound CPU.

A register map and an explanation regarding the channel, common and DSP data is provided in
section 8.4.5.

Note that the allowed access size for accesses of the AICA area by the SH4 is 4 bytes only.

Area G2 (SH4) addresses AICA internal (ARM) addresses
Channel data 0x0070 0000～ 0x0070 27FF 0x0080 0000～ 0x0080 27FF
Common data 0x0070 2800～ 0x0070 2FFF 0x0080 2800～ 0x0080 2FFF
DSP data 0x0070 3000～ 0x0070 7FFF 0x0080 3000～ 0x0080 7FFF
RTCdata 0x0071 0000～ 0x0071 000B -
Memory area (SDRAM) 0x0080 0000～ 0x00FF FFFF 0x0000 0000～ 0x007F FFFF

Table 4-8 AICA Memory/Register Map

• The usable size of the memory area (SDRAM) that is shown in the table varies because the amount
of memory that is installed depends on whether the system is to be used for development purposes
or not.

(G2) 2MB: 0x0080 0000-0x009F FFFF;
Development version 8MB: 0x0080 0000-0x00FF FFFF

(AICA) 2MB: 0x0000 0000-0x001F FFFF;
Development version 8MB: 0x0000 0000-0x007F FFFF

 The G2 address information listed in the table indicates physical memory addresses. In the case of

- 228 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

an access by the SH4, the actual access address depends on the area where the SH4 is conducting its
cache access. (Refer to the cache access table in section 2.1.)

§4.2.2.2 Initial Settings

§4.2.2.3 Access Procedure
A restriction in the AICA specifications requires slots to be left open so that AICA accesses by the

SH4 are completed within 16[micro]sec.
The following restrictions apply to AICA accesses by the SH4.

・ Reads of the AICA by the SH4 sometimes take 16[micro]sec., during which time the CPU bus, the
internal bus (Root Bus) and the G2 bus come to a complete stop. Therefore, reducing AICA reads
is a necessity for making the system faster.

・ Similarly, writes to the AICA are fast if the AICA buffer is empty, but sometimes more than
16[micro]sec. are required in order to send data in the buffer to wave memory so that the buffer is
empty. In order to increase system speed, it is necessary to limit consecutive writes to the AICA to
eight times; DMA can be used to reduce the number of writes.

Restrictions concerning DMA are provided below.

・ If the AICA is to be read by the SH4 while AICA-DMA, EXT-DMA0, or EXT-DMA1 is being
executed, interrupt the AICA-DMA, EXT-DMA0, or EXT-DMA1 operation and confirm that the
buffer is empty before reading the AICA. After the AICA read is completed, resume the DMA that
was interrupted. Alternatively, wait until DMA is completed and then confirm that the buffer is
empty before reading the AICA.
* From the time when the buffer has been confirmed as being empty until the AICA read is

completed, it is possible to access system memory, the TA FIFO buffer and the interrupt control
register, but other accesses from the SH4 are prohibited.

Exam ple 1: When in ter rupt in g AICA-DMA,
EXT-DMA0, or EXT-DMA1

* Disa ble in t er ru pts

Wait for the SH 4 I/F a nd G2 I/F
buffers to become em pty

In ter rupt AICA-DMA, EXT-DMA0, or
EXT-DMA1

Confirm th a t DMA ha s been in ter rupted

Wait un t il th e AICA bu ffer is em pty

Read of the AICA by th e SH 4
(consecu t ive rea ds a re possible)

Resu me DMA

Enable in t er ru pt s

Exam ple 2: Wh en wait in g for AICA-DMA,
EXT-DMA0, or EXT-DMA1 to end

Wait for the SH 4 I/F, G2 I/F a nd
AICA buffer s to become em pty

Wait for AICA-DMA, EXT-DMA0, or
EXT-DMA1 to end

Read of the AICA by th e SH 4
(consecu t ive r eads a re possible)

Ena ble in ter rupt s

* Disa ble in t er rupts

Exam ple 3: When neith er AICA-DMA,
EXT-DMA0, nor EXT-DMA1 are
in progress

Wait for the SH 4 I/F, G2 I/F, an d
AICA buffers to become em pty

Read of th e AICA by the SH 4
(con secu t ive r eads a re possible)

Ena ble in ter rupt s

* Disa ble in t er rupts

* In ter rupt s a r e disabled in order to
proh ibit oth er accesses by the sH4

through the Root Bus.

Fig. 4-2

- 229 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

・ To perform a write to the AICA by the SH4 while AICA-DMA is in progress, interrupt AICA-
DMA and confirm that the buffer is empty before writing to the AICA. After the write to the AICA
is completed, resume the AICA-DMA. Otherwise, wait for the AICA-DMA to end, confirm that
the buffer is empty and then write to the AICA. In addition, writes to the AICA should be
performed no more than eight consecutive times. If more than eight writes to the AICA are to be
performed, confirm that the buffer is empty again after eight or fewer writes, and then perform
eight or fewer writes to the AICA again.
* SH4 accesses other than those to the AICA are possible.

Exam ple 1: When in ter rupt ing AICA-
DMA (eigh t or fewer wr ites)

In ter ru pt AICA-DMA

Wait u n t il the AICA
buffer is em pty

Con firm in t er ru pt ion of DMA

Resume DMA

Write to t he AICA by the
SH4 (eigh t or fewer t imes)

Exam ple 2: When in ter ru pt in g AICA-
DMA (sixteen or fewer wr ites)

Example 3: When wait ing for AICA-
DMA to en d (sixteen wr ites)

Wait u n t il the AICA
buffer is em pty

Write to t he AICA by the
SH4 (eigh t t im es)

Wait for AICA-DMA to end

In ter rupt AICA-DMA

Wait un t il t he AICA
buffer is empty

Con firm in ter ru pt ion of DMA

Resu me DMA

Write to th e AICA by the
SH4 (eigh t or fewer t im es)

Wait un t il t he AICA
buffer is empty

Write to th e AICA by the
SH4 (eigh t or fewer t im es)

Wait u n t il the AICA
buffer is em pty

Write to t he AICA by the
SH4 (eigh t t im es)

Example 4: Wh en AICA-DMA is not in
progress

Wait un t il th e AICA
bu ffer is empty

Write to th e AICA by the
SH4 (eigh t t im es)

Fig. 4-3

- 230 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2.2.4 Wave Memory
The AICA has an interface for externally connected SDRAM that is shared and accessed by its

internal sound processor, sound source, DSP, and the host system. Table 4-2 shows the specifications
for the memory that is used. The following table shows the specifications and settings for the memory
that is used.

Memory size 2MB (can be expanded up to 8MB)
Technology 16Mbit SDRAM

(2banks× 512Kwords×16bits)
Number of memory maps used 1
Chip bus width 16 bits
Operating frequency 67.7376MHz
Operation settings ・ Burst Read and Single Write

・ Wrap Type = Sequential
・ CAS Latency = 2
・ Burst Length = Full Page

Table 4-9 AICA's External Memory Specifications

- 231 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2.3 RTC(Real Time Clock)
The Real Time Clock (RTC), a timer that increments its count once per second, is built into the AICA

audio chip, and is capable of operating off a backup battery at 2.0 to 3.5V even when the main power is off.
A 3V lithium battery and a 32.768KHz crystal (as the clock source) are each connected externally to the
AICA for the RTC.

Only the SH4 can access the RTC.

§4.2.3.1 Access Method
The RTC is accessed through the following three registers, starting from 0x00710000, described

below.
As shown below, the RTC registers form a 32-bit counter RTC [31:0], which can count seconds for

approximately 136 years, and a write enable bit (EN...0x00710008-bit 0, write only) for those registers.
(Because these registers are accessed in the same manner as AICA, the access size is 4 bytes only, and
only the lower 16 bits are valid.)

RTC[31:0] is normally write protected, but can be written when a "1" is written to the EN bit.
Furthermore, when RTC[15:0] is written, the counter below one second is cleared. When RTC[31:16] is
written, write protection is enabled again.

If the data is read while the count is being increased, the correct value might not be output.
Therefore, it is necessary to confirm the value by reading several times, for example.

RTC Resister Address：0x0071 0000
bit15-0

RTC[31:16]

Address： 0x0071 0004
bit15-0

RTC[15:0]

Address： 0x0071 0008
bit15-1 0

Reserved EN

- 232 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2.4 MODEM
In order to add communications functions to the Dreamcast System, an external plug-in type modem is

supported. The modem consists of a modem chip, telephone line interface, and an ASIC that includes ID
circuitry.

The modem uses Rockwell's RCVDL56DPGL/SP chip set, and the operating frequency of the modem
block is 56.448MHz. After a reset is released, the modem requires an interval of at least 400ms in order to
initialize its registers.

The major functions and features of the modem are listed below:

• Full duplex V.34 (33.6Kbps) data modem

• Supports MNP2-5, V.42, and V.42bis for error correction and data compression (Error correction and
data compression are performed by system software.)

• Passive modem; does not include a controlling microprocessor

§4.2.4.1 Address Map
The address map is shown below. (Refer to "RCVDL56DPFL/SP, RCV56DPFL/SP,

RCV336DPFL/SP Modem Data Pump Designer's Guide" for details.)

ADDRESS CONTENTS ADDRESS CONTENTS
0x0060 0000 Modem ID0 0x0060 0440 Modem Register No.10
0x0060 0004 Modem ID1 0x0060 0444 11

: 0x0060 0448 12
0x0060 0400 Modem Register No.00 0x0060 044C 13
0x0060 0404 01 0x0060 0450 14
0x0060 0408 02 0x0060 0454 15
0x0060 040C 03 0x0060 0458 16
0x0060 0410 04 0x0060 045C 17
0x0060 0414 05 0x0060 0460 18
0x0060 0418 06 0x0060 0464 19
0x0060 041C 07 0x0060 0468 1A
0x0060 0420 08 0x0060 046C 1B
0x0060 0424 09 0x0060 0470 1C
0x0060 0428 0A 0x0060 0474 1D
0x0060 042C 0B 0x0060 0478 1E
0x0060 0430 0C 0x0060 047C 1F
0x0060 0434 0D 0x0060 048C HRES
0x0060 0438 0E
0x0060 043C 0F

Table 4-10

§4.2.4.2 Access Method
The modem area is mapped in the area from 0x0060 0000 to 0x0060 07FF on the G2 bus (the

effective addresses that are actually mapped are listed in the table above). Each register can be accessed
only by means of one-byte reads and writes.

- 233 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2.4.2.1 ID

The ID register is used to get the ID of the device that is connected in the modem slot. As
described earlier, the access size is 1 byte only, and this register is a read-only register.

The register contents are described below.

MODEM ID0 Address：0x0060 0000
bit 7-0

Country Code

Country Code (default = 0x00)
Value Country
0x00 Reserved
0x01 Japan
0x02 USA

0x02-0xFF Reserved

MODEM ID1 Address：0x0060 0004
bit 7-4 3-0

Maker Code Device Type

Maker Code (default = 0x1)
Value Maker
0x0 SEGA
0x1 Rockwell

0x2-0xF Reserved

Device Type (default = 0x0)
Value Device
0x0 33.6Kbps

0x1-0xF Reserved

§4.2.4.2.2 Reset

A hardware reset of the modem chip is performed through the HRES register (0x00600480). The
modem set requires a minimum reset interval of 3[micro]sec, and a minimum of 400msec after
releasing the reset.

HRES Address：0x0060 0480
bit 7-0

Reset

Reset (default=0x0)
Setting Status

0x0 Reset
0x1 Reset release

- 234 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§4.2.5 Expansion Devices
Expansion devices are connected through the main unit's expansion connector (the G2 bus), and are

accessed through the G2 interface.
Expansion devices respond on the G2 bus synchronous cycle. Because the modem uses an asynchronous

cycle, the expansion device must not respond.

<<Area Assignments>>

Expansion devices are normally assigned to 1K areas (refer to the table below) in what is normally a 16K
space that starts from the 16-bit address 0x0000. The address assignment is based on the state of the
expansion device's SELx pins.

area address range SH4 address
0 0x0000 - 0x03FF 0x00620000 - 0x006203FF
1 0x0400 - 0x07FF 0x00620400 - 0x006207FF
2 0x0800 - 0x0BFF 0x00620800 - 0x00620BFF
3 0x0C00 - 0x0FFF 0x00620C00 - 0x00620FFF
4 0x1000 - 0x13FF 0x00621000 - 0x006213FF
5 0x1400 - 0x17FF 0x00621400 - 0x006217FF
6 0x1800 - 0x1BFF 0x00621800 - 0x00621BFF
7 0x1C00 - 0x1FFF 0x00621C00 - 0x00621FFF
8 0x2000 - 0x23FF 0x00622000 - 0x006223FF
9 0x2400 - 0x27FF 0x00622400 - 0x006227FF
10 0x2800 - 0x2BFF 0x00622800 - 0x00622BFF
11 0x2C00 - 0x2FFF 0x00622C00 - 0x00622FFF
12 0x3000 - 0x33FF 0x00623000 - 0x006233FF
13 0x3400 - 0x37FF 0x00623400 - 0x006237FF
14 0x3800 - 0x3BFF 0x00623800 - 0x00623BFF
15 0x3C00 - 0x3FFF 0x00623C00 - 0x00623FFF

Table 4-11

Expansion devices can use the address spaces shown below.

ADDRESS SIZE AREA
0x00620000～0x0062FFFF 64KByte Synchronous cycle 16-bit address area
0x01000000～0x01FFFFFF 16MByte Synchronous cycle 32-bit address area
0x03000000～0x03FFFFFF 16MByte Synchronous cycle 32-bit address area
0x14000000～0x17FFFFFF 64MByte Synchronous cycle 32-bit address area

*It is recommended that 0x03000000 through 0x03FFFFFF be the image for 0x01000000 to
0x01FFFFFF.

Table 4-12

The 1K spaces have a 32-byte basic register set that is common to the expansion devices, and which
functions as configuration registers that are set when using expansion device interrupts or an area that
exceeds 1K.

When requesting an area that is greater than 1K in size, the configuration register is used by the software
for resource management in order to assign the area. In addition, because it is not possible to guarantee that
an expansion device will occupy a fixed area (occupying specific addresses is prohibited), the software
must by configured so that no problems arise no matter which area is allocated to an expansion device.

All expansion devices share one interrupt. In addition, the three G2-DMA transfer requests are used by
all expansion devices on an exclusive basis.

- 235 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<<Configuration Registers>>

The configuration registers occupy a 32-byte area at the beginning of the 1K area that is the basic space
for expansion devices. The contents of these registers are described below. A reset resets each register to
"0."

Offset
Address

Access Contents

0x0000 R/- ID0: G2 identifier low
0x0002 R/- ID1: G2 identifier high
0x0004 R/- ID2: Individual identifier
0x0006 R/- ID3: Individual identifier
0x0008 R/- ID4: Individual identifier
0x000A R/- ID5 : Device Category
0x000C R/- ID6 : Serial Number
0x000E R/- ID7 : Comaptible Number
0x0010 R/W Reg0 : Address Space 0
0x0012 R/W Reg1 : Address Space 1
0x0014 R/W Reg2 : DMA Transfer Request Assign
0x0016 R/W Reg3 : Device Enable Register
0x0018 R/W Reg4 : Interrupt Mask Low
0x001A R/W Reg5 : Interrupt Mask High
0x001C R/W Reg6 : Interrupt Status Low
0x001E R/W Reg7 : Interrupt Status High

*Access (read only) to 0x0004 through 0x000E differs for each device.

Tabke 4-13

○ 0x0000 to 0x0002: ID0-1 G2 identifier
This identifier is used to determine whether the rest of the registers that follow are the correct registers.
The sequence of bytes, starting from 0x0000, is "G", "A", "P", and "S". (temporary)

bit31-24 (0x0002_bit15-8) : 0x53
bit23-16 (0x0002_bit7-0) : 0x4D
bit15-8 (0x0000_bit15-8) : 0x41
bit7-0 (0x0000_bit7-0) : 0x47

○ 0x0004 to 0x0008: ID2 to 4 Individual identifier
This area can be used in any fashion desired.

○ 0x000A : ID5 Device Categoly
This indicates the general category of the device. Each bit indicates a function category. If the device
has multiple functions, each of the corresponding bits is set to "1".

bit15 : G2 bus bridge/repeater
bit14 : -
bit13 : Extra Bus Bridge (PCMCIA, ISA, etc.)
bit12-7 : -
bit6 : Miscellaneous I/O (Keyboard, MOUSE, etc.)
bit5 : LAN/Ethernet
bit4 : SCSI
bit3 : ATA/IDE/compact-FLASH
bit2 : parallel (IEEE1284-1994)
bit1 : serial/Modem/ISDN (165x0)
bit0 : Memory (DRAM/DRAM)

- 236 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

○ 0x000C: ID6 Serial number
This is a product code that identifies the device.
This register consists of the manufacturer's code (8 bits) and a serial number (8 bits); the serial number
is managed by the manufacturer. The manufacturer's code 0x00 and the serial number 0x00 can be used
as a prototype code. The serial number correspondence is shown below.

“ 0xXXYY “

bit15-8 : maker code ;XX
bit7-0 : serial number ;YY

XX-- = 0x00-- : Standard device (internal specifications are public)
XXYY = 0x0000 : Prototype
XXYY = 0x0001 : DRAM interface
XXYY = 0x0002 : Simple ISA interface
XXYY = 0x0003 : G2 bus buffer
XXYY = 0x0004 : Simple IDE interface

XX-- = 0x01-- : Sega
XXYY = 0x0100 : Sega prototype

○ 0x000E: ID7 Compatible Number
This register is specified when the device indicated by the serial number is the same, or is upward
compatible, and the control software can be used as is. If there is no compatible device, this register is
0x0000.

bit15-8 : maker code
bit7-0 : serial number

○ 0x0010: Reg0 Address Space 0
Set this register when an area larger than the basic 1K space is required. Specify addresses in units of
64K x 2[n] bytes. When 0x0000 is specified, device allocation is prohibited.
If the address space is not required, this register can be treated as a read-only register that returns
0x0000.

bits 15-13 : N.A.
bits 12-0 : Correspond to A28 through 16 of a CPU address

○ 0x0012: Reg1 Address Space 1
Address 0x0012 has the same function as address 0x0010; 0x0010 and 0x0012 can be used to allocate
two different address spaces. Specify addresses and areas in units of 64K x 2[n] bytes.
If the address space is not required, this register can be treated as a read-only register that returns
0x0000.
This register is used when an area larger than the standard 1K space is required.。

bits15-13 : N.A.
bits12-0 : Correspond to A28 through 16 of a CPU address

- 237 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

○ 0x0014: Reg2 DMA Transfer Request Assign
This register is used to select signal lines for outputting a transfer request to G2-DMA. When a bit is
set to "1," the corresponding signal line is driven. If G2-DMA is not being used, this register can be
treated as a read-only register that returns 0x0000.

bits15-4 : N.A.
bits3 : DMA Request Signal Select (G2RQDEVN)

0- Signal High-Z
1- Active

bits2 : DMA Request Signal Select (G2RQEX2N)
0- Signal High-Z
1- Active

bit1 : DMA Request Signal Select (G2RQEX1N)
0- Signal High-Z
1- Active

bit0 : N.A.

○ 0x0016: Reg3 Device Enable Reg
This register is used to enable a device and the area allocated by 0x0010 and 0x0012. Bit 1 permits "1"
to be read from read/write registers.
The 1K area that is standard can always be enabled.

bits15-2 : N.A.

bit1 : Device Register Mask
0- Mask Off
1- Mask On

bit0 : Device Enable
0- Dis
1- Enable

○ 0x0018 - 0x001A: Reg4 - Reg5 Interrupt Mask
These mask registers control the output of interrupts when interrupts are generated. These registers can
control up to 32 sources; when a bit is set to "1," the corresponding interrupt output is enabled. If
interrupt are not being used, this register can be treated as a read-only register that returns 0x00000000.
These registers are packed, starting from the lowest bit.

bits 31-0 (0x001A_bit15-0, 0x0018_bit15-0)

○ 0x001C - 0x001E: Reg6 - Reg7 Interrupt Status
These registers reflect the status of interrupts that have been generated by the device. When a bit is "1,"
the corresponding interrupt is being generated. These registers are used in conjunction with the
interrupt mask registers; when the bits that correspond to an interrupt output are both "1," that interrupt
output is low. When there are multiple interrupt sources, one or more interrupts are generated, and the
interrupt outputs go low if the corresponding mask bits are set to "1."
Depending on the device, it may also be possible to clear an interrupt by writing a "1" to the
corresponding bit in this register. (In some cases, interrupts may be cleared by accessing a different
register.)

bits 31-0 (0x001E_bit15-0, 0x001C_bit15-0)

The 32 bytes from 0x0000 to 0x001F described above comprise the configuration registers.

○ The area from 0x0020 to 0x3FF is used by each device.

- 238 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<<Device Detection (Example)>>

When the device that exists in address 0x00620000 supports the bridge function, device detection is
performed for the remaining areas as well. In this case, because expansion devices are not necessarily
located in consecutive areas, detection must be performed for all areas.

If the device does not support the bridge function, only one device is connected, so device detection is
not performed for any other area.

(a) The detection start address is set as 0x00620000.

(b) Read the address + 0x0000 and + 0x0002.

・ If the G2 identifier is found, a device is detected. →(c)
・ If the values that were read differ, no device is detected. →(z)
・ If a timeout occurs, no device is detected. →(z)

(c) Read the address + 0x00C.
・ If the value is 0x0000, handling is unknown (a prototype). →(g)
・ If the value is not 0x0000, search for the device driver. →(d)

(d) Search for the device driver.
・ If the driver is found, initialize the device accordingly. →(g)
・ If the device driver is not found, read the address + 0x000E. →(e)

(e) Read the address + 0x000E.
・ If the value is 0x0000, handling is unknown. →(g)
・ If the value is not 0x0000, search for the device driver. →(f)

(f) Search for the device driver.
・ If the driver is found, initialize the device accordingly. →(g)
・ If the device driver is not found, handling is unknown. →(g)

(g) If the detected address is 0x00620000...
・ End if the device does not support the bus bridge function(when + 0x00A_bit15 is "0"). →(z)
・ Search for the bridge destination if the device does support the bus bridge function. →(h)
・ If the detected address is not 0x00620000... →(h)

(h) Repeat steps (b) through (f) 15 times, once for each 1K, starting from 0x00620400.

(z) End

<<Device initialization processing (Example)>>

(a) Write 0x0002 in the address + 0x0016, so that "1" can be read from the bits corresponding to the
registers that can be set.

(b) Read the address + 0x0010, + 0x0012, + 0x0014, + 0x0014, + 0x0018, and + 0x001A.

(c) Write 0x0000 in the address + 0x0016 to return to normal operation.

(d) Any value that was read in (b) that was not 0x0000 indicates a resource request that was being
made, so allocate resources accordingly.

(e) Write to the address + 0x0010, + 0x0012, + 0x0014, + 0x0014, + 0x0018, and + 0x001A, as
necessary.

(f) Write 0x0002 in the address + 0x0016, enabling the device.

<<G2 bus and expansion devices>>

The G2 bus is designed for about three devices to be connected, including a sound source IC and a
modem, and the drive capabilities of the signal lines that are output from the main unit are limited. As a
result, it is not possible to connect multiple external devices. If multiple external devices are connected, the

- 239 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

signal lines must be buffered.
When connecting multiple devices by means of an expansion box, etc., connect them through a device

that has a repeater or bridge function. The connection diagrams below illustrate the connection of one
expansion device and the connection of an expansion box.

[Connection between main unit and one expansion device]

Expansion Card

Device ICG
2 C

onn.

CONSOLE

SEL3=Hi
SEL2= x
SEL1= x
SEL0= x

Fig. 4-4

[Connection between main unit and an expansion box]

Expansion Box

G
2 C

onn.

CONSOLE

　 　 Br idge Conn.0 Conn.1 Conn.2 Conn.3
SEL3= Hi Low Low Low Low
SEL2= x High High High High
SEL1= x High High Low Low
SEL0= x High Low High Low

・ IRQs a re connected from each connector to t he repeat er IC
・ G2CLK is dist r ibu t ed to each connector using a zero delay

dr iver

C
onn. 0

C
o. 0

C
onn. 1

C
onn. 2

C
onn. 3

IRQ

Bridge IC

Fig. 4-5

- 240 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5 User Interface

- 241 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.1 Peripherals
The "Maple" peripheral interface is used for the Dreamcast control pads, etc. The "Maple" interface is

described below.

§5.1.1 Overview
"Maple" is Sega's proprietary peripheral interface, and supports the connection of peripheral devices such

as control pads and light guns through four ports. The Maple interface sends/receives serial data with the
devices. The contents of the data are defined by the Maple Bus protocol. (The controller has no effect on
the details of the protocol.) Protocol organization and analysis is handled by the SH4 CPU.

The hardware includes one port consisting of two lines, SDCKA and SDCKB, and data transfers are
performed in synchronous serial mode. Data is transferred through half-duplex bi-directional transfer with
a maximum data transfer rate of 2Mbps and a minimum data transfer rate of 250Kbps. The minimum data
transfer unit is one frame, each of which begins with the START pattern that is indicated at the beginning of
the data transfer, followed by a DATA pattern ranging in length from 4 to 1024 bytes, the parity bit, and
then the END pattern. The eight parity bits are added automatically by the hardware when the data is sent,
and are removed when the data is received.

The following register sets are provided for the Maple interface. (Details on each register are provided in
the list of registers.)

 Maple-DMA Control Registers
 Maple I/F Block Control Registers
 Maple-DMA Secret Register
 Maple-DMA Debug Registers
 Maple I/F Block Hardware Control Register
 Maple I/F Block Hardware Test Registers
 Interrupt Control Registers ...interrupt related registers (SB_ISTNRM, etc.)

The basic operation of this interface is described below.
A command file is set up in system memory, containing the instructions (settings such as the

communications port selection, the received data storage address, and the transfer data length) for the
Maple controller and the transmission data. The command file consists of units formed by "instruction to
the controller," "received data storage address," and "transmission data," in that order. Each of these units
are located consecutively in system memory.

The controller can be started up by two methods: by software, or by hardware in synchronization with
the V-BLANK signal. These methods are selected through the trigger selection register (SB_MDTSEL).
When startup by the V-BLANK signal is selected, delayed startup can be selected through the system
register (SB_MSYS) setting.

When the DMA enable register (SB_MDEN) and the DMA start register (SB_MDST) have been set by
the SH4, the controller starts up and loads in the command file. The controller follows the instructions,
sending the transmission data in system memory indicated by the DMA command table address register
(SB_MDSTAR) in the specified length to the target port, and then waits to receive a response. When data
is received, the controller writes that data in system memory, starting from the received data store address
that was set in the instructions. After receiving data, the controller continues executing the instructions in
sequence until it detects the end of the command file. (Accesses between the controller and system
memory are all performed through DMA in ch0-DDT mode, and data is sent and received in units of 32
bytes.)

If, as a result of being disconnected or some other problem, the peripheral device does not respond (times
out), then 0xFFFFFFFF is written to the first 32 bits of the received data storage address as "disconnected"
processing. 0xFFFFFF00 is written if a parity error occurs during reception of serial data.

- 242 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

• Instruction Format

bit 31 30-18 17-16 15-11 10-8 7-0
End Flag 000 0000 0000 00 Port Select 0000 0 Pattern Transfer Length

Instructions to the Maple interface consist of 32 bits of data as shown above, and are set up in system
memory.

An instruction consists of an End Flag bit, which indicates the end of the command file; the Port
Select bits, which select the active port that is the target of the transmission/reception operation; the
Pattern selection bits; and the Transfer Length bits.

When Maple detects a "1" in the End Flag bit, it terminates processing with this instruction. (The
End Flag must be set to "1" in the last instruction in the transmission data.) When the pattern selection
bits are set to "000," Maple outputs the data that is to be sent. If any other pattern is selected, the port
outputs the information pattern only, and the transmission data length specification becomes invalid.
"111" (NOP) is used to extend processing for a certain length of time. when the pattern "010" (Light-
Gun mode) is selected, the End Flag bit of that instruction must be set to "1". All subsequent
instructions are invalid until the pattern "100" (return from Light-Gun mode) is detected.

End Flag: Command file end bit
Setting Meaning

0 Not end of command file
1 End of command file (Execution ceases after this command.)

Port Select: Port selection bits ... These bits select the port that is the target of the transmission/reception
operation.

Setting Selected port
0 Port A
1 Port B
2 Port C
3 Port D

Pattern: Pattern selection bits
Pattern Pattern

bit2 bit1 bit0
0 0 0 Normal data of the length indicated by Transfer Length
0 1 0 Light-Gun mode (Seizes SDCKB.)
0 1 1 RESET
1 0 0 Return from Light-Gun mode (Releases SDCKB.)
1 1 1 NOP (Waits after data is received before sending the next data.)

Transfer Length: Transfer data length selection bits
Setting Transfer data length

0 4 Byte
1 8 Byte
： ：

0xFE 1020 Byte
0xFF 1024 Byte

• Received data storage address
Data is received from peripheral devices in 4-byte units, and is first loaded in a 32-byte reception FIFO.

As soon as the FIFO becomes full, the data is transferred to the received data storage address in system
memory. However, as soon as reception ends, even if the FIFO buffer is not full, an remaining data is
regarded as invalid data and is transferred as 32 bytes.

The received data storage address area is from 0x00C00000 to 0x00FFFFE0 in system memory.
(Specify "0" for the lower five bits of the address that indicates the 32 bytes that are transferred.)
• Transmission data

Transmission data consists of 4-byte units of data that are actually sent to a peripheral device by the
Maple protocol. The length of the data must be the transfer length (in 4-byte units) that is set by the
instruction in the command file.

- 243 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.1.2 Register Map
The registers that are used only by the Maple interface are in the area (from 0x005F 6C00 to 0x005F

6CFF) described in the system mapping table in section 2.1.
The mapping of the registers that are used by Maple is shown below. (Refer to section 8.4.1.2 for details

on individual registers.)

Address Register Name Access Function Reset Initialize

Maple-DMA Control Registers (0x005F6C04, 0x005F6C14~18)
0x005F 6C00 - -
0x005F 6C04 SB_MDSTAR R/W DMA Command Table Address not initialize
0x005F 6C08 - -
0x005F 6C0C - -
0x005F 6C10 SB_MDTSEL R/W DMA Trigger Selection 0
0x005F 6C14 SB_MDEN R/W DMA Enable 0
0x005F 6C18 SB_MDST R/W DMA Start / Status 0

Maple I/F Block Control Registers (0x005F6C80~84)
0x005F 6C80 SB_MSYS R/W Maple System Control 0x3A980000
0x005F 6C84 SB_MST R/- Maple Status
0x005F 6C88 SB_MSHTCL /W Maple Status Hard Trigger Clear 0

Maple-DMA Secret Register (0x005F6C8C)
0x005F 6C8C SB_MDAPRO -/W Maple Sys.Mem. Area Protection 0x00007F00

Maple I/F Block Hardware Control Register (0x005F6CE8)
0x005F 6CE8 SB_MMSEL R/W Maple MSB Selection 1

Maple-DMA Debug Registers (0x005F6CF4~FC)
0x005F 6CF4 SB_MTXDAD R/- Maple TXD Address Counter not initialize
0x005F 6CF8 SB_MRXDAD R/- Maple RXD Address Counter not initialize
0x005F 6CFC SB_MRXDBD R/- Maple RXD Base Address not initialize

Table 5-1 Maple Register Map

* In the above table, in the "Reset Initialize" column, "Not Initialized" indicates that the register value is
undefined after a system reset. In all other cases, the value shown indicates the value that is set in that
register after a system reset.

- 244 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.1.3 Operating Sequence
There are two interface operating sequences: the normal sequence, and the "SDCKB seizure-release"

sequence. Each sequence is described below.

<Normal Sequence>
The following chart shows the flow of data between the CPU, the peripheral controller, and the

peripheral device.

*Transm ission
da ta set t ing to
System Mem

Maple protocol
data t r ansfer

Receive da ta

Time axis for
in ter nal bus

Time axis for
per iphera l device A

V_BLANK_OUT

Transmit da ta

Read
t ransmission
da ta from System
Mem

Write received
da ta to System
Mem

Read
t ransmission data
from System Mem

Receive da ta

Write received
da ta to System
Mem

*Read st a tus from
per ipheral cont roller

V_BLANK_IN

*Read received da ta
from System Mem

In it ia liza t ion

Time axis for
per iphera l
cont roller

Time axis for
per iphera l device B

CPU
opera t ion

V_BLANK

Transmit da ta

*Reg set t ing
To per iphera l
cont roller

Fig. 5-1 Normal Sequence

- 245 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<SDCKB Seizure-Release Sequence>
The SDCKB seizure-release sequence is used for latching the HV counter, primarily when using the

Light Phaser Gun. The sequence is illustrated below.

*Transmission
data set t ings

*Register set t ings

Time axis for
in ternal bus

Time axis for
per iphera l device A

V_BLANK_OUT

Read
t ransmission
data

Latch HV
counter

SDCKB
seized

Time axis for
per iphera l controller

*CPU
opera t ion

SDCKB seizure
pat tern

*Transmission
data set t ings

*Register
set t ings

SDCKB
released

V_BLANK_IN

V_BLANK

Fig. 5-2 SDCKB Seizure-Release Procedure

- 246 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.1.4 Access Procedure
There are two access procedures, as described below: software initiated and hardware initiated.
* It is necessary for the initial settings for SH4-DMAC (setting DMA ch0 to DDT mode) to already

have been made before initiating Maple-DMA. (Refer to the DMAC item in section 2.2.3.)

<<Software initiation>>

~ Initialization ~

(1) Work RAM area protection register setting
Address: 0x005F 6C8C Write data: 0xXXXX XXXX

(2) System control register setting

(3) DMA trigger selection register settings
Address: 0x005F 6C10 Write data: 0x00000000

Initiation trigger → Software

~ Effective procedure ~

(4) Data setting in system memory (DMA command table)
Address: System memory area (0xnnnn nnnn) Write data: 0x8000 0000
Send four bytes of data to port A and terminate

Address: 0xnnnn nnnn + 4h Write data: System memory address (0xmmmm mmmm)
Contents: Received data storage address (0xmmmm mmmm)

Address: 0xnnnn nnnn + 8h Write data: 0xXXXX XXXX
Contents: Data to be sent to port A 0xXXXX XXXX

(5) DMA command table address register setting
Address: 0x005F 6C04 Write data: 0xnnnn nnnn
Contents: Starting address where transmission data is to be stored in system memory (0xnnnn
nnnn)

(6) DMA enable register setting
Address: 0x005F 6C14 Write data: 0x0000 0001
Contents: DMA enable

(7) DMA start/status register setting
Address: 0x005F 6C18 Write data: 0x0000 0001
Contents: DMA initiation, transmission/reception start

~ Confirmation of end ~

(8) DMA start/status confirmation
Address: 0x005F 6C18 Read data: 0x0000 0000 (transmission/reception end)
Contents: Confirmation of transmission/reception end

(9) Loading received data into system memory
Address: 0xmmmm mmmm Read data: 0xXXXX XXXX
Load data that was received from port A

- 247 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<<Hardware initiation (auto-initiation at each trigger)>>

～ Initialization ～

1. System memory area protection register setting
Address: 0x005F6C8C Write data:0xXXXXXXXX

2. System control register setting
Address: 0x005F6C80 Write data:0x3A9800XX
[Timeout: 300[micro]s; initiation at each V-Blank Out; transfer rate: 2Mbps; initiation delay setting:
XX]

3. DMA trigger selection register setting
Address: 0x005F6C10 Write data:0x00000001
Initiation trigger → Hardware trigger (V-Blank Out)

～ Execution Procedure ～

4. Setting of data in system memory (DMA command table)
Address: System memory area 0xnnnnnnnn Write data:0x80000000
Send four bytes of data to port A and terminate.

Address: 0xnnnnnnnn + 0x4: Write data system memory address (0xmmmmmmmm)
Received data store address (0xmmmmmmmmm)

Address: 0xnnnnnnnn + 0x8 Write data: 0xXXXXXXXX
Data to be sent to port A: 0xXXXXXXXX

5. DMA command table address register setting
Address: 0x005F6C04 Write data: 0xnnnnnnnn
Starting address in system memory where the transmission data is stored

6. DMA enable register setting
Address: 0x005F6C14 Write data: 0x00000001
DMA enabled

7. DMA start/status register setting
Address: 0x005F6C18 Write data: 0x00000001
DMA initiation, transmission/reception start

～ Ending Confirmation ～

8. DMA start/status confirmation
Address: 0x005F6C18 Read data: Transmission/reception ends at 0x00000000
Transmission/reception end confirmation

9. Loading received data into system memory
Address: 0xmmmmmmmm Read data: 0xXXXXXXXX
Loading of received data from port A

- 248 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.1.5 Example of Transmission and Reception Data
Examples of a transmission data command file stored in system memory and the corresponding reception

data are shown below.
(16 bytes of data are sent to portA, and the received data is stored in address 0x0C800000.)

Transmission data command file in system memory
Address Data Contents

+0x0 0x03 Maple-Host Logic
Command 32bit
　・PortA
　・Data 16Byte

+0x1 0x00
+0x2 0x00
+0x3 0x80
+0x4 0x00 Recieve Data

Destination
Address 32bit

+0x5 0x00
+0x6 0x80
+0x7 0x0C
+0x8 COMMAND Protocol Data 8bit
+0x9 Destination AP 〃

+0xA Source AP 〃

+0xB Data Size 〃

+0xC DATA0 〃

+0xD DATA1 〃

+0xE DATA2 〃

+0xF DATA3 〃

+0x10 DATA4 〃

+0x11 DATA5 〃

+0x12 DATA6 〃

+0x13 DATA7 〃

+0x14 Lower Byte0 　　　　　　〃 16bit
+0x15 Upper Byte0
+0x16 Lower Byte1 　　　　　　〃 16bit
+0x17 Upper Byte1

Table 5-3

Received data stored in system memory
Address Data Contents

0x0C800000 COMMAND Protocol Data 8bit
0x0C800001 Destination AP 〃

0x0C800002 Source AP 〃

0x0C800003 Data Size 〃

0x0C800004 DATA0 〃

0x0C800005 DATA1 〃

0x0C800006 DATA2 〃

0x0C800007 DATA3 〃

0x0C800008 DATA4 〃

0x0C800009 DATA5 〃

0x0C80000A DATA6 〃

0x0C80000B DATA7 〃

0x0C80000C Lower Byte0 　　　　　　〃 16bit
0x0C80000D Upper Byte0
0x0C80000E Lower Byte1 　　　　　　〃 16bit
0x0C80000F Upper Byte1

Table 5-3

- 249 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.1.6 Notes Regarding Access
Notes that need to be observed in accesses concerning register settings and data transfers are described

below.

<<Concerning Register Settings>>
(1) If the controller is waiting for a single hardware trigger to clear, and then the initiation trigger is

set to the software trigger and then back to a hardware trigger again, the hardware trigger that was
set last is valid. (If DMA was not disabled at the moment that the switch was made to the
hardware trigger, the trigger is not overwritten, and the wait for the single hardware trigger to
clear becomes invalid.)

(2) Regarding forced termination through the DMA enable register（ SB_MDEN） , when sending or
receiving data, termination does not occur until transmission/reception on that port is completed.
Therefore, it is possible for several DMA transfers to still occur after DMA is disabled. In
addition, because a DMA end interrupt is not generated, the end must be detected only by polling
the status. However, in the case of a forced termination as a result of an illegal error (for
example, if system memory area protection was violated), the DMA ends at that point (when the
error interrupt is generated).

(3) The DMA trigger selection register (SB_MDTSEL) and the system control register (SB_MSYS)
cannot be overwritten while DMA is enabled.

(4) An illegal address error interrupt is generated when a value other than that specified by the system
memory area protection register (SB_MDAPRO) is written to the DMA command table address
register (SB_MDSTAR), and when an attempt is made to initiate DMA while in that state. An
illegal address error interrupt is not generated when setting the received data store address that is
written to system memory as a command, or when fetching a peripheral controller. An overrun
error interrupt is generated when system memory is accessed. (It is not generated in the DMA
write cycle.) The system control register cannot be overwritten while DMA is enabled.

(5) The DMA start/status register (SB_MDST) indicates that V-Blank Out initiated the operation
during delayed initiation by the hardware trigger. Bit 31 of the status register (SB_MST)
indicates that operation is in progress based on the actual timing of transmission/reception after
the delay. (This bit indicates that no operation is in progress from the time of V-Blank Out to the
end of the delay.)

(6) The system control register initiation delay setting is valid only for the hardware trigger, and is
invalid for the software trigger.

- 250 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Concerning data transfer
(1) When more than one frame of data (1024 bytes) has been sent, forced termination results and

processing continues as if a parity error had occurred.
(2) Repeated transmission/reception is possible by placing transmission commands consecutively in

system memory. In addition, consecutive transmission/reception through the same port is possible
by inserting several NOP instructions. (One instruction generates an interval of about
160[micro]s between accesses.)

(3) Received data must be written in units of 32 bytes. If, for example, 36 bytes of data are received,
valid data will be written in the first 36 bytes following the "received data storage address," and
invalid data will be written in the remaining 28 bytes. Transmission commands can be stored
consecutively in units of 4 bytes.

(4) Regarding the reception buffer in system memory, the received data is asynchronous, and a
maximum of 1024 bytes of data can be received. The length of the received data is normally
controlled by the protocol, but it is possible that the actual length will exceed the intended length
due to errors, etc. Therefore, important data should not be stored in the 1024 bytes after the final
"received data storage address."

(5) Data transfers between the peripheral controller and peripheral devices are performed in units of
32 bits, but the transmission data in this case is sent starting from the MSB (bit 31). Therefore, in
a system that uses the Little Endian configuration, the data is sent starting from the MSB (bit 7) of
the uppermost byte in four bytes of data, working down towards the lower bytes. In the same
manner, received data is stored in units of 4 bytes, from the upper bytes to the lower bytes,
starting with the data that was received first.

(6) When a data transmission/reception spans a V-Blank, a V-Blank Over interrupt is generated, but
the transmission/reception continues and the data is guaranteed.

- 251 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.2 Control Pad
The standard controller device IDs and data format are shown below.

<Device ID>
The device ID starts from the first data as shown below.
0x00-0x00-0x00-0x01-0x00-0x06-0x0F-0xFE-0x00-0x00-0x00-0x00-0x00-0x00-0x00-0x00

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
1st Data 0 0 0 0 0 0 0 0
2nd Data 0 0 0 0 0 0 0 0
3rd Data 0 0 0 0 0 0 0 0
4th Data 0 0 0 0 0 0 0 1
5th Data 0 0 0 0 0 0 0 0
6th Data 0 0 0 0 1 1 1 1
7th Data 0 0 0 0 0 1 1 0
8th Data 1 1 1 1 1 1 1 0
9th Data 0 0 0 0 0 0 0 0
10th Data 0 0 0 0 0 0 0 0
11th Data 0 0 0 0 0 0 0 0
12th Data 0 0 0 0 0 0 0 0
13th Data 0 0 0 0 0 0 0 0
14th Data 0 0 0 0 0 0 0 0
15th Data 0 0 0 0 0 0 0 0
16th Data 0 0 0 0 0 0 0 0

Table 5-4

<Read Data Format>
The data format size is 8 bytes.

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
1st Data Ra La Da Ua Start A B 1
2nd Data 1 1 1 1 1 X Y 1
3rd Data A17 A16 A15 A14 A13 A12 A11 A10

4th Data A27 A26 A25 A24 A23 A22 A21 A20

5th Data A37 A36 A35 A34 A33 A32 A31 A30

6th Data A47 A46 A45 A44 A43 A42 A41 A40

7th Data 1 0 0 0 0 0 0 0
8th Data 1 0 0 0 0 0 0 0

Table 5-5

In the table, "Ra" indicates "right," "La" indicates "left," "Da" indicates "Down," and "Ua" indicates "Up."
1st: Digital button data (On = 0, Off = 1)
2nd: Digital button data (On = 0, Off = 1)
3rd: Analog axis 1 data (value of 0x00 ↔ 0xFF)
4th: Analog axis 2 data (value of 0x00 ↔ 0xFF)
5th: Analog axis 3 data (value of 0x00 ↔ 0x80 ↔ 0xFF)
6th: Analog axis 4 data (value of 0x00 ↔ 0x80 ↔ 0xFF)
7th: Analog axis 5 data (value of 0x00 ↔ 0x80 ↔ 0xFF)
8th: Analog axis 6 data (value of 0x00 ↔ 0x80 ↔ 0xFF)

<Write data format>
Because the target is a controller, there is no write data format. Writing data to the controller generates no

response.

§5.3 Light Phaser Gun

- 252 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§5.4 Backup (Option)

§5.5 Sound Recognition (Option)

- 253 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§6 Peripheral Devices

- 254 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§6.1 DVE (Digital Video Encoder)
This system supports a variety of video modes: NTSC/PAL, VGA, etc.
The video mode is selected by plugging in the cable to the expansion A/V connector for the corresponding

monitor type; the information is then reflected in the SH4's PIO port (the SH4_PDTR register, "PB"). In
response to that information, the SH4 sets the video mode setting registers in the HOLLY graphic core and the
AICA, which sets the DVE. HOLLY and AICA then output RGB signals and video mode setting signals that
correspond to that mode to the Digital Video Encoder (DVE) that actually generates the video signals that are
sent to the external monitor.

SH4 HOLLY

AICA

PIO port

Video mode
set t ing

DVE mode set t ing
(VREG[1:0])

Video signal
R/G/B/Sync

RGB/NTSC-PAL
select ion

Cable infor mat ion
Monitor type

Video output DVE

Board settings
NTSC/PAL/PAL-M/-N

Fig. 6-1

* For a list of video display modes, refer to section 3.1.3. for details on drawing CORE register settings,
refer to section 8.4.2. For details on register settings for the DVE, refer to the explanation of common
data/VREG in section 8.4.5.

Operation when the cable corresponding to the video mode in question is connected is described below.
(Only stereo AV cables are supported as standard; cables marked with an asterisk (*) are optional.)

Regarding the switching of modes, confirm the mode while the power is on; the system does not support
changing cables while in operation. Therefore, if the cable connections are changed while the power is on, the
screen will no longer be displayed normally.

<When a VGA cable* is connected>
1. The SH4 obtains the cable information from the PIO port. (PB[9:8] = "00")
2. Set the HOLLY synchronization register for VGA. (The SYNC output is H-Sync and V-Sync.)
3. When VREG1 = 0 and VREG0 = 0 are written in the AICA register, VIDEO1 = 0 and VIDEO0 = 1 are

output. VIDEO0 is connected to the DVE-DACH pin, and handles switching between RGB and
NTSC/PAL.

<When an RGB(NTSC/PAL) cable* is connected>
1. The SH4 obtains the cable information from the PIO port. (PB[9:8] = "10")
2. Set the HOLLY synchronization register for NTSC/PAL. (The SYNC output is H-Sync and V-Sync.)
3. When VREG1 = 0 and VREG0 = 0 are written in the AICA register, VIDEO1 = 1 and VIDEO0 = 0 are

output. VIDEO0 is connected to the DVE-DACH pin, and handles switching between RGB and
NTSC/PAL.

- 255 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<When a stereo A/V cable, an S-jack cable* or an RF co nverter* is connected>
1. The SH4 obtains the cable information from the PIO port. (PB[9:8] = "11")
2. Set the HOLLY synchronization register for NTSC/PAL. (The SYNC output is H-Sync and V-Sync.)
3. When VREG1 = 1 and VREG0 = 1 are written in the AICA register, VIDEO1 = 0 and VIDEO0 = 0 are

output. VIDEO0 is connected to the DVE-DACH pin, and handles switching between RGB and
NTSC/PAL.

Among the video modes, the screen modes NTSC/PAL/PALM/PALN that are used in different countries are
set through the DVE's PAL, PALM-H and PALN-H pins on the board. These settings are reflected as is in the
SH4's PIO port (PB[4:2]), and the SH4 selects the screen mode by setting that information in HOLLY.

The following table shows the settings for the target DVE pins for the video modes used in different regions.

DVE pins (SH4_PIO port)
Region Video mode PALN-H

(PB4)
PALM-H

(PB3)
PAL

(PB2)
Japan NTSC 0 0 0
ASIA NTSC
North
America
South Korea
Europe PAL(B,G,D,I) 0 0 1
Brazil PAL-M(525) 0 1 1
Argentina PAL-N 1 0 1

Forced NTSC
interlacing

1 1 0

Forced PAL
interlacing

1 1 1

Table 6-1

*1 Because forced interlacing is set for the DVE, misoperation may result under some HOLLY settings.
*2 Operation is not guaranteed for any combinations of pins settings that are not shown above.

For details concerning SECAM and other video modes, refer to the AV specifications.

- 256 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§7 Debugger

- 257 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Description pending

- 258 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8 Appendix

- 259 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1 Technical Explanations
A supplemental explanation of the technologies that are used in this system is provided in this section.

§8.1.1 Technical Explanation Concerning Audio

§8.1.1.1 Loop Control
The lop data and loop-related addresses are set as shown below.

Fig. 8-1 Data Waveform

The setting for LSA is "0x3" and the setting for LEA is "0xA."
If SA is "0x100," sound memory ("wave memory") is allocated as shown below.

(Little Endian)
When PCMS = 2 (ADPCM) When PCMS = 1 When PCMS = 0
15-12 11-8 7-4 3-0 15-8 7-0 15-0

0x100 D[3] D[2] D[1] D[0] 0x100 D[1] D[0] 0x100 D[0]
0x102 D[7] D[6] D[5] D[4] 0x102 D[3] D[2] 0x102 D[1]
0x104 -- D[A] D[9] D[8] ： ：

0x108 D[9] D[8] 0x112 D[9]
0x10A -- D[A] 0x114 D[A]

Table 8-1 Sound Memory Allocation

Assuming that the sound data is read each time that it is sampled, the reading sequences in each loop
mode are as shown below.

• Loop OFF

D[0]→D[1]→D[2]→・・・・→D[A]

• Loop ON

D[0]→D[1]→D[2]→・・・・→D[A]→D[5]→D[6]→・・・・→D[A]→D[5]→・・・

- 260 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<Notes on loop processing>

• In loop processing, the LSA and LEA data (in the case of ADPCM, the data after decoding) is

p r o c e s s e d b a s e d o n t h e a s s u m p t i o n t h a t t h e v a l u e s (i n t h e c a s e o f A D P C M , t h e d a t a a f t e r
encoding) are the same. If necessary, set the data (before encoding) so that they will be the same
value.

• If the pitch is increased for short loop data (waveform data in which there is only an extremely

small amount of data corresponding to the loop from LSA to LEA), it is possible that the data
corresponding to the loop portion will not be read even once. In this case, loop processing is not

performedcorrectly. In order to permit the processing,and takinginto considerationthe effectsof
FNS, PLFO, etc., on pitch, it may be necessary to set the data so that LEA - LSA ≧ OCT (signed)
+ 2.

<Notes concerning ADPCM long stream processing>

ADPCM references the previous data when it creates the next data.

• Set the lower two bits of LSA and LEA to "00".

• Set PCMS to "0x3".

• Just as with loop processing, set LSA so that the LSA data that is next in the stream is identical to

the LEA data that is current in the stream.

0x0000 ... 0xFFF0 1st Stream

0x0000 ... 0xFFF0 2nd Stream

0x0000 ... 0xFFF0 3rd Stream

0x0000 ... 0xFFF0 ... 0x1FFE0 ... 0x2FFD0 Data Stream

Table 8-2

- 261 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.1.2 ADPCM
The audio IC that is used in the Dreamcast audio system is uses ADPCM (Adaptive Differential Pulse

Code Modulation) for its audio data compression method. The ADPCM system is a data compression
system that prevents a loss of audio quality by encoding the differential between the audio data and the
expected data according to a quantization width that adapts flexibly to changes in the waveform.

Because the ADPCM method stores the difference between the current sample and the data from the
previous sample as the data, playback must begin at "key on" (the data in the start address). In addition,
it is not possible to change the playback method (PCM or noise) or change the data (except during long
sequence) while in the middle of playback.

Encoding Method
In the Dreamcast audio system, 4-bit ADPCM data is expanded into 16-bit PCM data. The encoding

system follows the procedure described below.
(1)
Convert the data to be encoded into 16-bit PCM data for each sampling interval.

Fig. 8-2
(2)
C o m p a r e t h e P C M d a t a a t p o i n t B a n d t h e e x p e c t e d v a l u e a t p o i n t B (X n) , a n d d e t e r m i n e t h e

differential (dn). If the differential is positive, the MSB (L4) of the ADPCM data becomes "0,"
and if the differential is negative, the MSB becomes "1."

Expected va lue a t poin t B (Xn)

PCM data a t poin t B

Different ia l (dn)

Fig. 8-3
(3)
Next, compare the quantization with (∆n) and the absolute value of the differential (absolute value |

dn|), and determine the remaining three bits (L3, L2, and L1) of the ADPCM data at point B from
the ADPCM data correspondence table (Table 8-3).

• Example 1
If the differential (absolute value |dn|) is equal to the quantization with (∆n) × 7/4 (as shown in
Fig. a below), the remaining three bits of the ADPCM data are L3 = 1, L2 = 1, and L1 = 1.

• Example 2
If the differential absolute value |dn| is equal to the quantization with (∆n) × 5/4 (as shown in Fig.
b below), the remaining three bits of the ADPCM data are L3 = 1, L2 = 0, and L1 = 1.

- 262 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Δ n /4

Δ n /2

Δ n/2Δ n

Δ n/2

│ dn │

Δ n /4

Δ n

Δ n/2

│ dn │

Fig. a Fig. b

Fig. 8-4

(4)
After obtaining the ADPCM data for point B, derive the expected value (Xn + 1) and the quantization

width (∆n + 1) for the next point (point C) in order to derive ADPCM data for point C.
• Point C expected value (Xn + 1) = (1 - 2 × L4) × (L3 + L2/2 + L1/4 + 1/8) x quantization width

(∆n) + point B expected value
• Quantization width (∆n + 1) = f (L3, L2, L1) x quantization width (∆n)

∗ "f(L1, L2, L3) is a quantization width change factor from Table 8-4 below. The initial

va lu e fo r t h e ex pe c t ed va lu e i s 0 , t he i n i t i a l v a l ue fo r t he q ua n t i za t i o n w id th i s 1 27 , t h e
m i n i m u m v a l u e f o r t h e q u a n t i z a t i o n w i d t h i s 1 2 7 , a n d t h e m a x i m u m v a l u e f o r t h e
quantization width is 24,576.

(5)
Derive the rest of the ADPCM encoded data by repeating the above procedure.

L4 L3 L2 L1 Conditions
dn≧0 dn≦0

0 1 0 0 0 ｜ dn｜ ＜ △△n /4
0 0 1 n /4 ≦△ ｜ dn｜ ＜ △△n /2
0 1 0 n /2 ≦△ ｜ dn｜ ＜ △△n Ｘ 3/4
0 1 1 n △ Ｘ 3/4 ≦｜ dn｜ ＜ △△n
1 0 0 n≦△ ｜ dn｜ ＜△n Ｘ 5/4
1 0 1 n △ Ｘ 5/4 ≦｜ dn｜ ＜ △△n Ｘ 3/2
1 1 0 n △ Ｘ 3/2 ≦｜ dn｜ ＜ △△n Ｘ 7/4
1 1 1 n △ Ｘ 7/4 ≦｜ dn｜

Table 8-3 ADPCM Data Correspondence Table

L3 L2 L1 f
0 0 0 0.8984375
0 0 1 0.8984375
0 1 0 0.8984375
0 1 1 0.8984375
1 0 0 1.19921875
1 0 1 1.59765625
1 1 0 2.0
1 1 1 2.3984375

Table 8-4 Quantization Width Change Factor

- 263 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Decoding Method

• The decoding method derives the expected value and the quantization width through equations

that are similar to those that are used during encoding. The procedure is described below.

(1) Derive the decoded value (Xn) for point B from the 4-bit ADPCM data, the quantization width
(∆n), and the decoded value for point A (Xn - 1).

ADPCM DATA

L4 L3 L2 L1

Point B decoded value (Xn) = (1 - 2 × L4) × (L3 + L2/2 + L1/4 + 1/8) × quantization width (∆n)
+ point A decoded value

(2) Update the quantization width (∆n + 1) in order to derive the decoded value (Xn + 1) for the
next point (point C).

Quantization width (∆n + 1) = f(L3, L2, L1) × quantization width (∆n)

(3) Decode the rest of the data by repeating the above procedure.

- 264 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.1.3 AEG

• Effective rate and AEG change time

The rate of change in AEG changes according to the key scale value. After determining the effective
rate from the equation shown below, use the table to find the actual change time that corresponds to that
effective rate value.

The change times that are shown in the table below for the attack rate are for a change from -96dB to
0dB, while the other table is for a change from 0dB to -96dB.

Effective rate = (KRS[3:0] + OCT[3:0]) × 2 + FNS[bit 9] + Rate[register setting] × 2

• The ranges for each register are listed below:

KRS[3:0]: 0 to 15; OCT[3:0]: -8 to +7; FNS[9]: 0, 1; Rate [register setting]: 0 to 31

Attack State Decay 1, Decay 2, Release State
Effective

rate
Change time

[ms]
Effective

rate
Change time

[ms]
Effective

rate
Change time

[ms]
Effective

rate
Change time

[ms]
0 ∞ 32 47. 0 ∞ 32 690.
1 ∞ 33 38. 1 ∞ 33 550.
2 8100. 34 31. 2 118200. 34 460.
3 6900. 35 27. 3 101300. 35 390.
4 6000. 36 24. 4 88600. 36 340.
5 4800. 37 19. 5 70900. 37 270.
6 4000. 38 15. 6 59100. 38 230.
7 3400. 39 13. 7 50700. 39 200.
8 3000. 40 12. 8 44300. 40 170.
9 2400. 41 9.4 9 35500. 41 140.
10 2000. 42 7.9 10 29600. 42 110.
11 1700. 43 6.8 11 25300. 43 98.
12 1500. 44 6.0 12 22200. 44 85.
13 1200. 45 4.7 13 17700. 45 68.
14 1000. 46 3.8 14 14800. 46 57.
15 860. 47 3.4 15 12700. 47 49.
16 760. 48 3.0 16 11100. 48 43.
17 600. 49 2.4 17 8900. 49 34.
18 500. 50 2.0 18 7400. 50 28.
19 430. 51 1.8 19 6300. 51 25.
20 380. 52 1.6 20 5500. 52 22.
21 300. 53 1.3 21 4400. 53 18.
22 250. 54 1.1 22 3700. 54 14.
23 220. 55 0.93 23 3200. 55 12.
24 190. 56 0.85 24 2800 56 11.
25 150. 57 0.65 25 2200. 57 8.5
26 130. 58 0.53 26 1800. 58 7.1
27 110. 59 0.44 27 1600. 59 6.1
28 95. 60 0.40 28 1400. 60 5.4
29 76. 61 0.35 29 1100. 61 4.3
30 63. 62 0.0 30 920. 62 3.6
31 55. 63 0.0 31 90. 63 3.1

Change time from -96dB to 0dB Change time from 0dB to -96dB

Table 8-5

- 265 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.1.4 PG

• OCT[3:0] setting

Specify the octave in two's complement format. Values shown in parentheses are one octave higher
in ADPCM.

OCT 8 9 0xA 0xB 0xC 0xD 0xE 0xF 0 1 2 3 4 5 6 7
Interval -8 -7 -6 -5 -4 -3 -2 -1 0 +1 (+2) (+3) (+4) (+5) (+6) (+7)

Table 8-6

• FNS and OCT se t t ings (example for the F number table se t t ing when the C4 note i s sampled at

44.1KHz)
FNS (dec) = 2^10 × (2^(P/1200) - 1)

Note Note
number

Pitch
P[CENT]

FNS[9:0]
(dec)

FNS[9:0]
(hex)

OCT[3:0]
(hex)

B3 59 -100 909.1 0x38D 0xF
C4 60 0 0.0 0 0
C4# 61 100 60.9 0x3D 0
D4 62 200 125.4 0x7D 0
D4# 63 300 193.7 0xC2 0
E4 64 400 266.2 0x10A 0
F4 65 500 342.9 0x157 0
F4# 66 600 424.2 0x1A8 0
G4 67 700 510.3 0x1FE 0
G4# 68 800 601.5 0x25A 0
A4 69 900 698.2 0x2BA 0
A4# 70 1000 800.6 0x321 0
B4 71 1100 909.1 0x38D 0
C5 72 0 0.0 0 1

Table 8-7

- 266 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.1.5 LFO

• LFOF[4:0] oscillation frequencies

0x00 ⇒ 0.17 Hz 0x10 ⇒ 2.87 Hz
0x01 ⇒ 0.19 Hz 0x11 ⇒ 3.31 Hz
0x02 ⇒ 0.23 Hz 0x12 ⇒ 3.92 Hz
0x03 ⇒ 0.27 Hz 0x13 ⇒ 4.79 Hz
0x04 ⇒ 0.34 Hz 0x14 ⇒ 6.15 Hz
0x05 ⇒ 0.39 Hz 0x15 ⇒ 7.18 Hz
0x06 ⇒ 0.45 Hz 0x16 ⇒ 8.6 Hz
0x07 ⇒ 0.55 Hz 0x17 ⇒ 10.8 Hz
0x08 ⇒ 0.68 Hz 0x18 ⇒ 14.4 Hz
0x09 ⇒ 0.78 Hz 0x19 ⇒ 17.2 Hz
0x0A ⇒ 0.92 Hz 0x1A ⇒ 21.5 Hz
0x0B ⇒ 1.10 Hz 0x1B ⇒ 28.7 0x
0x0C ⇒ 1.39 Hz 0x1C ⇒ 43.1 Hz
0x0D ⇒ 1.60 Hz 0x1D ⇒ 57.4 Hz
0x0E ⇒ 1.87 Hz 0x1E ⇒ 86.1 Hz
0x0F ⇒ 2.27 Hz 0x1F ⇒ 172.3 Hz

• ALFO waveform according to ALFOWS[1:0]

• PLFO waveform according to PLFOWS[1:0]

ALFOWS AM modulation (ALFO) PLFOWS PM modulation (PLFO)
Volume ALFO[7:0] Pitch PLFO[7:0]

0 - 0 dB 　 　 0

　 　 0xFF

0 +
0
-

　 　 0x7F
　 　 00
　 　 0x80

1 - 0 dB 　 　 0

　 　 0xFF

1 +
0
-

　 　 0x7F
　 　 00
　 　 0x80

2 - 0 dB 　 　 0

　 　 0xFF

2 +
0
-

　 　 0x7F
　 　 00
　 　 0x80

3 - 0 dB 　 　 0

　 　 0xFF

＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊
＊ ＊ ＊ Noise ＊ ＊ ＊

＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊

3 +
0
-

　 　 0x7F
　 　 00
　 　 0x80

＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊
＊ ＊ ＊ Noise ＊ ＊ ＊

＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊

Table 8-8

- 267 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

• Degree of mixing according to ALFOS[2:0]

• Degree of effect on pitch of PLFOS[2:0]

ALFOS Mixing to EG PLFOS Effect on pitch
0
1
2
3
4
5
6
7

No effect
− 0.4dB displacement
− 0.8dB displacement
− 1.5dB displacement
− 3dB displacement
− 6dB displacement
− 12dB displacement
− 24dB displacement

0
1
2
3
4
5
6
7

No effect
− 3 + 2 CENT displacement
− 7 + 5 CENT displacement
− 14 + 12 CENT displacement
− 27 + 25 CENT displacement
− 55 + 52 CENT displacement
− 112 + 1 0 3 C E N T

displacement
− 231 + 2 0 2 C E N T

displacement

Table 8-9

§8.1.1.6 Mixer
A block diagram of the mixer section is shown below.

Fig. 8-5

- 268 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The correspondence between the register value and the volume is shown below.

TL[7:0]

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
Volume -48dB -24dB -12dB -6dB -3dB -1.5dB -0.8dB -0.4dB

Table 8-10

IMXL[3:0], DISDL[3:0], EFSDL[3:0], MVOL[3:0]

Register value Volume
0 -MAXdB
1 -42dB
2 -39dB
： ：

0xD -6dB
0xE -3dB
0xF 0dB

Table 8-11

DIPAN[4:0], EFPAN[4:0]

Register value L R
0 0dB 0dB
1 -3dB 0dB
2 -6dB 0dB
： ： ：

0xD -39dB 0dB
0xE -42dB 0dB
0xF -MAXdB 0dB
0x10 0dB 0dB
0x11 0dB -3dB
0x12 0dB -6dB
： ： ：

0x1D 0dB -39dB
0x1E 0dB -42dB
0x1F 0dB -MAXdB

Table 8-12

Correspondence between the slot that should be set in EFSDL and EFPAN and the effect source

Slot Output mixer source data
0～ 0xF EFREG[0]～ EFREG[15]
0x10 EXTS[0]: Digital audio 1L
0x11 EXTS[0]: Digital audio 1R

Table 8-13

- 269 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.1.7 FEG
(Time variation filter)

Using the IIR filter, it is possible to direct sound on each channel through an LPF.
Using a dedicated EG, time variation for the LPF cutoff frequency becomes possible.
The LPF permits setting of a fixed (time does not vary) Q (resonance) for each channel.
For details on "Q," refer to section 8.4.5, "AICA Registers."

• Effective rate and FEG change time

Effective rate = (KRS[3:0] + OCT[3:0]) × 2 + FNS[9] + (Rate[register setting]) × 2
(KRS[3:0]: +0 to +0xF; OCT[3:0]: -8 to +7; FNS[9]: +0, +1; Rate [register setting]: +0 to +0x1F)

Effective rate Change time
[ms]

Effective rate Change time
[ms]]

0 ∞ 32 2760.
1 ∞ 33 2200.
2 472800. 34 1840.
3 405200. 35 1560.
4 354400. 36 1360.
5 283600. 37 1080.
6 236400. 38 920.
7 202800. 39 800.
8 177200. 40 680.
9 142000. 41 560.
10 118400. 42 440.
11 101200. 43 392.
12 88800. 44 340.
13 70800. 45 272.
14 59200 46 228.
15 50800. 47 196.
16 44400. 48 172.
17 35600. 49 34.
18 29600. 50 136.
19 25200. 51 100.
20 22000. 52 88.
21 17600. 53 72.
22 14800. 54 56.
23 12800. 55 48.
24 11200. 56 44.
25 8800. 57 34.
26 7200. 58 28.
27 6400. 59 24.
28 5600. 60 22.
29 4400. 61 17.
30 3680. 62 14.
31 3160. 63 12.

Change Time from 0x0008 to 0x1FF8

Table 8-14

- 270 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.1.8 Audio DSP

- 271 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Fig. 8-6 DSP Configuration
Based on the block diagram shown on the previous page, each block that comprises the DSP is

described below.

RBL[1:0] (W): Specifies the length of the ring buffer.
0：8K words
1：16K words
2：32K words
3：64K words

RBP[22:11](W) : Specifies the starting address of the ring buffer (at a 4K word boundary).

(Generation of the modulation waveforms used in the DSP)

There are three means for generating the modulation wave signals that are used by the DSP:
1． The CPU writes the modulation wave into the DSP's memory (COEF).
2． Store the modulation wave data in wave memory ("sound memory," in the diagram), lower

the pitch, and use the data buffered in MIXS as the modulation wave.
3． The CPU writes the modulation wave into the DSP's internal buffer (MEMS).

・ Option 1 offers 13-bit precision and adds to the load on the CPU, but permits the creation
of any waveform that is desired.

・ Option 2 offers 16-bit precision, and permits the amplitude and pitch to be changed through
the EG and LFO. (However, if SDIR = 1, then EG = 0x000, ALFOS = 0x0, and TL =
0x00; however, the precision increases to the equivalent of 20-bit precision.)

・ Option 3 offers 24-bit precision and adds to the load on the CPU, but permits the creation
of any waveform that is desired.

(DSP's internal RAM)

MIXS[19:0] (R/W): Sound data buffer from the input mixture (number of data items: 16)
 (Note) Writing to MIXS[19:0] is used for LSI testing purposes.

Writes that are not performed in test mode are invalid for the following reasons:
・ Regardless of the register settings, only data written from the sound source is valid.
・ Second-generation data is retained for the purpose of integrating all of the slots, but it is not

possible to specify the generation when accessing this buffer.

EXTS[15:0] (R): Digital audio input data buffer (number of data items: 2)

MEMS[23:0] (R/W) : Wave memory input data buffer (number of data items: 32)
(Actual writes to MEMS[7:0] are executed simultaneously with writes to MEMS[23:16].)

Only one of the above three buffers can be selected by the DSP program as the input data INPUTS.
Differences in bit length are handled by shifting the data left.

All three of the above buffers permit access from the CPU; the access timing is described below.
(Timing: T0 & T1, T2 & T3, ... are equivalent to one step for the DSP.)

T0 T1 T2 T3 T4 T5 T6 T7

MIXS DSPR **IMXRD** DSPR DMSP DSPR **IMXWT** DSPR DMSP

EXTS DSPR DMSP DSPR DMSP DSPR DMSP DSPR DMSP

MEMS DSPR DMSP DSPR DMSP/DSPW DSPR DMSP DSPR DMSP/DSPW
DMSP: Read/Write by DMA, SH4: ARM DSPR: Read by DSP DSPW: Write by DSP
IMXRD: Read MIXS. IMXWT: Write to MIXS.
(Note) The access request to MIXS by the DMSP in T1 and T5 is delayed.
(Note) Because T2 & T3 and T6 & T7 represent the sound memory read timing for PCM sound data, DSP

access is not possible. Therefore, wave memory access requests must be coded on odd-numbered steps
(line 2, line 4, line 6, etc.).

Table 8-15

- 272 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TEMP[23:0] (R/W) : DSP work buffer (number of data items: 128)
This has a ring buffer configuration; the pointer is decremented by "1" for each sample.

COEF[12:0] (R/W) : DSP coefficient buffer (number of data items: 128)
(Note) In order to maintain compatibility in the future if the data width is expanded to 16 bits,

write zeroes to the lower three bits that are undefined in the register map.

MADRS[16:1](R/W) : DSP address buffer (number of data items: 64)

MPRO[63:0] (R/W) : DSP microprogram buffer (number of data items: 128)

EFREG[15:0] (R/W) : DSP output buffer (number of data items: 16)

All five of the above buffers permit access from the CPU; the access timing is described below.
(Timing: T0 & T1, T2 & T3, ... are equivalent to one step for the DSP.)

T0 T1 T2 T3 T4 T5 T6 T7

TEMP DSPR DMSP/DSPW DSPR DMSP/DSPW DSPR DMSP/DSPW DSPR DMSP/DSPW

COEF DSPR DMSP DSPR DMSP DSPR DMSP DSPR DMSP

MADRS DSPR DMSP DSPR DMSP DSPR DMSP DSPR DMSP

MPRO DSPR DMSP DSPR DMSP DSPR DMSP DSPR DMSP

EFREG MIXR DMSP/DSPW ---- DMSP/DSPW ---- DMSP/DSPW ---- DMSP/DSPW
MIXR: Read by Output MIXTER.

Table 8-16

An overview of the DSP program (total: 55 bits) is provided below.

MASA[5:0]： Specifies the MADRS read address.

IWA[4:0] : Specifies the write address for the input data (INPUTS).

IWT: DSP input data write request.

IRA[5:0] : Specifies the read address for the input data (INPUTS).

INPUTS Map (Addresses are DSP Program Addresses)
Address (hex) Contents of INPUTS

0x00~0x1F MEMS
0x20~0x2F MIXS

0x30 EXTS0(L)
0x31 EXTS0(R)

0x32~0x37 Future expansion
(cannot be set)

0x38~0x3F Undefined (cannot be set)

Table 8-17

TWA[6:0] : Specifies the TEMP write address.

TWT: TEMP input data write request.

TRA[6:0] : Specifies the TEMP read address.

EWA[3:0] : Specifies the output EFREG address.

EWT: Request to write output data to EFREG.

BSEL : 0 = TEMP data select; 1 = accumulator select

- 273 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

ZERO : 1 = Assume the adder input as "0."

NEGB : 0 = addition; 1 = subtraction

YRL : Latches INPUTS[23:4].
(The latched data can be used starting in the next step.)

YSEL0 : Multiplier Y input select 0

YSEL1 : Multiplier Y input select 1

YSEL1 YSEL0 Selected input
0
0
1
1

0
1
0
1

FRC_REG
COEF
Y_REG[23:11]
"0" | Y_REG[15:4] (MSB is "0")

Table 8-18

XSEL : Multiplier X input select
0= TEMP data select
1 = INPUTS data select

MRD : Wave memory read request (Request is allowed only in odd steps.)

MWT : Write request to wave memory (Request is allowed only in odd steps.)
(Note) Memory access-related flags (MRD, MWT, NOFL, TABLE, NXADR, ADREB, and

MASA[4:0]) may only exist in odd steps (line 2, 4, 6, etc.) of the microprogram.

NOFL :1 = Do not perform a floating conversion for wave memory access.
Set to "1" when storing linear format data in wave memory.

TABLE : 1 = Gate the output of the decrement counter (MDEC_CT), and make the output "0."
This can be used when the wave memory is being used for a purpose other than as a ring buffer
(for example, a filter coefficient table, etc.). In this case, the ring buffer size restriction based on
RBL does not apply.
MDEC_CT is decremented by one for each sample; when its value reaches "0," a value that
corresponds with the loop length specified by RBL is loaded into MDEC_CT.

NXADR: Increments the memory address by one.
NXADR is used in primary interpolation mode in order to interpolate adjacent values.

ADREB: 0 = Gate the output of the address register (ADRS_REG), and make the output "0."
This is used when writing data to a ring buffer, etc.

SHFT0 : Shifter control 0

SHFT1: Shifter control 1

SHFT1 SHFT0 Shift amount In event of an overflow
0
0
1
1

0
1
0
1

×1
×2
×2
×1

Protected
Protected
Not protected
Not protected

Table 8-19

FRCL: Memory address decimal latch (used in interpolation mode)

ADRL: Memory address integer latch
The data that is selected by F_SEL and A_SEL in interpolation mode (SHFT1 = SHFT0 = 1) and non-
interpolation mode (SHFT1 ≠ 1 and SHFT0 ≠ 1), respectively, is shown below.

F_SEL A_SEL
Register
output

Non-interpolation
mode

Interpolation
mode

Register
output

Non-interpolation
mode

Interpolation
mode

- 274 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FRC_REG12 SFTREG23 ‘0’ ADRS_REG11 INPUTS23 SFTREG23
FRC_REG11 SFTREG22 SFTREG11 ADRS_REG10 INPUTS23 SFTREG22
FRC_REG10 SFTREG21 SFTREG10 ADRS_REG9 INPUTS23 SFTREG21
FRC_REG9 SFTREG20 SFTREG9 ADRS_REG8 INPUTS23 SFTREG20
FRC_REG8 SFTREG19 SFTREG8 ADRS_REG7 INPUTS23 SFTREG19
FRC_REG7 SFTREG18 SFTREG7 ADRS_REG6 INPUTS22 SFTREG18
FRC_REG6 SFTREG17 SFTREG6 ADRS_REG5 INPUTS21 SFTREG17
FRC_REG5 SFTREG16 SFTREG5 ADRS_REG4 INPUTS20 SFTREG16
FRC_REG4 SFTREG15 SFTREG4 ADRS_REG3 INPUTS19 SFTREG15
FRC_REG3 SFTREG14 SFTREG3 ADRS_REG2 INPUTS18 SFTREG14
FRC_REG2 SFTREG13 SFTREG2 ADRS_REG1 INPUTS17 SFTREG13
FRC_REG1 SFTREG12 SFTREG1 ADRS_REG0 INPUTS16 SFTREG12
FRC_REG0 SFTREG11 SFTREG0

* Interpolation mode is used when high-precision processing is required, such as when changing the pitch.

Table 8-20

Example of how to implement a ring buffer and a filter table in a DSP

DSP access space (64K word maximum)
Size of ring buffer determined by RBL

Delay data 1 Delay data 2 Filter coefficient
table area

0 △　 　 　 　 　△
WA1　 　 　 RA1

△　 　 　 　 　△
WA2　 　 　 RA2

MAX

▲
RBP

Fig. 8-7 DSP Access Space

• WA1 is the write address for delay data 1, when ADREB = 0.

• RA1 is the read address for delay data 1; when ADREB = 0, a delay of fixed duration is obtained,

and when ADREB = 1, the data that accompanied the delay time change equivalent to the change
in ADRS_REG is obtained.

• WA2 and RA2 apply to delay data 2, and must reside apart from delay data 1. Especially when

conductinga memory read withADREB = 1, both must be kept apart,givingdue considerationto
the amount of change in the address.

• The ring buffer area is accessed with TABLE = 0.

In this case, if the relative access address (MADRS[16:1] + ADRS_REG[16:1] (+1)) exceeds the
size of the ring buffer, the relative address wraps around to "0." (However, given that the size of the
ring buffer is subject to change, using the ring buffer without the wraparound feature is
recommended.)
(Supplement) In this case, the actual access address is expressed below:
Access address: MADRS[16:1] + ADRS_REG[16:1] + MDEC_CT[16:1] (+1)

• The filter coefficient table area is accessed with TABLE = 1.

In this case, even if the relative access address (MADRS[16:1] + ADRS_REG[16:1] (+1)) exceeds
the size of the ring buffer, the relative address does not wrap around. (However, the maximum size
is 64K words.)

- 275 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.2 Reset Sequence
The reset sequences for the Dreamcast System are illustrated in the following charts.

100msec
SH4,CD,AICA,EXT,
MODEM,DVE reset

TA reset

PVR Core reset

SystemBus reset
16clock(100MHz) + PLL_stability_time

3.3V

Holly reset
300msec(min)

Power on Reset

(GRESN pin)

(SYSRESN pin)

SDRAM I/F reset

negate TA, PVR,SDRAM Reset by SH4_software

Fig. 8-8 Reset Sequence (Power On Reset)

* SYSRESN and GRESN in the above chart are both pins on the HOLLY IC, which is the graphics system core.

- 276 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

100msec

16clock(100MHz)

System Reset by SH4_software

Software System Reset

Software TA Reset

Software PVR Reset

TA reset

PVR Core reset

SystemBus reset

3.3V

Holly reset

TA reset

PVR Core reset

SystemBus reset

3.3V

Holly reset

TA reset

PVR Core reset

SystemBus reset

3.3V

Holly reset

SH4,CD,AICA,EXT,
MODEM,DVE reset

SH4,CD,AICA,EXT,
MODEM,DVE reset

SH4,CD,AICA,EXT,
MODEM,DVE reset

SDRAM I/F reset

SDRAM I/F reset

SDRAM I/F reset

Software SDRAM I/F Reset

TA reset

PVR Core reset

SystemBus reset

3.3V

Holly reset

SH4,CD,AICA,EXT,
MODEM,DVE reset

SDRAM I/F reset

(SYSRESN pin)

(GRESN pin)

(SYSRESN pin)

(GRESN pin)

(SYSRESN pin)

(GRESN pin)

(SYSRESN pin)

(GRESN pin)

negate TA,PVR,SDRAM Reset by SH4_software

TA Reset by SH4_software negate TA Reset by SH4_software

PVR Reset by SH4_software negate PVR Reset by SH4_software

SDRAM I/F Reset by SH4_software negate SDRAM I/F Reset by SH4_software

Fig. 8-9 Reset Sequence （Software Reset）

- 277 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The Dreamcast System has two reset sequences: power-on reset (Fig. 8-8) and software reset (Fig. 8-9).
Each is explained below.

• Power-On-Reset

(1) Because each reset signal is cleared when the system power is turned on, each block and device
remains in the reset state. While the SH4 is in the reset state, a 33MHz clock signal is input to the
SH4 from an external PLL. In response to this signal, the SH4's internal PLL outputs a 100MHz
clock signal to the HOLLY chip.

(2) Once an interval of about 300msec elapses after the power signal rises after power-on, the Reset IC
releases the reset state for the Holly graphics/peripheral core. (Pin: SYSRESN "L" -→ "H")

(3) Once the HOLLY's reset state is released in step 2, then after the stabilization time for the HOLLY's
internal PLL elapses and the PLL generates 16 100MHz clock pulses, the reset state for the HOLLY's
internal "system bus" is released (followed by the interfaces, including the SH4 interface, the PVR
interface, the G1 interface, etc.).

(4) Approximately 100msec later, Reset Control in the System Bus Block releases the reset state for
various system devices: the SH4, the SDRAM system memory, the GD-ROM, devices on the G2 Bus
such as the AICA audio IC, and the Digital Video Encoder (video output). (Pin: GRESN "L" → "H")

(5) Once the reset state for the SH4 (the CPU) is released, the SH4 releases the reset state for the TA
(Tile Accelerator), the PVR core, and the SDRAM interface in the HOLLY chip by setting their
respective reset bits.

• Software-Reset

(1) The SH4 (the CPU) can apply a reset to the entire system through software. The reset is initiated for
HOLLY's internal "system bus" (followed by the interfaces, including the SH4 interface, the PVR
interface, the G1 interface, etc.) by accessing HOLLY's SB_SFRES (0x005F6890).

(2) Once a reset has been applied to the System Bus and all devices in the system are in the reset state,
then after the HOLLY's internal PLL generates 16 100MHz clock pulses, the reset state that was
established in step 1 is released.

(3) After the System Bus reset state has been released, the reset state for various devices such as the SH4
and the GD-ROM is released during a period of approximately 100msec, as described in step 4 of the
power-on reset sequence. Then, the software releases the reset state for the PVR core, the TA and the
SDRAM interface in the HOLLY chip.

(4) The SH4 can also initiate and release the reset state for the PVR core, the TA and the SDRAM
interface in the HOLLY chip individually by setting their respective Reset bits.

Fig. 8-10 is a relational diagram between the reset signals and the clock, and Fig. 8-11 shows the
hardware reset system.

- 278 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

System Reset by SH4_software

3.3V

Holly Reset input

300msec(min)

Power on Reset

Software System Reset

Rev.0.92 16,Nov,1997 Hosokawa Osamu

SH4 33MHz input

SH4 100MHz output

Holly internal 100MHz

EXTAL pin

CKIO pin

SYSRESN pin

internal PLL

Holly internal Reset

G2 25MHz output

Holly internal 50MHz

Holly Reset output GRESN pin

GCLK pin

Stable oscillation

Stable oscillation

Stable oscillation

16clock(100MHz)

Stable oscillation

100msec

3.3V

Holly Reset input

SH4 33MHz input

SH4 100MHz output

Holly internal 100MHz

EXTAL pin

CKIO pin

SYSRESN pin

internal PLL

Holly internal Reset

G2 25MHz output

Holly internal 50MHz

Holly Reset output GRESN pin

GCLK pin

(Stable oscillation)

16clock(100MHz)

100msec

Stable oscillation

Stable oscillation

(Stable oscillation)

Stable oscillation

(Stable oscillation)

(Stable oscillation)

Fig. 8-10 Relational Diagram between the Reset Signals and the Clock

- 279 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Reset IC

TA

PVR
I/F

Maple
I/F

G1
I/F

G2
I/F

SH4
I/F

DDT
I/F

SB
Reset
control

PVR
CORE

PVR Block

SDRAM

SDRAM

SDRAM

SDRAM

MODEMGD-ROM

Digital
VIDEO

Encoder

ADAC

PVR
Reset
control

AICA

SDRAM

Ext

SH4

SDRAM

SDRAM

SDRAM

SDRAM

*exist Software System Reset bit

*exist Software TA Reset bit
*exist Software PVR Core Reset bit
*exist Software SDRAM I/F Reset bit

SYSRESN pin

GRESN pin

Holly

SystemBUS Block

SDRAM
I/F

FLASH
MEMORY

- 280 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Fig. 8-11 Reset System Diagram

- 281 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.3 Clock

§8.1.3.1 PLL

§8.1.3.2 Clock Tree
Fig. 8-12 on the next page shows the clock tree for the Dreamcast System.

- 282 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

33.87M

PLL

27/54M

100M

13.5M
Xtal

S H4
C O R E

BS C
(Bus

C ontroller)

P LL
*6

PLL

*3

200M

100M

SH4

33.33M

1
0
0
M

T A

P V R
I/F

Maple
I/F

G1
I/F

G2
I/F

S H4
I/F

DDT
I/F

P LL

*1
1/2

P V R
C O R E

1
0
0
M

5
0
M

Holly

SDRAM

SDRAM

SDRAM

SDRAM
100M

1
0
0
M

MODEM

Ext

CD

Digital
Encoder

54M

OSC

1/2

Xtal
32K

AICA

C O R E
Bus

Controller

1/X

P LL
*2/3

R T C

22.58M

SDRAM

SDRAM

SDRAM

SDRAM

SDRAM
P LL
*2

67.74M

ADAC
11.29M

1/2

25M

AICA

56M

細 川 修 　 Ｒ ｅ ｖ ． １ ． ０ ０ 　 １ ９ ９ ７ 年 ８ 月 ９ 日
Fig. 8-12 System Clock Tree

- 283 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.1.4 JTAG Interface

§8.1.4.1 SH4

§8.1.4.2 HOLLY

§8.1.4.3 AICA

§8.2 Individual Block Diagrams

§8.2.1 Detailed Block Diagram of Entire System

§8.2.2 CPU Subsystem (Including System Memory)

§8.2.3 HOLLY Subsystem

§8.2.4 GD-ROM Subsystem

§8.2.5 AICA Subsystem

§8.2.6 Digital Video Encoder Subsystem

§8.2.7 16Mbit SDRAM (16bit)

§8.2.8 64Mbit SGRAM (32bit)

§8.2.9 Power Supply

§8.3 Pin Assignments (with Descriptions of Pins) Pin Assignments for Each
Chip

§8.3.1 CPU

§8.3.2 HOLLY

§8.3.3 GD-ROM

§8.3.4 AICA

§8.3.5 Digital Video Encoder

§8.3.6 16Mbit SDRAM (16bit)

§8.3.7 64Mbit SGRAM (32bit)

- 284 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4 List of Registers
A list of the registers in this system is shown below. "[R]" in the tables is an abbreviation for "Reserved."

For unused bits in each register, specify "0" when writing to the register. When reading the register, an
undefined value ("X") is returned.

Note that the register addresses that are given are the SH4's external (physical) memory addresses; in actual
accesses, these addresses change according to the cache.

§8.4.1 System Bus Register
The System Bus-related registers are divided into groups as shown below.
Writing to registers not shown in this list is prohibited. If such a register is read, an undefined value "X"

is returned.

(System Registers... DMA 、 DDT 、 Interrupts 、 System Controller)
• ch2-DMA control registers

• Sort-DMA control registers

• DDT I/F block control registers

• System control registers

• Interrupt control registers

• DMA hard trigger control registers

(Maple Peripheral Interface... GamePad etc ．)
• Maple-DMA control registers

• Maple I/F Block Control Registers

• Maple-DMA secret/debug register

• Maple I/F Block hardware control registers

(G1 Interface... GD-ROM 、 System-ROM 、 Flash-ROM etc ．)
• GD-DMA control registers

• GD-DMA secret/debug register

• G1 I/F block hardware control registers

(G2 Interface... AICA 、 External Devices 、 Development Tools etc.)
• G2-DMA control registers (Including AICA-DMA,Ext-DMA1,Ext-DMA2,Dev-DMA)

• G2-DMA secret register

• G2-DMA debug registers (Including AICA-DMA,Ext-DMA1,Ext-DMA2,Dev-DMA)

• G2 I/F block hardware control registers

(PowerVR Interface... PowerVR Core)
• PVR-DMA control registers

• PVR-DMA secret/debug register

• PVR I/F block hardware test register

- 285 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4.1.1 System Registers

(The ch2-DMA Control Registers are described below.)

SB_C2DSTAT Address：0x005F 6800
bit 31-26 25-5 4-0
000100 ch2-DMA Texture Memory start address Reserved

This register specifies the ch2-DMA destination address for transfers to the TA FIFO buffer.

<Addresses that can be specified>

0x10000000 ~ 0x107FFFE0 : TA FIFO - Polygon Path (8MB)
0x10800000 ~ 0x10FFFFE0 : TA FIFO - YUV Converter Path (8MB)
0x11000000 ~ 0x11FFFFE0 : TA FIFO - Direct Texture Path (16MB)
(When Direct Texture Path is specified, the value in this register is incremented automatically
while DMA is being executed.)

The following are the mages for the above areas:
0x12000000 ~ 0x127FFFE0 : TA FIFO - Polygon Path (8MB)
0x12800000 ~ 0x12FFFFE0 : TA FIFO - YUV Converter Path (8MB)
0x13000000 ~ 0x13FFFFE0 : TA FIFO - Direct Texture Path (16MB)
(When Direct Texture Path is specified, the value in this register is incremented automatically
while DMA is being executed.)

Notes:
• This register is not initialized after a power-on reset or a software reset.
• If 0x0000 0000 is specified for an address, 0x1000 0000 is accessed.
• Because the hardware uses this register directly, overwriting this register while DMA is being

executed is prohibited. (The register may be read.)
• When Direct Texture Path is specified, the value in this register is incremented in accordance with

DMA execution.
• When transferring data to the texture memory via the TA FIFO buffer and Direct Texture Path,

either 64-bit access or 32-bit access can be specified by setting the SB_LMMODE0 and 1 registers.
• When using the Polygon Path and the YUV Converter path for the TA FIFO buffer, the value

specified in this register is maintained.

SB_C2DLEN Address：0x005F 6804
bit 31-24 23-5 4-0

Reserved ch2-DMA transfer length Reserved

This register specifies the ch2-DMA length for transfers to TA FIFO.

Setting (32 bits) Length
0x0000 0020 32 bytes
0x0000 0040 64 bytes

……… ………
0x00FF FFE0 16M bytes－32 bytes
0x0000 0000 16M bytes (default)

Notes:
• This register is not initialized after a power-on reset or a software reset.
• Because the hardware uses this register directly, overwriting this register while DMA is being

executed is prohibited. (The register may be read.)
• The value in this register is decremented during DMA execution.

SB_C2DST Address：0x005F 6808
bit 31-1 0

Reserved start/status

- 286 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

This register initiates ch2-DMA. When read, this register returns the ch2-DMA transfer status.
ch2-DMA can be initiated by writing this register. The ch2-DMA status can be checked by reading

this register. If DMA terminates, this bit is automatically cleared to "0".

When writing When reading
Setting Meaning Setting Meaning

0 ch2-DMA stop (default) 0 ch2-DMA not in progress.
(default)

1 ch2-DMA start 1 ch2-DMA in progress.

- 287 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The Sort-DMA Control Registers are described below.)

SB_SDSTAW Address：0x005F 6810
bit 31-27 26-5 4-0
00001 Sort-DMA Start Link Address Table Start Address Reserved

This register specifies the start address of the Sort-DMA start link address table in system memory.

Notes:
• This register is not initialized after a power-on reset or a software reset.
• Because the hardware uses this register directly, overwriting this register while DMA is being

executed is prohibited. (The register may be read.)
• The value in this register is incremented automatically during DMA execution.
• Note that if 0x0000 0000 is specified in this register, it is handled as 0x0800 0000.

SB_SDBAAW Address：0x005F 6814
bit 31-27 26-5 4-0
00001 Sort-DMA Link Base Address Reserved

This register specifies the Sort-DMA link base address in system memory.

Notes:
• This register is not initialized after a power-on reset or a software reset.
• Because the hardware uses this register directly, overwriting this register while DMA is being

executed is prohibited. (The register may be read.)
• The hardware does not change the data in this register.
• Note that if 0x0000 0000 is specified in this register, it is handled as 0x0800 0000.

SB_SDWLT Address：0x005F 6818
bit 31-1 0

Reserved number of bits
This register specifies the bit width of the link address that is stored in the Sort-DMA start link

address table. A setting of "0" indicates a width of 16 bits; a setting of "1" indicates a width of 32 bits.

Notes:
• This register is not initialized after a power-on reset or a software reset.
• Because the hardware uses this register directly, overwriting this register while DMA is being

executed is prohibited. (The register may be read.)
• The hardware does not change the data in this register.

- 288 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_SDLAS Address：0x005F 681C
bit 31-1 0

Reserved shift control

This register controls shifting of the Sort-DMA link address. This register is not initialized after a
reset.

Setting Meaning
0 Referenced address = SB_SDBAAW + Link address
1 Referenced address = SB_SDBAAW + Link address *32

(The CPU must specify a value that is the link address divided by 32.)

Notes:
• This register is not initialized after a power-on reset or a software reset.
• Because the hardware uses this register directly, overwriting this register while DMA is being

executed is prohibited. (The register may be read.)
• The hardware does not change the data in this register.

SB_SDST Address：0x005F 6820
bit 31-1 0

Reserved start /status

This register controls the start of Sort-DMA. When read, this register returns the DMA transfer
status.

When writing When reading
Setting Meaning Setting Meaning

0 Sort-DMA stop (default) 0 Sort-DMA not in progress.
(default)

1 Sort-DMA start 1 Sort-DMA in progress.

Notes:
• If Sort-DMA is interrupted, it is not possible to resume from where the transfer was halted; instead,

it is necessary to start over, beginning with the setting of the Sort-DMA registers.

- 289 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The DDT I/F Block Control & System Control Register is described below.)

SB_DBREQM Address：0x005F 6840
bit 31-1 0

Reserved mask control

This register controls the masking of the output of the DBREQ# signal to the SH4.

Setting Meaning
0 Not masked. (default)
1 Masked

• When the signal is masked, a fairly long wait occurs in DMA transfers that use ch0-DDT. This
wait could trigger a Maple-DMA timeout error.

SB_BAVLWC Address：0x005F 6844
bit 31-5 4-0

Reserved BAVL# wait
count value

This register specifies the ch0-DDT priority, and specifies the maximum wait for the BAVL# signal
to be asserted by the SH4 in units of clock pulses. If the BAVL# signal is not asserted even though the
specified number of clock pulses have elapsed, the DDT controller outputs the DBREQ# signal to
request that the BAVL# signal be asserted.

Reducing this setting speeds up ch0-DDT, but has an adverse effect on the efficiency of ch2-DMA
and SH4 external accesses.

Setting values Meaning
0x01 1 clock: ch0-DDT wait time is short.
0x02 2clock

: 　　　 :
0x1F 31clock
0x00 32 clocks: ch0-DDT wait time is long. (default)

Notes
• The above default value assigns the lowest priority to DDT. In other words, SH4 or

polygon/texture data transfers have higher priority.

- 290 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_C2DPRYC Address：0x005F 6848
bit 31-4 3-0

Reserved DMA(TA/RootBus)
priority count

This specifies the number of times transfer requests from ch2-DMA or Sort-DMA to the Tile
Accelerator should be accepted with priority ahead of transfer requests from the Root Bus (DDT
interface).

Setting Meaning
0x1 TA: Root Bus = 1:1

...Waiting time for ch2-DMA or Sort-DMA is long.
0x2 TA: RootBus=2:1

: :
0xF TA: RootBus=15:1
0x0 TA:RootBus=16:1

...Waiting time for ch2-DMA or Sort-DMA is short. (default)

Notes:
• The above default value assigns the lowest priority to DDT from the Root Bus (except for Sort-

DMA). In other words, SH4 or polygon/texture data transfers have higher priority.

SB_C2DMAXL Address：0x005F 684C
bit 31-2 1-0

Reserved ch2-DMA Maximum
burst length

This register specifies the maximum burst length for ch2-DMA. (The maximum burst length setting
is needed in order to prevent ch2-DMA from continually occupying the bus, causing long waits for ch0-
DDT and SH4 external accesses.)

Setting Meaning
1 128 bytes: CPU wait time is short. (default)
2 256Byte
3 (Setting prohibited)
0 1024 bytes: CPU wait time is long.

Notes
• Never write to this register while ch2-DMA is in progress (when SB_C2DST is 0x00000001).
• Because the DDT controller always samples the free space in the TA FIFO while conducting a

transfer, a burst can be ended because the FIFO is full, even if the set value has not been reached.
The benefits of the setting manifest themselves the most in direct texture transfer.

• When there is free space in the TA FIFO, ch2-DMA is performed using this maximum value for its
burst length. For example, if ch2-DMA is being used to transfer 1024 bytes of texture data into
texture memory, and the length set by this register is "1," the data is transferred 128 bytes at a time.

• If there is no free space in the TA FIFO, the DMA waits until free space develops. (DMA is
interrupted.)

• The default value indicated above gives the CPU the highest priority. If the setting is increased,
ch2-DMA becomes faster, but ch0-DDT and SH4 external access become slower.

• The range of settings for this register is from 0x0 to 0x2; do not set 0x3.

- 291 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_TFREM (Read Only) Address：0x005F 6880
bit 31-3 3-0

Reserved TA FIFO remain

This register returns the remaining free space in the Tile Accelerator's FIFO buffer, in units of 32
bytes.

Setting Remaining free space
0x0 0 byte
0x1 32 bytes
…… ………
0x7 224 bytes
0x8 256 bytes

Note:
• This register is not initialized after a power-on reset or a software reset.

SB_LMMODE0 Address：0x005F 6884
bit 31-1 0

Reserved bus select-0

This register determines the data size when writing to the area from 0x1100 0000 to 0x11FF FFFF in
texture memory via the TA FIFO buffer - Direct Texture Path.

Setting Meaning
0 64 bit (default)
1 32 bit

SB_LMMODE1 Address：0x005F 6888
bit 31-1 0

Reserved bus select-1

This register determines the data size when writing to the area from 0x1300 0000 to 0x13FF FFFF in
texture memory via the TA FIFO buffer. The meanings of the settings are the same as for
SB_LMMODE0. (The default is also the same.)

Note:
• The area from 0x1300 0000 to 0x13FF FFFF is the image area for 0x1100 0000 to 0x11FF FFFF

in texture memory.

- 292 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_FFST (Read Only) Address：0x005F 688C
bit 31-6 5-0

Reserved FIFO Status

This register indicates the FIFO status. If one of the bits shown below is read and returns a "0," the
corresponding FIFO is empty; if the bit returns a "1," the corresponding FIFO is not empty.

bit 5 = SH4 i/f FIFO
bit 4 = G2 i/f FIFO（CPU write FIFO）
bit 3 = Ext dev. transfer request input
bit 2 = Ext2 transfer request input
bit 1 = Ext1 transfer request input
bit 0 = AICA transfer request input (connected to the AICA chip's FIFO empty pin)

Note
• This register is not initialized after a power-on reset or a software reset.

SB_SFRES (Write Only) Address：0x005F 6890
bit 31-16 15-0

Reserved Software Reset (Code : 0x7611)

This register is used to reset the entire system. A system software reset is initiated by writing
"0x00007611" to this register.

Notes:
• If a value other than 0x0000 7611 is written to this register, it is ignored.
• Because this register resets the entire system, including external devices, it should be used with

caution.

SB_SBREV (Read Only) Address：0x005F 689C
bit 31-8 7-0

Reserved SB Revision Number

This register indicates the revision number of the system bus block. For details on the register value,
refer to section 1.4.

SB_RBSPLT Address：0x005F 68A0
bit 31 30-0

SH4 RootBus
Split enable

Reserved

SH4 Root Bus Split enable
“0” : Single Write Burst (Default)
“1” : Single Write Split

- 293 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The Interrupt Control Registers are described below.)

SB_ISTNRM Address：0x005F 6900
bit 31 30 29-22 21-0

Error
status

G1,G2,Ext
status

Reserved Normal interrupt clear/status

This register returns the interrupt status of the CORE, the System Bus, G1, G2 devices, etc. If a "1"
is read in any bit, that indicates that the corresponding interrupt is being generated. In addition, an
interrupt can be cleared by writing "1" to the corresponding bit, from bit 21 to bit 0. Bits 31 and 30 are
read-only bits; those interrupts cannot be cleared by writing a "1" to those bits. This depends on the
HOLLY version; in HOLLY2, bit 21 is added.

bit 31 = Error interrupt ‘OR’ status
This bit is set to "1" when any of the following error interrupts are being generated (default = 0):

RENDER ISP out of cache, RENDER Rendering aborted by FRAME change, etc. (default = 0; refer
to the SB_ISTEXT register)

bit 30 = G1,G2,External interrupt ‘OR’ status
This bit is set to "1" when any external interrupt (for the CD-ROM, AICA, modem, or external

device) is being generated. (default = 0)
- Error interrupt: (Bit0)ISP out of Cache, (bit1) Hazard Processing of Strip Buffer (refer to

the SB_ISTERR register)

Normal interrupt clear/status
If a "1" is read in any of the following bits, that indicates that the corresponding normal interrupt

is being generated. (default = 0x000000) In addition, these interrupts can be cleared by writing "1"
to the corresponding bit.

bit 21 = End of Transferring interrupt : Punch Through List (*only for HOLLY2)
bit 20 = End of DMA interrupt : Sort-DMA (Transferring for alpha sorting)
bit 19 = End of DMA interrupt : ch2-DMA
bit 18 = End of DMA interrupt : Dev-DMA(Development tool DMA)
bit 17 = End of DMA interrupt : Ext-DMA2(External 2)
bit 16 = End of DMA interrupt : Ext-DMA1(External 1)
bit 15 = End of DMA interrupt : AICA-DMA
bit 14 = End of DMA interrupt : GD-DMA
bit 13 = Maple V blank over interrupt
bit 12 = End of DMA interrupt : Maple-DMA
bit 11 = End of DMA interrupt : PVR-DMA
bit 10 = End of Transferring interrupt : Translucent Modifier Volume List
bit 9 = End of Transferring interrupt : Translucent List
bit 8 = End of Transferring interrupt : Opaque Modifier Volume List
bit 7 = End of Transferring interrupt : Opaque List
bit 6 = End of Transferring interrupt : YUV
bit 5 = H Blank-in interrupt
bit 4 = V Blank-out interrupt
bit 3 = V Blank-in interrupt
bit 2 = End of Render interrupt : TSP
bit 1 = End of Render interrupt : ISP
bit 0 = End of Render interrupt : Video
(For details on each interrupt, refer to section 8.5, "List of Interrupts.")

- 294 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_ISTEXT (Read Only) Address：0x005F 6904
bit 31-4 3-0

Reserved Ext. interrupt clear/status

This register returns the status of the external interrupts. If a "1" is read in any of the following bits,
that indicates that the corresponding interrupt is being generated. The bit status after a reset is
determined by signals from external devices.

bit 3 = External Device interrupt
bit 2 = Modem interrupt
bit 1 = AICA interrupt
bit 0 = GD-ROM interrupt

(For details on each interrupt, refer to section 8.5, "List of Interrupts.")
Note:
• This register is a read-only register; these interrupts cannot be cleared by writing this register. In

order to clear any of these bits, it is necessary to directly clear the interrupt in the device that is the
source of the interrupt.

SB_ISTERR Address：0x005F 6908
bit 31-0

Error Interrupt clear/status

This register returns the interrupt status of the CORE, the System Bus, G1, G2 devices, etc. If a "1"
is read in any bit, that indicates that the corresponding interrupt is being generated. In addition, an
interrupt can be cleared by writing "1" to the corresponding bit. (default = 0x00000000).

bit 31 = SH4 i/f : accessing to Inhibited area
bit 30 = Reserved

bit 29 = Reserved
bit 28 = DDT i/f : Sort-DMA

Command Error
bit 27 = G2 : Time out in CPU accessing
bit 26 = G2 : Dev-DMA Time out
bit 25 = G2 : Ext-DMA2 Time out
bit 24 = G2 : Ext-DMA1 Time out
bit 23 = G2 : AICA-DMA Time out
bit 22 = G2 : Dev-DMA over run
bit 21 = G2 : Ext-DMA2 over run
bit 20 = G2 : Ext-DMA1 over run
bit 19 = G2 : AICA-DMA over run
bit 18 = G2 : Dev-DMA Illegal Address set
bit 17 = G2 : Ext-DMA2 Illegal Address set
bit 16 = G2 : Ext-DMA1 Illegal Address set
bit 15 = G2 : AICA-DMA Illegal Address set
bit 14 = G1 : ROM/FLASH access at GD-DMA
bit 13 = G1 : GD-DMA over run
bit 12 = G1 : Illegal Address set
bit 11 = MAPLE : Illegal command
bit 10 = MAPLE : Write FIFO over flow
bit 9 = MAPLE : DMA over run
bit 8 = MAPLE : Illegal Address set
bit 7 = PVRIF : DMA over run
bit 6 = PVRIF : Illegal Address set
bit 5 = TA : FIFO Overflow
bit 4 = TA : Illegal Parameter
bit 3 = TA : Object List Pointer Overflow
bit 2 = TA : ISP/TSP Parameter Overflow
bit 1 = RENDER : Hazard Processing of Strip Buffer
bit 0 = RENDER : ISP out of Cache(Buffer over flow)

 (For details on each interrupt, refer to section 8.5, "List of Interrupts.")
SB_IML2NRM Address：0x005F 6910

- 295 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_IML4NRM Address：0x005F 6920
SB_IML6NRM Address：0x005F 6930

bit31-22 21-0
Reserved Level (2/4/6) normal interrupt mask control

These are the mask control registers for normal interrupts. Each interrupt can be masked in each
priority level (2/4, or 6). In addition, in all three priority levels, the arrangement of the bits in the
register is the same as that of bits 21 through 0 in the SB_ISTNRM register. (default = 0x000000) When
a bit is set to "0," the corresponding interrupt is masked. When a bit is set to "1," that interrupt is
enabled. This depends on the HOLLY version; in HOLLY2, bit 21 is added.

bit 21 = End of Transferring interrupt : Punch Through List (*only for HOLLY2)
bit 20 = End of DMA interrupt : Sort-DMA (Transferring for alpha sorting)
bit 19 = End of DMA interrupt : ch2-DMA
bit 18 = End of DMA interrupt : Dev-DMA
bit 17 = End of DMA interrupt : Ext-DMA2
bit 16 = End of DMA interrupt : Ext-DMA1
bit 15 = End of DMA interrupt : AICA-DMA
bit 14 = End of DMA interrupt : GD-DMA
bit 13 = Maple V blank over interrupt
bit 12 = End of DMA interrupt : Maple-DMA
bit 11 = End of DMA interrupt : PVR-DMA
bit 10 = End of Transferring interrupt : Translucent Modifier Volume List
bit 9 = End of Transferring interrupt : Translucent List
bit 8 = End of Transferring interrupt : Opaque Modifier Volume List
bit 7 = End of Transferring interrupt : Opaque List
bit 6 = End of Transferring interrupt : YUV
bit 5 = H-Blank in interrupt
bit 4 = V-Blank out interrupt
bit 3 = V-Blank in interrupt
bit 2 = End of Render interrupt : TSP
bit 1 = End of Render interrupt : ISP
bit 0 = End of Render interrupt : Video

Note:
• After a power-on reset or a software reset, all interrupts are disabled.

SB_IML2EXT Address：0x005F 6914
SB_IML4EXT Address：0x005F 6924
SB_IML6EXT Address：0x005F 6934

bit 31-4 3-0
Reserved level (2/4/6) Ext.

interrupt mask control

These registers control masking of the external interrupts at each priority level. When a bit is set to
"0," the corresponding interrupt is masked. When a bit is set to "1," that interrupt is enabled. (default =
0x0) The arrangement of the bits in the register is the same as that in SB_ISTEXT.

bit 3 = External Device interrupt
bit 2 = Modem interrupt
bit 1 = AICA interrupt
bit 0 = GD-ROM interrupt

Note:
• After a power-on reset or a software reset, all interrupts are disabled.

SB_IML2ERR Address：0x005F 6918
SB_IML4ERR Address：0x005F 6928
SB_IML6ERR Address：0x005F 6938

bit 31-0
Level (2/4/6) Error interrupt mask control

- 296 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

These registers control masking of the error interrupts at each priority level. When a bit is set to "0,"
the corresponding interrupt is masked. When a bit is set to "1," that interrupt is enabled. (default = 0x0)
The arrangement of the bits in the register is the same as that of bits 31 through 0 in SB_ISTERR.

bit 31 = SH4 i/f : accessing to Inhibited area
bit 30 = Reserved
bit 29 = Reserved

bit 28 = DDT i/f : Sort-DMA
Command Error

bit 27 = G2 : Time out in CPU accessing
bit 26 = G2 : Dev-DMA Time out
bit 25 = G2 : Ext-DMA2 Time out
bit 24 = G2 : Ext-DMA1 Time out
bit 23 = G2 : AICA-DMA Time out
bit 22 = G2 : Dev-DMA over run
bit 21 = G2 : Ext-DMA2 over run
bit 20 = G2 : Ext-DMA1 over run
bit 19 = G2 : AICA-DMA over run
bit 18 = G2 : Dev-DMA Illegal Address set
bit 17 = G2 : Ext-DMA2 Illegal Address set
bit 16 = G2 : Ext-DMA1 Illegal Address set
bit 15 = G2 : AICA-DMA Illegal Address set
bit 14 = G1 : ROM/FLASH access at GD-DMA
bit 13 = G1 : GD-DMA over run
bit 12 = G1 : Illegal Address set
bit 11 = MAPLE : Illegal command
bit 10 = MAPLE : Write FIFO over flow
bit 9 = MAPLE : DMA over run
bit 8 = MAPLE : Illegal Address set
bit 7 = PVRIF : DMA over run
bit 6 = PVRIF : Illegal Address set
bit 5 = TA : FIFO Overflow
bit 4 = TA : Illegal Parameter
bit 3 = TA : Object List Pointer Overflow
bit 2 = TA : ISP/TSP Parameter Overflow
bit 1 = RENDER : Hazard Processing of Strip Buffer
bit 0 = RENDER : ISP out of Cache(Buffer over flow)

(For details on each interrupt, refer to section 8.5, "List of Interrupts.")

Note:
• After a power-on reset or a software reset, all interrupts are disabled.

- 297 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The DMA Hard Trigger Control Registers are described below.)

SB_PDTNRM Address：0x005F 6940
bit31-22 21-0

Reserved PVR-DMA Trigger mask – Normal interrupt

This register indicates the PVR DMA trigger mask for normal interrupts. (default = 0x000000) For
details on the bit arrangement, refer to the description of the SB_IML2(/4/6)NRM register.

*In HOLLY2, bit 21 is added.

Setting Meaning
0 interrupt mask
1 interrupt enable

SB_PDTEXT Address：0x005F 6944
bit 31-4 3-0

Reserved PVR-DMA Trigger mask
- External interrupt

This register indicates the PVR DMA trigger mask for external interrupts. (default = 0x0) For details
on the bit arrangement, refer to the description of the SB_IML2(/4/6)EXT register.

Setting Meaning
0 interrupt mask
1 interrupt enable

SB_G2DTNRM Address：0x005F 6950
bit31-22 21-0

Reserved G2-DMA Trigger mask – Normal interrupt

This register indicates the G2-DMA trigger mask for normal interrupts. (default = 0x000000) For
details on the bit arrangement, refer to the description of the SB_IML2(/4/6)NRM register.

*In HOLLY2, bit 21 is added.

Setting Meaning
0 interrupt mask
1 interrupt enable

SB_G2DTEXT Address：0x005F 6954
bit 31-4 3-0

Reserved G2-DMA Trigger mask
- External interrupt

This register indicates the G2-DMA trigger mask for external interrupts. (default = 0x0) For details
on the bit arrangement, refer to the description of the SB_IML2(/4/6)EXT register.

Setting Meaning
0 interrupt mask
1 interrupt enable

§8.4.1.2 Maple Peripheral Interface

(The Maple-DMA Control Registers are described below.)

SB_MDSTAR Address：0x005F 6C04
bit 31-29 28-5 4-0

- 298 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

000 Maple-DMA command table address Reserved

This register specifies the address of the peripheral controller command table in system memory.

Notes
• This register is not initialized after a power-on reset or a software reset.
• The hardware does not change the data in this register.

SB_MDTSEL Address：0x005F 6C10
bit 31-1 0

Reserved Maple-DMA
Trigger select

Selects the initiation source (software, V-Blank) for Maple-DMA (transmission/reception with a
peripheral).

Setting Intiation trigger Meaning
0 Software initiation

(default)
Maple-DMA is initiated by an access from the SH4.
Initiation is possible by writing a "1" to the SB_MDST
register.

1 V-Blank initiation Maple-DMA is initiated automatically one line before the
start of the screen display (V-Blank Out).

SB_MDEN Address：0x005F 6C14
bit 31-1 0

Reserved Maple-DMA
enable

This is the Maple-DMA (transmission/reception with peripherals) enable register. (default = 0) When
this bit is set to "1", DMA can be initiated by setting bit 0 (DMA start bit) of the SB_MDST register to
"1".

When writing When reading
Setting Meaning Setting Meaning

0 Abort Maple DMA 0 Disable
1 Enable 1 Enable

Notes:
• Transmission/reception is not performed if this bit is not set to "1".
• DMA is forcibly terminated if a "0" is written to this bit while a Maple-DMA transfer is in

progress.
• The hardware does not change the data in this register.

- 299 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_MDST Address：0x005F 6C18
bit 31-1 0

Reserved Maple-DMA
start/status

This register starts the transmission/reception software. (default = 0)
When read, this register shows a status bit indicating the transmission/reception status.

When writing When reading
Setting Meaning Setting Meaning

0 ignored 0 Maple-DMA not in progress.
1 Maple DMA start 1 Maple-DMA in progress.

Notes:
• Writing to this register is valid only when the Maple-DMA initiation setting in the SB_MDTSEL

register is for software initiation.
• A "1" must not be written to this register while Maple-DMA is prohibited in the SB_MDEN

register (bit 31 = 0).

- 300 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 301 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The Maple Interface Block Control Registers are described below.)

SB_MSYS Address：0x005F 6C80
bit 31-16 15-13 12 11-10 9-8 7-4 3-0

Time Out Counter R Single Hard
Trigger

R Sending
Rate

R Delay
Time

Time Out Counter
This field sets the timeout duration from the start of data output to a peripheral device. (default =

0x3A98) A value of "1" is equivalent to 20nsec.
Example

20nsec × 0x3A98 = 300 / 1000000 sec (1 screen is 16.7msec.)
20nsec×0xC350 = 1msec

Single Hard Trigger
This bit is set by selecting either to re-initiate automatically in response to V-Blank when Maple-

DMA has been initiated by V-Blank, or to stop V-Blank initiation (manual) until the SB_MSHTCL
register has been cleared.

Setting Description
0 Automatic (default)
1 Manual

Sending Rate (between HOLLY and Peripherals)
This field sets the data transfer rate for transfers between the system and peripherals.

Setting Meaning
00 2M bps (default)
01 1M bps

Delay Time
These bits set the interval (delay time) until Maple-DMA is initiated after V-Blank Out when V-

Blank has been selected as the initiation trigger. (default = 0x0)
"1" sets an interval of 1.3msec.

Example
1.3msec x 4 = 5.2msec (One screen requires 16.7msec.)

Note:
• The Single Hard Trigger and Delay Time settings are valid only when V-Blank initiation is set for

Maple-DMA in the SB_MDTSEL register.
• Setting a value of 11 or higher for the Delay Time setting is prohibited.
• The hardware does not change the data in this register.

- 302 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_MST (Read Only) Address：0x005F 6C84
bit 31 30-27 26-24 23-22 21-16 15-8 7-0

Move
Status

R Internal Frame
Monitor

R Internal State
Monitor

Reserved Line Monitor

This register indicates the Maple interface status.

Move Status
This bit indicates the operating status (sending/receiving) of the peripheral controller. (default =

0x0)

Setting Meaning
0 Controller is not in operation. (Received data was finalized.)
1 Controller is in operation. (Received data is not yet finalized.

Transmission data may not be overwritten.)

Internal Frame Monitor
This is the internal block frame counter monitor. (default = 0x0)

Internal State Monitor
This is the internal block state counter monitor. (default = 0x0)

Line Monitor
This is the input/output line monitor for each port. (default = 0xFF)
The correspondence with each bit is shown below.

Bit Line that is monitored
bit7 Port D SDCKA
bit6 Port D SDCKB
bit5 Port C SDCKA
bit4 Port C SDCKB
bit3 Port B SDCKA
bit2 Port B SDCKB
bit1 Port A SDCKA
bit0 Port A SDCKB

SB_MSHTCL (Write Only) Address：0x005F 6C88
bit 31-1 0

Reserved Maple-DMA
Hard Trigger Clear

Re-initiation is enabled when V-Blank initiation is selected for Maple-DMA.

Setting Description
0 ignored
1 Hardware trigger clear (V-Blank re-

initiation)

Notes:
• Writing to this register is valid only when V-Blank initiation is set for Maple-DMA in the

SB_MDTSEL register and V-Blank re-initiation is set to "manual" in the SB_MSYS register.
• Writing a "0" to this register is invalid.

- 303 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 304 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The Maple-DMA Secret Register is described below.)

SB_MDAPRO (Write Only) Address：0x005F 6C8C
bit 31-16 15 14-8 7 6-0

Security code : 0x6155 R Top address R Bottom address

This register specifies the address range for Maple-DMA involving the system (work) memory.

Security code : 0x6155
When updating bits 14 through 8 and bits 6 through 0, it is necessary to add "0x6155." (default =

0x0000) If this value is not added, bits 14 through 8 and bits 6 through 0 will not be updated.

Top address
This field specifies the starting address of the address range where received data will be stored in

system memory. (This field corresponds to A26 to A20; A28 and A27 are treated as "0x01".)
Specify the address in units of 1MB. (default = 0x7F)

Bottom address
This field specifies the ending address of the address range where received data will be stored in

system memory. (This field corresponds to A26 to A20; A28 and A27 are treated as "0x01".)
Specify the address in units of 1MB. (default = 0x00)

Examples of settings for the top address and the bottom address are shown below. (These
examples also apply to the **APRO register.)

・ 40-7F → 0x0C000000-0x0FFFFFFF
・ 7F-7F → 0x0FF00000-0x0FFFFFFF
・ 7F-00 → Specification prohibited

Notes:
• Maple-DMA involving system memory will be performed only within the above address range.
• If a DMA transfer is generated outside of this range, an overrun error results and the

Maple-DMA overrun error interrupt is generated. (Refer to bit 9 of the SB_ISTERR register.)

- 305 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 306 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The Maple Interface Block Hardware Control Register is described below.)

SB_MMSEL Address：0x005F 6CE8
bit31-1 0

Reserved Maple MSB Selection

This register specifies the MSB of data that is sent/received by Maple.

Maple MSB Selection(Default=1)
“0” MSB bit7
“1” MSB bit31

(The Maple-DMA Debug Registers are described below.)

SB_MTXDAD (Read Only)
Address：0x005F 6CF4

bit31-29 28-5 4-0
Reserved Maple TxD Address Counter Reserved

Maple TxD Address Counter
This is the address of the data that is to be loaded into the Maple controller through Maple-DMA.

Note:
• This register is not initialized after a power-on reset or a software reset.

SB_MRXDAD (Read Only) Address：0x005F 6CF8
bit31-29 28-5 4-0

Reserved Maple RxD Address Counter Reserved

Maple RxD Address Counter
This is the address of the data that is to be written by the Maple controller through Maple-DMA.

Note:
• This register is not initialized after a power-on reset or a software reset.

SB_MRXDBD (Read Only) Address：0x005F 6CFC
bit31-29 28-5 4-0

Reserved Maple RxD Base Address Reserved

Maple RxD Base Address

Note:
• This register is not initialized after a power-on reset or a software reset.

- 307 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4.1.3 G1 Interface

(The GD-DMA Control Registers are described below.)

SB_GDSTAR Address：0x005F 7404
bit 31-29 28-5 4-0

000 GD-DMA start address Reserved

Data transfers between the GD-ROM and the following areas are possible using ch0-DMA. This
register specifies the starting address in 32-byte units. (default = 0xXXXXXX)

0x00700000~0x00707FE0 :32KByte : G2 AICA -Register
0x00800000~0x009FFFE0 :2MByte : G2 AICA -Wave Memory
0x01000000~0x01FFFFE0 :16Mbyte : G2 External Devices #1
0x02700000~0x02FFFFE0 :9MByte : G2 AICA (Image area)
0x03000000~0x03FFFFE0 :16Mbyte : G2 External Devices #2
0x04000000~0x047FFFE0 :8MByte : PowerVR Texture Memory 64bit access area
0x05000000~0x057FFFE0 :8MByte : PowerVR Texture Memory 32bit access area
0x06000000~0x067FFFE0 :8MByte : PowerVR Tex. Mem. 64bit access area (Image area)
0x07000000~0x077FFFE0 :8MByte : PowerVR Tex. Mem. 32bit access area (Image area)
0x0C000000~0x0CFFFFE0 :16Mbyte : System Memory
0x0E000000~0x0EFFFFE0 :16Mbyte : System Memory (Image area)
0x14000000~0x17FFFFE0 :64Mbyte : G2 External Devices #3

Notes:
• This register is not initialized after a power-on reset or a software reset.
• The hardware does not change the data in this register.
• For details on address mapping, refer to section 2.1, "System Mapping."

SB_GDLEN Address：0x005F 7408
bit 31-25 24-0

Reserved GD-DMA Transfer Length

This register specifies the length for ch0-DMA to the GD-ROM.
In a DMA transfer involving the GD-ROM, a transfer of a length indicated below is made from the

GD-ROM to the starting address specified by the SB_GDSTAR register. However, the basic unit for
data transfer is 32 bytes.

Setting (32 bits) Length
0x00000001 1 Byte
0x00000020 32 Byte

……… ………
0x01FFFFF 32M Byte – 1 Byte
0x00000000 32M Byte

Notes:
• This register is not initialized after a power-on reset or a software reset.
• The hardware does not change the data in this register.

- 308 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_GDDIR Address：0x005F 740C
bit 31-1 0

Reserved GD-DMA
direction

This register specifies the direction of the ch0-DMA transfer involving the GD-ROM. In either case,
the opposite side of the DMA transfer is the area specified by the SB_GDSTAR register.

Setting Meaning
0 DMA transfer to GD-ROM (default)
1 DMA transfer from GD-ROM

Except in special cases, this is the mode that is normally used.

Note:
• The hardware does not change the data in this register.

SB_GDEN Address：0x005F 7414
bit 31-1 0

Reserved GD-DMA
Enable

This register enables ch0-DMA transfer involving the GD-ROM. This register can also be used to
forcibly terminate such a DMA transfer that is in progress, by writing a "0" to this register.

When writing When reading
Setting Meaning Setting Meaning

0 Abort GD-DMA (default) 0 Disable (default)
1 Enable 1 Enable

Notes:
• This bit must be set to "1" in order to initiate a ch0-DMA transfer involving the GD-ROM.
• If this bit is enabled and a DMA start request is made in the SB_GDST register, the DMA transfer

starts as soon as the data has been loaded into the GD-ROM buffer.
• A DMA transfer can be forcibly terminated by setting this register to "Disable" from the "Enable"

state.
• The hardware does not change the data in this register.

SB_GDST Address：0x005F 7418
bit 31-1 0

Reserved GD-DMA
Start/Status

This register requests the start of a ch0-DMA transfer involving the GD-ROM. The status of the
DMA transfer can be determined by reading this register. If a "0" is written to this register, it is ignored.
If GD-DMA is set to "Disable" in the SB_GDEN register, writing a "1" to this register is illegal.

When writing When reading
Setting Meaning Setting Meaning

0 ignored (default) 0 GD-DMA not in progress.
(default)

1 Start DMA 1 GD-DMA in progress.

(The G1 Interface Block Hardware Control Registers are described below.)

SB_G1RRC (Write Only) Address：0x005F 7480
bit 31-13 12 11-8 7-4 3 2-0

Reserved OE Pulse
delay

CS Pulse
width

Address
setup

R Address
hold

- 309 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

This register controls the timing for read accesses to system ROM.

OE Pulse dela ｙ
This field sets the OE signal delay versus the rising edge of the ROM CS signal. (default = 1 = 2

cycles)
The OE signal becomes active after (pulse delay + 1) × 1 cycles.

CS Pulse width
This field specifies the pulse width of the ROM CS signal. (default = 0xF = 18 cycles)
The CS signal is active for (pulse width + 3) × 1 cycles.

Address setup
This field specifies the address setup time versus the falling edge of the ROM CS signal. (default

= 0xF = 16 cycles)
The read address becomes valid within (address setup + 1) × 1 cycles after the falling edge of the

CS signal.

Address hold
This field specifies the address hold time versus the falling edge of the ROM CS signal. (default

= 0x7 = 8 cycles)
The read address is valid for (address hold + 1) × 1 cycles after the falling edge of the CS signal.

Notes:
• 1 cycle = 20nsec.
• Based on the above settings, the timing for read accesses to ROM is as shown below.

A : OE Pulse delay
B : CS Pulse width
C : Address setup
D : Address Hold

A

C DB

ROM Address

ROM CS

ROM OE

The length of time needed for accesses to ROM is equal to B + C + D. Under the default settings,
reading one byte of data requires 42 cycles (= 840nsec).

• The hardware does not change the data in this register.

- 310 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G1RWC (Write Only) Address：0x005F 7484
bit 31-13 12 11-8 7-4 3 2-0

Reserved WR Pulse
delay

CS Pulse
width

Address
setup

R Address
hold

This register controls the timing for write accesses to system ROM.

WR Pulse dela ｙ
This field sets the WR signal delay versus the rising edge of the ROM CS signal.
(default = 1 = 2 cycles)
The WR signal becomes active after (pulse delay + 1) × 1 cycles.

CS Pulse width
This field specifies the pulse width of the ROM CS signal. (default = 0xF = 18 cycles)
The CS signal is active for (pulse width + 3) × 1 cycles.

Address setup
This field specifies the address setup time versus the falling edge of the ROM CS signal. (default

= 0xF = 16 cycles)
The write address becomes valid within (address setup + 1) × 1 cycles after the falling edge of the

CS signal.

Address hold
This field specifies the address hold time versus the falling edge of the ROM CS signal. (default

= 0x7 = 8 cycles)
The write address is valid for (address hold + 1) × 1 cycles after the falling edge of the CS signal.

Notes:
• 1 cycle = 20nsec.
• Based on the above settings, the timing for write accesses to ROM is as shown below.

A : WR Pulse delay
B : CS Pulse width
C : Address setup
D : Address Hold

A

C DB

ROM Address

ROM CS

ROM WR

The length of time needed for accesses to ROM is equal to B + C + D. Under the default settings,
writing one byte of data requires 42 cycles (= 840nsec).

• The hardware does not change the data in this register.
• It is not possible to write to system ROM except in special cases, such as during Boot-ROM

development work.

- 311 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G1FRC (Write Only) Address：0x005F 7488
bit 31-13 12 11-8 7-4 3 2-0

Reserved OE Pulse
delay

CS Pulse
width

Address
setup

R Address
hold

This register adjusts the timing for read accesses to flash memory.

OE Pulse dela ｙ
default=1=2cyc

CS Pulse width
default=0xF=18cyc

Address setup
default=0xF=16cyc

Address hold
default=0x7=8cyc

For details on the function of each bit, refer to the description of the SB_G1RRC register.

SB_G1FWC (Write Only) Address：0x005F 748C
bit 31-13 12 11-8 7-4 3 2-0

Reserved WR Pulse
delay

CS Pulse
width

Address
setup

R Address
hold

This register adjusts the timing for write accesses to flash memory.

WR Pulse dela ｙ
default=1=2cyc

CS Pulse width
default=0xF=18cyc

Address setup
default=0xF=16cyc

Address hold
default=0x7=8cyc

For details on the function of each bit, refer to the description of the SB_G1RWC register.

- 312 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G1CRC (Write Only) Address：0x005F 7490
bit 31-13 11-8 7-4 3 2-0

Reserved G1DIOR#
Pulse width

Address
setup

R Address
hold

This register adjusts the timing for GD PIO read accesses.

G1DIOR# Pulse width
This field specifies the pulse width of the GD PIO read signal (G1DIOR#).
(default = 0xF = 18cycles)
The signal is active for (pulse width + 3) × 1 cycles.

Address setup
This field specifies the address setup time and the chip select time versus the falling edge of the

G1DIOR# signal. (default = 0xF = 16 cycles)
The G1DIOR# signal falls (address setup + 1) × 1 cycles after the address is output.

Address hold
This field specifies the address hold time and the chip select time versus the falling edge of the

G1DIOR# signal. (default = 0x7 = 8 cycles)
The read address is output until (address hold + 1) × 1 cycles after the falling edge of the

G1DIOR# signal.

Notes:
• Based on the above settings, the timing for GD PIO read accesses is as shown below.

B : G1DIOR Pulse width
C : Address & CS setup
D : Address & CS HoldC DB

CD PIO Address & CS

CD PIO G1DIOR

• The length of time needed for accesses to GD PIO is equal to B + C + D. Under the default
settings, reading one word of data requires 42 cycles (= 840nsec).

• The hardware does not change the data in this register.

- 313 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G1CWC (Write Only) Address：0x005F 7494
bit 31-13 11-8 7-4 3 2-0

Reserved G1DIOW#
Pulse width

Address
setup

R Address
hold

This register adjusts the timing for GD PIO write accesses.

GIDIOR# Pulse width
This field specifies the pulse width of the GD PIO write signal (G1DIOW#). (default = 0xF =

18cycles)
The signal is active for (pulse width + 3) × 1 cycles.

Address setup
This field specifies the address setup time and the chip select time versus the falling edge of the

G1DIOW# signal. (default = 0xF = 16 cycles)
The G1DIOW# signal falls (address setup + 1) × 1 cycles after the address is output.

Address hold
This field specifies the address hold time and the chip select time versus the falling edge of the

G1DIOW# signal. (default = 0x7 = 8 cycles)
The write address is output until (address hold + 1) × 1 cycles after the falling edge of the

G1DIOW# signal.

Notes:
• Based on the above settings, the timing for GD PIO write accesses is as shown below.

B : G1DIOW# Pulse width
C : Address & CS setup
D : Address & CS HoldC DB

CD PIO Address & CS

CD PIO G1DIOW#

The length of time needed for accesses to GD PIO is equal to B + C + D. Under the default
settings, writing one word of data requires 42 cycles (= 840nsec).

• The hardware does not change the data in this register.

- 314 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G1GDRC (Write Only) Address：0x005F 74A0
bit 31-16 15-12 11-8 7-4 3-0

Reserved G1DIOR#
Negate time width

Acknowledge
delay time

G1DIOR#
Pulse delay

G1DIOR#
Pulse width

This register adjusts the timing for GD-DMA read accesses.

GIDIOR# Negate time width
This field specifies the negate time for the GD read signal (G1DIOR#). (default = 0xF = 18

cycles)
The G1DIOR# signal becomes active after (negate time width + 3) × 1 cycles.

Acknowledge delay time
This field specifies the negate delay for the GD acknowledge signal (G1DACK#) versus the

falling edge of the G1DIOR# signal. (default = 0xF = 18 cycles)
G1DACK# is negated in (acknowledge delay time + 3) × 1 cycles.

GIDIOR# pulse delay
This field specifies the G1DIOR# falling edge delay time versus the falling edge of the

G1DACK# signal. (default = 0xF = 18 cycles) G1DIOR# is asserted (G1DIOR# pulse delay + 1) ×
1 cycles after the falling edge of G1DACK#.

GIDIOR# pulse width
This field specifies the pulse width of the G1DIOR# signal. (default = 0xF = 18 cycles)
G1DIOR# is asserted for (G1DIOR# pulse width + 1) × 1 cycles.

Note:
• Based on the above settings, the timing for GD-DMA read accesses is as shown below.

A : G1DIOR# Nega te t im e width
B : Acknowledge delay t im e
C : G1DIOR# pu lse delay
D : G1DIOR# pu lse width

A

C

D

BG1DACK#

G1DIOR#
D

The length of time needed for GD-DMA read accesses is equal to (B + C) + (A + D) × (number of
words) - A. Under the default settings, reading one word of data requires 50 cycles (= 1000nsec).

• The hardware does not change the data in this register.

- 315 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G1GDWC (Write Only) Address：0x005F 74A4
bit 31-16 15-12 11-8 7-4 3-0

Reserved G1DIOW#
Negate time width

Acknowledge
delay time

G1DIOW#
Pulse delay

G1DIOW#
Pulse width

This register adjusts the timing for GD-DMA write accesses.

GIDIOW# Negate time width
This field specifies the negate time for the GD write signal (G1DIOW#). (default = 0xF = 18

cycles)
The G1DIOW# signal becomes active after (negate time width + 3) × 1 cycles.

Acknowledge delay time
This field specifies the negate delay for the GD acknowledge signal (G1DACK#) versus the

falling edge of the G1DIOW# signal. (default = 0xF = 18 cycles)
G1DACK# is negated in (acknowledge delay time + 3) × 1 cycles.

GIDIOW# pulse delay
This field specifies the G1DIOW# falling edge delay time versus the falling edge of the

G1DACK# signal. (default = 0xF = 18 cycles) G1DIOW# is asserted (G1DIOW# pulse delay +
1) × 1 cycles after the falling edge of G1DACK#.

GIDIOW# pulse width
This field specifies the pulse width of the G1DIOW# signal. (default = 0xF = 18 cycles)
G1DIOW# is asserted for (G1DIOR# pulse width + 1) × 1 cycles.

Note:
• Based on the above settings, the timing for GD-DMA write accesses is as shown below.

A

C

D

BG1DACK#

G1DIOW#
D

A : G1DIOW# Negate t ime width
B : Acknowledge delay t ime
C : G1DIOW# pulse delay
D : G1DIOW# pulse width

The length of time needed for GD-DMA read accesses is equal to (B + C) + (A + D) × (number of
words) - A. Under the default settings, reading one word of data requires 50 cycles (= 1000nsec).

• The hardware does not change the data in this register.

SB_G1SYSM (Read Only) Address：0x005F 74B0
bit 31-8 7-0

Reserved System Mode

This register returns the system mode/configuration (by reading the contents of the address/mode pins
(G1MRA[18:11] when HOLLY is reset). Refer to section 4.1.4, "System Modes," for the system mode
correspondence table.

SB_G1CRDYC (Write Only) Address：0x005F 74B4
bit 31-1 0

Reserved GD PIO
RDY control

This register enables/disables the G1IORDY signal for GD PIO reads and writes.

Setting Meaning
0 Disable
1 Enable (default)

(The GD-DMA Secret Register is described below.)

- 316 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_GDAPRO (Write Only) Address：0x005F 74B8
bit 31-16 15 14-8 7 6-0

Security code : 0x8843 R Top address R Bottom address

This register specifies the address range for GD-DMA involving system (work) memory.

Security code : 0x8843
When updating bits 14 through 8 and bits 6 through 0, it is necessary to add "0x8843." (default =

0x0000) If this value is not added, bits 14 through 8 and bits 6 through 0 will not be updated.

Top address
This field specifies the starting address of the address range in system memory. (This field

corresponds to A26 to A20; A28 and A27 are treated as "0x01".) Specify the address in units of
1MB. (default = 0x7F)

Bottom address
This field specifies the ending address of the address range in system memory. (This field

corresponds to A26 to A20; A28 and A27 are treated as "0x01".) Specify the address in units of
1MB. (default = 0x00)

Note:
• GD-DMA involving system memory will be performed only within the above address range.
• If a DMA transfer is generated outside of this range, an overrun error results and the GD-DMA

overrun error interrupt is generated. (Refer to bit 13 of the SB_ISTERR register.)

- 317 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The GD-DMA Debug Registers are described below.)

SB_GDSTARD (Read Only) Address：0x005F 74F4
bit 31-29 28-5 4-0

000 GD-DMA address count value Reserved

This returns the current GD-DMA address, allowing you to determine the extent to which the GD-
DMA address on the other size of a GD-DMA transfer has advanced.

This register counts up from the value that was set in the SB_GDSTAR register, and stops at the last
address of the DMA after the GD-DMA transfer is completed.

0x00700000~0x00707FE0 :32KByte : G2 AICA -Register
0x00800000~0x009FFFE0 :2MByte : G2 AICA -Wave Memory
0x01000000~0x01FFFFE0 :16Mbyte G2 External Devices #1
0x02700000~0x02FFFFE0 :9MByte : G2 AICA (Image area)
0x03000000~0x03FFFFE0 :16Mbyte G2 External Devices #2
0x04000000~0x047FFFE0 :8MByte : PowerVR Texture Memory 64bit access area
0x05000000~0x057FFFE0 :8MByte : PowerVR Texture Memory 32bit access area
0x06000000~0x067FFFE0 :8MByte : PowerVR Tex.Mem. 64bit access area(Image area)
0x07000000~0x077FFFE0 :8MByte : PowerVR Tex.Mem. 32bit access area(Image area)
0x0C000000~0x0CFFFFE0 :16Mbyte System Memory
0x0D000000~0x0DFFFFE0 :16Mbyte System Memory(Not supported)
0x0E000000~0x0EFFFFE0 :16Mbyte System Memory (Image area)
0x0F000000~0x0FFFFFE0 :16Mbyte System Memory(Not supported)
0x14000000~0x17FFFFE0 :64Mbyte G2 External Devices #3

Note
• This register is not initialized after a power-on reset or a software reset.

SB_GDLEND (Read Only) Address：0x005F 74F8
bit 31-25 24-5 4-0

Reserved GD-DMA remainder Reserved

This register returns the size of the GD-DMA transfer in bytes. (Note that this register counts up.)

GD-DMA Remainder
0x00000020 : 32 Byte
0x00000040 : 64 Byte
 :
0x01FFFFE0 : 32M Byte－32 Byte
0x00000000 : 32M Byte

Note
• This register is not initialized after a power-on reset or a software reset.

- 318 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4.1.4 G2 Interface
The modem unit connects to the same G2 Bus as the AICA, etc., but because it only exchanges data with

the SH4 via single reads and writes, it does not have any DMA control registers. For details on accessing
the modem, refer to section 4.2, "Modem," or the modem unit specifications.

There are four channels of DMA engines for the G2 interface, but they all use the same types of units.
Only the DMA hardware triggers are different.

AICA-DMA (ch0), Ext1-DMA (ch1), Ext2-DMA (ch2), Dev-DMA (ch3)

Note that these are functionally the same, so the explanations for the numerous G2-DMA registers have
been grouped together, and the explanations that apply to each channel are summarized in the description of
AICA-DMA.

G2-DMA Engine AICA
(ch0)

External 1
(ch1)

External 2
(ch2)

DevTools
(ch3)

G2-DMA start address ADSTAG E1STAG E2STAG DDSTAG
G2-DMA Sys.Mem. or Tex.Mem. address ADSTAR E1STAR E2STAR DDSTAR
G2-DMA Length ADLEN E1LEN E2LEN DDLEN
G2-DMA Direction ADDIR E1DIR E2DIR DDDIR
G2-DMA Trigger selection ADTSEL E1TSEL E2TSEL DDTSEL
G2-DMA Enable ADEN E1EN E2EN DDEN
G2-DMA Start and Status ADST E1ST E2ST DDST
G2-DMA Suspend Request and Status ADSUSP E1SUSP E2SUSP DDSUSP
Hardware trigger signal of G2 G2RQAIC# G2RQEX0# G2RQEX1# G2RQDEV#

(The G2 DMA Control Registers are described below.)

SB_ADSTAG Address：0x005F 7800
SB_E1STAG Address：0x005F 7820
SB_E2STAG Address：0x005F 7840
SB_DDSTAG Address：0x005F 7860

bit 31-29 28-5 4-0
000 G2-DMA G2 start address Reserved

These registers specify starting address for G2-DMA transfers involving External-1, External-2,
External-3, wave memory, and the AICA register. The G2-DMA transfer is performed between areas
specified by these registers and the SB_ADSTAR, SB_E1STAR, SB_E2STAR, and SB_DDSTAR registers.

0x00700000~0x00707FE0 :32KByte : G2 AICA Registers
0x00800000~0x009FFFE0 :2MByte : G2 Wave Memory
0x02700000~0x02FFFFE0 :9MByte : G2 AICA (Image area)
* The 3 areas listed above are addresses that can be specified for channel 0 (AICA-DMA).
0x01000000~0x01FFFFE0 :16MByte : G2 External Devices #1
0x03000000~0x03FFFFE0 :16MByte : G2 External Devices #2
0x14000000~0x17FFFFE0 :64MByte : G2 External Devices #3
* The 3 areas listed above are addresses can be specified for channels 1 through 3.

Note:
• This register is not initialized after a power-on reset or a software reset.
• The address value must be specified in 32-byte units.
• When the DMA enable register (SB_ADEN, etc.) is "0", the G2-DMA block's internal values are

updated.
• If a value that is not included above is set, an invalid setting interrupt is generated.

SB_ADSTAR Address：0x005F 7804
SB_E1STAR Address：0x005F 7824
SB_E2STAR Address：0x005F 7844
SB_DDSTAR Address：0x005F 7864

- 319 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

bit 31-29 28-5 4-0
000 G2-DMA System Mem. or Texture Mem. start address Reserved

This register specifies the starting address for G2 DMA transfers involving system memory or texture
memory. The G2 DMA transfer is performed between areas specified by these registers and the
SB_ADSTAG, SB_E1STAG, SB_E2STAG,and SB_DDSTAG registers. When the DMA enable register
(SB_ADEN, etc.) is "0", the value in the G2-DMA block is updated.

0x0C000000~0x0CFFFFE0 :16Mbyte : System Memory
0x04000000~0x047FFFE0 :8Mbyte : Texture Mem. 64bit access area
0x04800000~0x04FFFFE0 :8Mbyte : Texture Mem. 64bit access area (the latter half)
0x05000000~0x057FFFE0 :8Mbyte : Texture Mem. 32bit access area

Note:
• This register is not initialized after a power-on reset or a software reset.
• The address value must be specified in 32-byte units.
• When the DMA enable register (SB_ADEN, etc.) is "0", the G2-DMA block's internal values are

updated.
• If a value that is not included above is set, an invalid setting interrupt is generated.

SB_ADLEN Address：0x005F 7808
SB_E1LEN Address：0x005F 7828
SB_E2LEN Address：0x005F 7848
SB_DDLEN Address：0x005F 7868

bit 31 30-25 24-5 4-0
DMA Transfer

End/Restart
Reserved G2-DMA Transfer Length Reserved

DMA Transfer End//Restart
This field sets the DMA transfer operation.

Setting Meaning
0 DMA restart (Restart after a DMA transfer ended)

* When a transfer ends, the DMA enable register remains set to "1".
1 DMA end

* When a transfer ends, the DMA enable register is set to "0".

Transfer Length
This field specifies the G2-DMA data transfer length in 32-byte units.

Setting（32bit） Transmission Length
0x00000020 32Byte
0x00000040 64Byte

……… ………
0x01FFFE0 32MByte－32Byte
0x00000000 32MByte

Note:
• This register is not initialized after a power-on reset or a software reset.
• When the DMA enable register (SB_ADEN, etc.) is "0", the value in the G2-DMA block is

updated.

- 320 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_ADDIR Address：0x005F 780C
SB_E1DIR Address：0x005F 782C
SB_E2DIR Address：0x005F 784C
SB_DDDIR Address：0x005F 786C

bit 31-1 0
Reserved G2-DMA

transfer direction

This register specifies the direction of DMA transfers between the Root Bus and G2 devices. The G2
device indicated here is the device that corresponds to the area specified by the SB_ADSTAR,
SB_E1STAR, SB_E2STAR, or SB_DDSTAR register.

Setting Meaning
0 DMA transfer from the Root Bus to a G2 device
1 DMA transfer from a G2 device to the Root Bus

Note:
• This register is not initialized after a power-on reset or a software reset.
• When the DMA enable register (SB_ADEN, etc.) is "0", the value in the G2-DMA block is

updated.

SB_ADTSEL Address：0x005F 7810
SB_E1TSEL Address：0x005F 7830
SB_E2TSEL Address：0x005F 7850
SB_DDTSEL Address：0x005F 7870

bit 31-3 2-0
Reserved Trigger selection

This register specifies the G2-DMA transfer trigger.

bit2 : Trigger Selection2
0: Disables the DMA suspend function
1: Enables the DMA suspend function (In the case of AICA-DMA, the SB_ADSUSP register is

enabled.)

bit1 : Trigger Selection1
0: CPU initiation (DMA transfer is initiated by writing to the SB_**ST register in the SH4.)
1: Hardware trigger (DMA transfer is initiated according to the interrupt setting)

bit0 : Trigger Selection0
0: Disables control of transfer through an external pin (transfer request input) (→ continuous

transfer)
1: Enables control of transfer through an external pin

- 321 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The DMA mode combinations are listed below. (The register names shown are for AICA-DMA.)

SB_ADLEN SB_ADTSEL Meaning
bit31 bit2 bit1 bit0

0 0 0 0 CPU initiation
0 0 1 Prohibited
0 1 0 Interrupt initiation
0 1 1 Prohibited

1 0 0 0 When DMA ends, SB_ADEN = 0 + CPU initiation
0 0 1 When DMA ends, SB_ADEN = 0 + CPU initiation + external pin

control
0 1 0 When DMA ends, SB_ADEN = 0 + CPU initiation + interrupt

initiation
0 1 1 Prohibited

0 1 0 0 Suspend enabled + CPU initiation
1 0 1 Suspend enabled + CPU initiation + external pin control
1 1 0 Suspend enabled + interrupt initiation
1 1 1 Suspend enabled + interrupt initiation + external pin control

1 1 0 0 Suspend enabled + When DMA ends, SB_ADEN = 0 + CPU
initiation

1 0 1 Suspend enabled + When DMA ends, SB_ADEN = 0 + CPU
initiation + external pin control

1 1 0 Suspend enabled + When DMA ends, SB_ADEN = 0 + interrupt
initiation

1 1 1 Suspend enabled + When DMA ends, SB_ADEN = 0 + interrupt
initiation + external pin control

Here, "CPU initiation" means that G2-DMA is initiated through software by the SH4; each type can
be initiated by writing "1" to either the SB_ADST, SB_E1ST, SB_E2ST, or SB_E3ST register.

External pin control permits initiation upon reception of a trigger from a device that is connected on
the HOLLY's G2 bus. (The transfer request input signal G2RQAIC# is input to the G2-AICA-DMA
engine as an external trigger. In addition, the signals G2RQEX0#, G2RQEX1#, and G2RQDEV# are
each input as external triggers to the G2-External1, External2, and Dev.Tools DMA engines,
respectively. For details on how to drive these signals, refer to the AICA specifications.)

"Interrupt initiation" refers to the automatic initiation of G2-DMA in response to the interrupt
designated by the SB_G2DTNRM register and the SB_G2DTEXT register. When the interrupts
designated by both registers are generated, G2-DMA is initiated by the interrupt that was generated first.

Bit 2 of this register indicates whether the G2 suspend function is enabled or not. For details on the
suspend function, refer to the description of the SB_ADSUSP register (for AICA-DMA).

Notes:
• This register is not initialized after a power-on reset or a software reset.
• When the DMA enable register (SB_ADEN, etc.) is "0", the value in the G2-DMA block is

updated.

- 322 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_ADEN Address：0x005F 7814
SB_E1EN Address：0x005F 7834
SB_E2EN Address：0x005F 7854
SB_DDEN Address：0x005F 7874

bit 31-1 0
Reserved G2-DMA

enable

This register enables G2-DMA.
G2-DMA is forcibly terminated by writing a "0" to this register while G2-DMA is in progress.

When writing When reading
Setting Meaning Setting Meaning

0 Disables G2-DMA. (default) 0 G2-DMA is disabled.
(default)

1 Enables G2-DMA. 1 G2-DMA is enabled

SB_ADST Address：0x005F 7818
SB_E1ST Address：0x005F 7838
SB_E2ST Address：0x005F 7858
SB_DDST Address：0x005F 7878

bit 31-1 0
Reserved G2-DMA

start/status

This register initiates G2-DMA when the transfer initiation registers (SB_ADTSEL, etc.) are set to
permit initiation by the SH4.

The DMA status can be determined by reading this register. When G2-DMA is disabled through the
SB_ADEN (in the case of AICA-DMA) register, writing a "1" to this register is not allowed.

When writing When reading
Setting Meaning Setting Meaning

0 Prohibited 0 DMA not in progress
1 Initiates DMA. 1 DMA in progress

Note:
• If an invalid value is set in the SB_ADSTAG or SB_ADSTAR register (when both are set for ch0-

AICA), and then G2-DMA is enabled, an invalid setting interrupt is generated.

SB_ADSUSP Address：0x005F 781C
SB_E1SUSP Address：0x005F 783C
SB_E2SUSP Address：0x005F 785C
SB_DDSUSP Address：0x005F 787C

bit 31-6 5-0
Reserved DMA Suspend Request/Status

This register temporarily stops G2-DMA. This register is valid when bit 2 in the SB_ADTSEL (in the
case of AICA-DMA) register is "1" (invalid when "0"). The value of these bits after a reset is
determined by signals from external devices.

bit5 : DMA Request Input State (Read Only)
0: The DMA transfer request is high (transfer not possible), or bit 2 of the SB_ADTSEL register

is "0"
1: The DMA transfer request is low (transfer possible)

bit4 : DMA Suspend or DMA Stop (Read Only)

- 323 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

0: DMA transfer is in progress, or bit 2 of the SB_ADTSEL register is "0"
1: DMA transfer has ended, or is stopped due to a suspend

* When bit 2 of the SB_ADTSEL register is "1" and bit 0 of the SB_ADSUSP register is "1", and
data is not being transferred due to being in the suspended state, this bit becomes "1" when G2-
DMA ends.

bit3-1 : Reserved (Specify "0".)

bit0 : DMA Suspend Request (Write Only)
0: Continues DMA transfer without going to the suspended state. Or, bit 2 of the SB_ADTSEL

register is "0"
1: Suspends and terminates DMA transfer

 (The G2 I/F Block Hardware Control Registers are described below.)

SB_G2ID (Read Only) Address：0x005F 7880
bit 31-8 7-4 3-0
all‘0’ HOLLY Version G2 Version

This register returns the G2 bus version. The current versions are as follows (refer to section 1.4):
0x00000000 : Prototype
0x00000012 : Holly ver. 1.0 (CLX1) and later

- 324 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G2DSTO Address：0x005F 7890
bit 31-12 11-0

Reserved G2 DS time out

This is a special register that is used for debugging. This register sets the DS# signal timeout time for
G2 devices.

G2 DS TIMEOUT (default - 0x3FF)
When there is no response from the DS# signal for a certain period of time, a timeout error

interrupt is generated.
0x000: Shortest wait time (after 0 clocks)
 :

0xFFF: Longest wait time (after 4095 clocks)

The respective G2-DMA timeout error interrupts for AICA, External 1/2, and Dev tool are the
same as in the case of the SB_G2TRTO register. Refer to bits 26 through 23 in the SB_ISTERR
register.

Notes:
• The setting in this register affects all G2 timeout error interrupts (bits 27 through 23 in the

SB_ISTERR register).
• If either the DS# signal or the TR# signal times out, it is then necessary to check that the target

device is actually connected on the G2 bus, and that the device has not failed.

- 325 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G2TRTO Address：0x005F 7894
bit 31-12 11-0

Reserved G2 TR time out

This is a special register that is used for debugging. This register sets the TR# signal timeout time for
G2 devices.

G2 TR TIMEOUT (default - 0x3FF)

When there is no response from the TR# signal for a certain period of time, a timeout error
interrupt is generated.

0x000: Shortest wait time (after 0 clocks)
 :
0xFFF: Longest wait time (after 4095 clocks)

The respective G2-DMA timeout error interrupts for AICA, External 1/2, and Dev tool are the
same as in the case of the SB_G2DSTO register. Refer to bits 26 through 23 in the SB_ISTERR
register.

Notes:
• The setting in this register affects all G2 timeout error interrupts (bits 27 through 23 in the

SB_ISTERR register).
• If either the DS# signal or the TR# signal times out, it is then necessary to check that the target

device is actually connected on the G2 bus, and that the device has not failed.

SB_G2MDMTO Address：0x005F 7898
bit 31-8 7-0

Reserved G2 Modem Timeout

This register sets wait insertion for asynchronous cycles (modem).

Setting Meaning
0x00 External wait input disabled (default)
0x01 Setting prohibited
： :

0xFE Setting prohibited
0xFF External wait input disabled

Notes:
• Setting a value from 0x01 to 0xFE in bits 7 through 0 is prohibited.
• If a modem will not be used, setting 0x00 in bits 7 through 0 is recommended; if a modem will be

used, setting 0xFF in bits 7 through 0 is recommended.
• If the wait lasts 10.2µs or more, the operation times out and access is terminated. For details on

timeout errors, refer to bit 27 of the SB_ITSERR register.

- 326 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_G2MDMW Address：0x005F 789C
bit 31-8 7-0

Reserved G2 Modem Wait

This register sets the wait time for asynchronous cycles (modem).

Setting Meaning
0x00 80 nsec (default)
0x01 120 nsec
0x02 160 nsec

……… Each increase of 0x01 in the setting extends the wait time by 40ns.

Notes:
• Setting a value that results in a wait longer than 1µsec (0x17) is prohibited.
• In the case of a device that requires an access time in excess of 1µs, initiate the access after the

write FIFO has become empty. In this case, confirm that bit 4 of the SB_FFST (0x005F688C)
register is "0". If an access is made without confirming this setting, an unnecessary wait will be
generated for the SH4.

• In interrupt processing, when the G2 bus is accessed, the first process must be to confirm that the
write FIFO is empty. (As in the previous item, check bit 4 of the SB_FFST register.)

• This register requires that the modem wait insertion setting be made in the SB_G2MDMTO
register.

(The G2-DMA Secret Registers is described below.)

SB_G2APRO (Write Only) Address：0x005F 78BC
bit 31-16 15 14-8 7 6-0

Security code 0x4659 R Top address R Bottom address

This register specifies the address range for G2-DMA involving the system memory.
This setting is common to channels 0 through 3.

Security code 0x4659
When updating bits 14 through 8 and bits 6 through 0, it is necessary to add "0x4659." (default =

0x0000) If this value is not added, bits 14 through 8 and bits 6 through 0 will not be updated.

Top address
This field specifies the starting address of the address range in system memory. (This field

corresponds to A26 to A20; A28 and A27 are treated as "0x01".) Specify the address in units of
1MB. (default = 0x7F)

Bottom address
This field specifies the ending address of the address range in system memory. (This field

corresponds to A26 to A20; A28 and A27 are treated as "0x01".) Specify the address in units of
1MB. (default = 0x00)

Notes:
• If a DMA transfer is generated outside of this range, an overrun error results and the G2-DMA

overrun error interrupt is generated. (Refer to bits 22 through 19 of the SB_ISTERR register.)

- 327 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The G2-DMA Debug Registers are described below.)

The following registers are special registers that are used for debugging purposes.

SB_ADSTAGD (Read Only) Address：0x005F 78C0
SB_E1STAGD (Read Only) Address：0x005F 78D0
SB_E2STAGD (Read Only) Address：0x005F 78E0
SB_DDSTAGD (Read Only) Address：0x005F 78F0

bit 31-29 28-5 4-0
Reserved G2-DMA address Counter Reserved

This register can be used to check the current G2 device address in a G2-DMA transfer. For details
concerning areas, refer to the SB_ADSTAG, SB_E1STAG, SB_E2STAG, and SB_DDSTAG registers.

Note:
• This register is not initialized after a power-on reset or a software reset.

SB_ADSTARD (Read Only) Address：0x005F 78C4
SB_E1STARD (Read Only) Address：0x005F 78D4
SB_E2STARD (Read Only) Address：0x005F 78E4
SB_DDSTARD (Read Only) Address：0x005F 78F4

bit 31-29 28-5 4-0
Reserved G2-DMA System Mem. or Texture Mem. address Counter Reserved

This register can be used to check the current system memory or texture memory address in a G2-
DMA transfer. For details concerning areas, refer to the SB_ADSTAG, SB_E1STAG, SB_E2STAG, and
SB_DDSTAG registers.

Note:
• This register is not initialized after a power-on reset or a software reset.

SB_ADLEND (Read Only) Address：0x005F 78C8
SB_E1LEND (Read Only) Address：0x005F 78D8
SB_E2LEND (Read Only) Address：0x005F 78E8
SB_DDLEND (Read Only) Address：0x005F 78F8

bit 31-25 24-5 4-0
Reserved G2-DMA length remain Counter Reserved

This register is used to check the current amount of data remaining in a G2-DMA transfer. Note that
this value returns to its original setting immediately after DMA terminates.

Length remainder

0x00000020 : 32 Byte
0x00000040 : 64 Byte

:
0x01FFFFE0 : 32M Byte minus 32 Byte

0x00000000 : 32M Byte

Note:
• This register is not initialized after a power-on reset or a software reset.

- 328 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4.1.5 PowerVR Interface

(The PVR-DMA Control Registers are described below.)

SB_PDSTAP Address：0x005F 7C00
bit 31-29 27-5 4-0

000 PVR-DMA start address on PVR Reserved

This register specifies the starting address on the PVR side for ch0-DMA involving PVR. Data
transfers between the system memory and the following PVR areas are possible using ch0-DMA.

0x005F8000~0x005F9FE0 :8KByte : PowerVR registers
0x025F8000~0x025F9FE0 :8KByte : PowerVR registers (Image area)
0x04000000~0x047FFFE0 :8MByte : PowerVR Tex.Mem. 64bit access area
0x05000000~0x057FFFE0 :8MByte : PowerVR Tex.Mem. 32bit access area
0x06000000~0x067FFFE0 :8MByte : PowerVR Tex.Mem. 64bit access area (Image area)
0x07000000~0x077FFFE0 :8MByte : PowerVR Tex.Mem. 32bit access area (Image area)

Note:
• This register is not initialized after a power-on reset or a software reset.
• The start address must be specified in 32-byte units.

If the specified value is outside of the specifiable area, the "PVR i/f: Illegal Address set" error
interrupt is generated, and the DMA transfer is not performed. (Refer to bit 6 of the SB_ISTERR
register.)

• The hardware does not change the data in this register.
• Even while a DMA operation is in progress, the next address can be set without affecting the

current DMA operation.

SB_PDSTAR Address：0x005F 7C04
bit 31-28 27-5 4-0

000 PVR-DMA start address on System Memory Reserved

This register specifies the starting address on the system memory side for ch0-DMA involving PVR.

Note:
• This register is not initialized after a power-on reset or a software reset.
• The start address must be specified in 32-byte units.

If the specified value is outside of the specifiable area, the "PVR i/f: Illegal Address set" error
interrupt is generated, and the DMA transfer is not performed. (Refer to bit 6 of the SB_ISTERR
register.)

• The hardware does not change the data in this register.
• Even while a DMA operation is in progress, the next address can be set without affecting the

current DMA operation.

- 329 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_PDLEN Address：0x005F 7C08
bit 31-24 23-5 4-0

Reserved PVR-DMA Length Reserved

This register specifies the leugth of ch0 DMA between PVR and system memory in 32-byte units.

Setting（32bit） Length
0x00000020 32 byte
0x00000040 64 byte

……… ………
0x00FFFE0 16M byte－32 byte
0x00000000 16M byte

Notes:
• This register is not initialized after a power-on reset or a software reset.
• The length must be specified in 32-byte units.
• If the PVR-DMA length is too large and the transfer exceeds the work area in system memory that

was specified by the SB_PDAPRO register, an error results, the "PVR i/f: DMA overrun" error
interrupt is generated, and the DMA transfer is not performed. (Refer to bit 7 of the SB_ISTERR
register.)

• The hardware does not change the data in this register.
• Even while a DMA operation is in progress, the next address can be set without affecting the

current DMA operation.

SB_PDDIR Address：0x005F 7C0C
bit 31-1 0

Reserved PVR-DMA
direction

This register specifies the direction of a PVR-DMA (ch0-DMA) transfer to the area set in the
SB_PDSTAP register.

Setting Meaning
0 From system memory to PVR area (default)
1 From PVR area to system memory

SB_PDTSEL Address：0x005F 7C10
bit 31-1 0

Reserved PVR-DMA
trigger selection

This register selects the PVR-DMA trigger.

Setting Meaning
0 Software trigger (default)

The SH4 triggers PVR-DMA manually. PVR-DMA can be triggered by
writing to the SB_PDST register.

1 Hardware trigger... PVR-DMA is automatically initiated by the interrupts set
in the SB_PDTNRM and SB_PDTEXT registers. If the interrupts set in both
registers are both generated, initiation is triggered by the interrupt that was
generated first.

Note:
• The hardware does not change the data in this register.
• Even while a DMA operation is in progress, the next address can be set without affecting the

current DMA operation.

- 330 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SB_PDEN Address：0x005F 7C14
bit 31-1 0

Reserved PVR-DMA
enable

This register enables PVR-DMA. Initiation sources are not accepted until a "1" is written to this bit.
PVR-DMA is forcibly terminated by writing a "0" to this register while PVR-DMA is in progress.

When writing When reading
Setting Meaning Setting Meaning

0 Abort PVR-DMA (default) 0 Disable (default)
1 Enable 1 Enable

Note:
• When "software trigger" is selected, DMA is triggered by writing a "1" to the SB_PDST register.

When "hardware trigger" is selected, DMA is triggered by the interrupts that are set in the
SB_PDTNRM and SB_PDTEXT registers.

• The hardware does not change the data in this register.

SB_PDST Address：0x005F 7C18
bit 31-1 0

Reserved PVR-DMA
start/status

This register requests the start of PVR-DMA. The status of the DMA transfer can be checked by
reading this register.

DMA is initiated by setting the SB_PDEN register to "Enable" (1) and then writing a "1" to this bit.
If the SB_PDEN register is set to "Disable," then writing a "1" to this bit has no effect.

When writing When reading
Setting Meaning Setting Meaning

0 ignored (default) 0 PVR-DMA not in progress.
(default)

1 Start DMA 1 PVR-DMA in progress.

- 331 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The PVR-DMA Secret Registers are described below.)

SB_PDAPRO (Write Only) Address：0x005F 7C80
bit 31-16 15 14-8 7 6-0

security code 0x6702 R Top address R Bottom address

This register specifies the address range for PVR-DMA involving system memory.

Security code 0x6702
When updating bits 14 through 8 and bits 6 through 0, it is necessary to add "0x6702." If this

value is not added, bits 14 through 8 and bits 6 through 0 will not be updated. (default = 0x0000)

Top address
This field specifies the starting address of the address range in system memory. (This field

corresponds to A26 to A20; A28 and A27 are treated as "0x01".) Specify the address in units of
1MB. (default = 0x7F)

Bottom address
This field specifies the ending address of the address range in system memory. (This field

corresponds to A26 to A20; A28 and A27 are treated as "0x01".) Specify the address in units of
1MB. (default = 0)

Note:
• PVR-DMA involving system memory will be performed only within the above address range.

If a DMA transfer is generated outside of this range, an overrun error results and the PVR-DMA
overrun error interrupt is generated. (Refer to bit 7 of the SB_ISTERR register.)

- 332 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 333 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 334 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 335 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 336 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 337 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 338 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

- 339 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4.2 CORE Registers

ID (Read Only) Address：0x005F 8000
bit 31-16 15-0

Device ID (0x17FD) Vender ID (0x11DB)

This register returns the device ID and the vendor ID.

REVISION (Read Only) Address：0x005F 8004
bit 31-16 15-0

Reserved Chip Revision

This register indicates the chip revision number. (0x01 in the case of an ES.) For details on the
CORE revision, refer to section 1.4.

SOFT RESET Address：0x005F 8008
bit 31-3 2 1 0

Reserved sdram I/F
soft reset

Pipeline
soft reset

TA
soft reset

This register specifies a soft reset. After power is supplied to the system, the system enters this reset
state.

Setting Meaning
0 Not reset
1 Reset (default)

sdram interface soft reset
This field resets the texture memory interface.

Pipeline soft reset
This field resets the CORE pipeline.

TA soft reset
This field resets the Tile Accelerator.

STARTRENDER Address：0x005F 8014
bit 31-0

Start Render

Writing to this register initiates rendering. If rendering is to be started again before the rendering end
interrupt (End of TSP) is output, a CORE reset must be executed through the SOFTRESET register.
The CORE reset time in this case is at least 32 clocks.

TEST_SELECT Address：0x005F 8018
bit 31-9 9-5 4-0

Reserved diagdb_data diagda_data

This is a test register. Writing to this register is prohibited.

- 340 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

PARAM_BASE Address：0x005F 8020
bit 31-24 23-20 19-0

Reserved Base Address 0000 0000 0000 0000 000

This register specifies, in 1MB units, the base address for the ISP/TSP Parameters that the CORE
loads in for drawing (default = 0x0). The absolute address of the ISP/TSp parameter that is read is the
sum of the object start address in the Object List data and this base address.

REGION_BASE Address：0x005F 802C
bit 31-24 23-2 1-0

Reserved Base Address 00

This register specifies, in 32-bit units, the base address for the Region Array that the CORE loads in
for drawing. (default = 0x000000)

SPAN_SORT_CFG Address：0x005F 8030
bit 31-17 16 15-9 8 7-1 0

Reserved Cache
Bypass

Reserved Offset Sort
enable

Reserved Span Sort
enable

Cache Bypass
This field specifies whether or not to use the TSP cache bypass function.

Setting Meaning
0 Use cache (default)
1 Bypass Cache

Offset Sort enable
Span Sort enable

This field specifies whether or not to use the Span Sort function.

Offset Span Meaning
0 0 Do not use the Span Sort function. (default)
0 1 Group those items that have the same offset value.
1 0 Setting prohibited.
1 1 First group by tag values, and then group by offset values.

This setting is normally recommended. Span sort minimizes
TS preprocessing, and offset sort optimizes TSP parameter
fetching and reduces the bus bandwidth.

VO_BORDER_COL Address：0x005F 8040
bit 31-25 24 23-16 15-8 7-0

Reserved Chroma Red Green Blue

This register specifies the color that is displayed in the border area. (default = 0x000 0000)

- 341 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FB_R_CTRL Address：005F 8044h
bit 31-24 23 22 21-16 15-8 7 6-4 3-2 1 0

Reserved vclk_
div

fb_
strip_
buf_en

fb_
stripsize

fb_
chroma_
threshold

R fb_
concat

fb_
depth

fb_
line_
double

fb_
enable

This register makes settings for frame buffer reads.

vclk_div
This field specifies the clock that is output on the PCLK pin.

Setting Meaning Supplement
0 PCLK = VLCK/2 (default) For NTSC/PAL
1 PCLK = VLCK For VGA

fb_strip_buf_en
Set this bit to "1" when using a strip buffer. (default = 0)

fb_stripsize
This field specifies the size of the strip buffer in units of 32 lines (default = 0x00). "0" must be

specified for the LSB (bit 16). For example, specify 0x02 for 32 lines, and 0x04 for 64 lines.
Furthermore, the strip buffer size must yield an even number when the number of lines on the
display screen is divided by the strip buffer size.

fb_chroma_threshold
When the frame buffer data format is ARGB8888, this field sets the comparison value that is used

in order to determine the CHROMA pin output value. (default = 0x00)
When pixel alpha < fb_chroma_threshold, a "0" is output on the CHROMA pin.

fb_concat
This field specifies the value that is added to the lower end of 5-bit or 6-bit frame buffer color

data in order to output 8 bits. (default = 0x0)

fb_depth
This field specifies the bit configuration of the pixel data that is read from the frame buffer.

Setting Meaning Supplement
0x0 0555 RGB 16 bit (default) The lower 3 bits are the value in fb_concat.
0x1 565 RGB 16 bit The lower 3 bits of R and G are the value in

fb_concat; the lower 2 bits in G are the value
in fb_concat[1:0].

0x2 888 RGB 24 bit packed
0x3 0888 RGB 32 bit

fb_line_double
This field specifies the read operation for each line of frame buffer data.

Setting Meaning
0 Reads each line once. (default)
1 Reads each line twice.

fb_enable
This field enables or disables frame buffer data reads.

Setting Meaning
0 disable (default)
1 enable

- 342 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FB_W_CTRL Address：0x005F 8048
bit 31-24 23-16 15-8 7-4 3 2-0

Reserved fb_alpha_threshold fb_kval Reserved fb_
dither

fb_
packmode

This register contains settings concerning frame buffer writes.

fb_alpha_threshold
This field sets the comparison value that is used to determine the alpha value when the data that is

written to the frame buffer is ARGB1555 format data. (default = 0x00)
When pixel alpha ≥ fb_alpha_threshold, a "1" is written in the alpha value.

fb_kval
This field sets the K value for writing to the frame buffer. (default = 0x00)

fb_dither
This field specifies whether dithering is applied upon writing frame buffer data that consists of 16

bits /pixel.

Setting Meaning
0 Discard the lower bits. (default)
1 Perform dithering

fb_packmode
This field specifies the bit configuration of the pixel data that is written to the frame buffer.

Setting Meaning Supplement
0x0 0555 KRGB 16 bit (default) Bit 15 is the value of fb_kval[7].
0x1 565 RGB 16 bit
0x2 4444 ARGB 16 bit
0x3 1555 ARGB 16 bit The alpha value is determined by

comparison with the value of
fb_alpha_threshold.

0x4 888 RGB 24 bit packed
0x5 0888 KRGB 32 bit K is the value of fk_kval.
0x6 8888 ARGB 32 bit
0x7 Reserved Setting prohibited.

FB_W_LINESTRIDE Address：0x005F 804C
bit 31-9 8-0

Reserved FB line stride

This register specifies the line width, in 64-bit units, when writing to the frame buffer. (default =
0x000)

- 343 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FB_R_SOF1 Address：0x005F 8050
bit 31-24 23-2 1-0

Reserved Frame Buffer Read Address Frame 1 00

This register specifies the starting address, in 32-bit units, for reads from the field-1 frame buffer.
(default = 0x000000) The setting becomes valid starting from the next field.

FB_R_SOF2 Address：0x005F 8054
bit 31-24 23-2 1-0

Reserved Frame Buffer Read Address Frame 1 00

If interlace mode is specified, this register specifies the starting address, in 32-bit units, for reads
from the field-2 frame buffer. (default = 0x000000)

FB_R_SIZE Address：0x005F 805C
bit 31-30 29-20 19-10 9-0

Reserved FB modulus FB y size FB x size

This register specifies the frame buffer size when reading from the frame buffer.

FB modulus
This field specifies the amount of data between the last pixel on a line and the first pixel on the

next line, in 32-bit units (default = 0x000). Set this value to 0x001 in order to link the last pixel data
on a line with the first pixel data on a line.

FB y size
This field specifies the number of display lines - 1. (default = 0x000)

FB x size
This field specifies the number of display pixels on each line - 1, in 32-bit units. (default = 0x000)

FB_W_SOF1 Address：0x005F 8060
bit 31-25 24-2 1-0

Reserved Frame Buffer Write start of Frame Address field1/strip1 00

This register specifies, in 32-bit units, the starting address for writes to the field-1 or strip-1 frame
buffer. (default = 0x000000)

In the texture map, 0x00000000 to 0x0FFFFFFC is a 32-bit access area and 0x10000000 to
0x1FFFFFFC is a 64-bit access area.

FB_W_SOF2 Address：0x005F 8064
bit 31-25 24-2 1-0

Reserved Frame Buffer Write start of Frame Address field2/strip2 00

This register specifies, in 32-bit units, the starting address for writes to the field-1 or strip-2 frame
buffer. (default = 0x000000)

In the texture map, 0x00000000 to 0x0FFFFFFC is a 32-bit access area (frame/strip buffer) and
0x10000000 to 0x1FFFFFFC is a 64-bit access area.

- 344 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FB_X_CLIP Address：0x005F 8068
bit 31-27 26-16 15-11 10-0

Reserved FB x clipping max Reserved FB x clipping min

This register specifies the clipping values for the X direction when writing to the frame buffer. When
using a strip buffer, this register must be specified in accordance with the display screen size. For
example, if the size of the display screen in the horizontal direction is 640 pixels, then specify Max. =
639 and Min. = 0.

FB x clipping max
Pixels with an X coordinate that is greater than the value specified in this field are not written to

the frame buffer. (default = 0x000)

FB x clipping min
Pixels with an X coordinate that is smaller than the value specified in this field are not written to

the frame buffer. (default = 0x000)

FB_Y_CLIP Address：0x005F 806C
bit 31-26 25-16 15-10 9-0

Reserved FB y clipping max Reserved FB y clipping min

This register specifies the clipping values for the Y direction when writing to the frame buffer.

FB y clipping max
Pixels with a Y coordinate that is greater than the value specified in this field are not written to the

frame buffer. (default = 0x000)

FB y clipping min
Pixels with a Y coordinate that is smaller than the value specified in this field are not written to

the frame buffer. (default = 0x000)

FPU_SHAD_SCALE Address：0x05F 8074
bit 31-9 8 7-0

Reserved Intensity Shadow
Enable

Scale factor
for shadows

This register sets the inclusion/exclusion volume mode.

Simple Shadow Enable
This field specifies the volume mode.

Setting Meaning
0 Parameter Selection Volume Mode (default)
1 Intensity Volume Mode

Scale factor for shadows
When using Intensity Shadow Mode, this field specifies the intensity value that is multiplied with

the Shading Color data (Base Color, Offset Color). (default = 0x00) The Base Color and Offset
Color are both multiplied by the same value; that value is [Scale Factor]/256.

- 345 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FPU_CULL_VAL Address：0x005F 8078
bit 31 30-0

Reserved IEEE floating point value for culling compare

This register specifies the comparison value for the culling operation. (default = 0x0000 0000)

FPU_PARAM_CFG Address：0x005F 807C
bit 31-22* 21 20 19-14 13-8 7-4 3-0

Reserved Region
Header
Type

R TSP parameter
burst trigger
threshold

ISP parameter
burst trigger
threshold

pointer
burst size

pointer first
burst size

This register makes settings for parameter reads.
* This depends on the HOLLY version; in HOLLY2, bit 21 is added; in HOLLY1, this bit is reserved

(0x0).

Region Header Type
This bit specifies the Region Array data type.

Setting Meaning
0 5 × 32bit/Tile：Type 1 (default)

The Translucent polygon sort mode is specified by the
ISP_FEED_CFG register.

1 6 × 32bit/Tile：Type 2
The Translucent polygon sort mode is specified by the pre-sort bit
within the Region Array data.

TSP parameter burst trigger threshold
When the free space in the parameter FIFO is greater than or equal to this value, a parameter read

request is generated. (default = 0x1F) Setting a large value increases the burst length, but also
causes numerous page breaks and forces other data read requests to wait. Never set a value that is
smaller than 0x4.

ISP parameter burst trigger threshold
This is similar to the above TSP parameter. (default = 0x1F) Never set a value that is smaller

than 0x4.

pointer burst size
The pointer (Object List data) is requested to be read with a burst length of this value. (default =

0x7) Specify a value that is smaller than or equal to the Object Pointer Block size that was specified
by the TA_ALLOC_CTRL register. Specifying a large value causes numerous page breaks.

pointer first burst size
Specify half the value that was set in Pointer Burst Size. (default = 0x7)

- 346 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

HALF_OFFSET Address：0x005F 8080
bit 31-3 2 1 0

Reserved TSP texel
sampling

position

TSP pixel
sampling
position

FPU pixel
sampling
position

This register specifies the sampling position in the ISP and the TSP. Normally, set identically to TSP
Texel Sampling Position and TSP Pixel Sampling Position.

TSP texel sampling position

Setting Meaning
0 (0,0)
1 (0.5,0.5) (default)

TSP pixel sampling position

Setting Meaning
0 (0,0)
1 (0.5,0.5) (default)

FPU pixel sampling position

Setting Meaning
0 (0,0)
1 (0.5,0.5) (default)

FPU_PERP_VAL Address：0x005F 8084
bit 31 30-0

Reserved IEEE floating point value for perpendicular triangle compare

This register specifies the comparison value for perpendicular polygons. (default = 0x0000 0000)

ISP_BACKGND_D Address：0x005F 8088
bit 31-4 3-0

Background Plane depth parameter Reserved

This register specifies the depth value for the background plane. (default = 0x0000 0000) Set an
IEEE 32-bit floating point value with the lower four bits truncated.

- 347 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

ISP_BACKGND_T Address：0x005F 808C
bit 31-29 28 27 26-24 23-3 2-0

Reserved cache bypass shadow skip tag address tag offset

This register specifies the tag parameters for the background plane. This register must set correctly
before the start of drawing.

cache bypass
This field specifies whether or not to use the TSP parameter cache. When "0" is set (the default

setting), the cache is used; when "1" is set, the cache is not used.

shadow
This field specifies whether or not to enable a Modifier Volume for the background plane.

Setting Meaning
0 Disable volume. (default)
1 Enable volume.

skip
This field specifies the data size (* 32 bits) for one vertex in the ISP/TSP Parameters. Normally,

the actual data size is "skip + 3," but if Parameter Selection Volume Mode is in effect and the above
shadow bit is "1," then he actual data size is "Skip * 2 + 3." (default = 0x0)

ISP/TSP Instruction WordSetting skipSetting
Texture Offset 16bit UV

0 Disabled Disabled 001
1 0 0 011
1 0 1 010
1 1 0 100
1 1 1 011

tag address
This field specifies, in 32-bit units, the starting address of the ISP/TSP Parameters for the

background plane (default = 0x000000). The absolute address of the ISP/TSP Parameter that is read
is the sum of this value and the base address that is specified in the PARAM_BASE register.

tag offset
This field specifies the strip number (the position within a strip of triangles) of the background

plane. (default = 0x0)

- 348 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

ISP_FEED_CFG Address：0x005F 8098
bit 31-24 23-14 13-4 3 2-1 0

Reserved Cache Size for
translucency

Punch Through
chunk size

Discard
Mode

R pre-sort
mode

This register is set when sorting polygons through the hardware. Bits 31 to 1 (those marked with an
asterisk)have a different configuration in HOLLY2; in HOLLY1, they are reserved bits (0x0).

Cache Size for translucency
This field specifies the ISP cache size for a Translucent polygon list in terms of the number of

vertices stored. (default = 0x100) In the case of Triangle polygons, the number of polygons stored
is this setting divided by 3; in the case of Quad polygons, the number of polygons stored is this
setting divided by 4. For example, in order to store 30 triangles, 30 × 3 = 90 (0x05A) must be
specified in this field.

Normally, 0x200 is specified in order to achieve maximum performance, but 0x100 may be
specified in order to set up the same state as CLX1.. However, the value must be specified so that
the relationship (Cache size for translucency) ≥ (Punch Through chunk size) is true. In addition, the
value that is specified must be in the range from 0x020 to 0x200 (32 to 512). Do not specify a value
outside the range of 0x020 to 0x200 (32 to 512).

Punch Through chunk size
This field specifies the ISP cache size for a Punch Through polygon list in terms of the number of

vertices stored. (default = 0x200) In the case of Triangle polygons, the number of polygons stored
is this setting divided by 3; in the case of Quad polygons, the number of polygons stored is this
setting divided by 4. For example, in order to store 30 quads, 30 × 4 = 120 (0x078) must be
specified in this field.

The value that is set in order to achieve maximum performance differs according to the state of
the screen, but normally a value from 0x040 to 0x080 may be specified. (The recommended value
is 0x040.) However, the value must be specified so that the relationship (Punch Through chunk
size) ≥ (Cache size for translucency) is true. In addition, the value that is specified must be in the
range from 0x020 to 0x200 (32 to 512). Do not specify a value outside the range of 0x020 to 0x200
(32 to 512).

Discard Mode
This field specifies whether to perform discard processing or not when processing Punch Through

polygons and Translucent polygons.

Setting Meaning
0 Do not perform discard processing (default)

This results in operation that is similar to HOLLY1.
1 Perform discard processing

This improves drawing processing performance.

pre-sort mode
This field specifies the Translucent polygon sort mode.
In HOLLY2, this field is valid only when the region header type bit (bit 21) in the

FPU_PARAM_CFG register is "0".

Setting Meaning
0 Auto sort mode (default)
1 Pre-sort mode

- 349 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SDRAM_REFRESH Address：0x005F 80A0
bit 31-8 7-0

Reserved Refresh counter value

This field specifies the texture memory refresh counter value. (default = 0x20) Specify the number
of clock cycles as the refresh time divided by 48. (The requested refresh time is 15.625µs.) For
example, for 100MHz operation, the value is 15,625nsec/10nsec/48 = 32.6, so the setting in this register
for the refresh counter value should be 0x20.

Set this register before releasing the reset condition through the SOFTRESET register.

SDRAM_ARB_CFG Address：0x005F 80A4
bit 31-22 21-18 17-16 15-8 7-0

Reserved Override
value

Arbiter priority
control

Arbiter crt page break
latency count value

Arbiter page beak
latency count value

This register contains the settings for the texture memory Arbiter. Normally, the priority ranking of
each request is as follows:

(1) CRT Controller
(2) ISP parameters
(3) ISP pointer data
(4) ISP region data
(5) TSP parameters
(6) SH4 ports
(7) Tile Accelerator pointers
(8) Tile Accelerator ISP/TSP data
(9) Texture normal data & VQ codebook
(10) Texture VQ index
(11) Render ports

Override value
When override mode is specified for the Arbiter, this field specifies the device that is given the

highest priority.

Setting Meaning
0x0 priority only (default)
0x1 Rendered data
0x2 Texture VQ index
0x3 Texture normal data & VQ codebook
0x4 Tile accelerator ISP/TSP data
0x5 Tile accelerator pointers
0x6 SH4
0x7 TSP parameters
0x8 TSP region data
0x9 ISP pointer data
0xA ISP parameters
0xB CRT controller

0xC-0xF priority only

- 350 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Arbiter priority control
This field sets the Arbiter.

Setting Meaning
0x0 Priority arbitration only (default)
0x1 The device specified in the "override value" field is given the highest priority.

0x2-0x3 When there is a device request with the same number as the round robin
counter, that device is given the highest priority. If there is no such request,
normal priority arbitration occurs.

Arbiter crt page break latency count value
Setting this field forces a page break if there is a request from the CRT Controller immediately

after the specified counter. (default = 0x00)

Arbiter page break latency count value
Setting this field forces a page break if there is a request immediately after the specified counter.

(default = 0x1F) Forcing a page break causes the Arbiter to function again, so that one type of
access does not occupy memory.

SDRAM_CFG Address：0x005F 80A8
bit 31-29 28-0

Reserved SDRAM Configuration

This register contains the settings for texture memory. (The default value in HOLLY1 is
0x0DF28997, and in HOLLY2 is 0x15F28997.) Do not change these settings to other than the specified
values.

Set this register before releasing the reset condition through the SOFTRESET register. Note that the
value that is set depends on the HOLLY version.

bit [28:26] = Read command to returned data delay
Specify the number of clock cycles - 1. (The default value in HOLLY1 is 0x3, and in HOLLY2 is

0x5.)

bit [25:23] = CAS Latency value for mode register in SDRAM
Specify the number of clock cycles. (default = 0x3) This value is fixed at 0x3 for 100MHz

operation.

bit [22:21] = Activate to Activate period
Specify the number of clock cycles - 1. (default = 0x3)

bit [20:18] = Read to Write period
Specify the number of clock cycles - 1. (default = 0x4)
Normally, the number of clock cycles from read to write is the CAS latency + 2.

bit [17:14] = Refresh to Activate period
Specify the number of clock cycles - 2. (default = 0xA)

bit [13:12] = Reserved
"0" (zero) must be set.

bit [11:10] = Pre-charge to Activate period
Specify the number of clock cycles - 1. (default = 0x2)

bit [9:6] = Activate to Pre-charge period
Specify the number of clock cycles - 1. (default = 0x6)

bit [5:4] = Activate to Read/Write command period
Specify the number of clock cycles - 2. (default = 0x1) The minimum value is 0x1.

- 351 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

bit [3:2] = Write to Pre-charge period
Specify the number of clock cycles - 1. (default = 0x1)

bit [1:0] = Read to Pre-charge period
Specify the number of clock cycles - 1. (default = 0x3)

The following table shows the settings for HOLLY1.

Bit No Contents of setting Setting by SDRAM (NEC)
uPD4516161-10 uPD4516161A-

10
28:26 Read command to returned data delay 0x3 0x3
25:23 CAS Latency value mode register in

SDRAM
0x3 0x3

22:21 Activate to Activate period 0x3 0x2
20:18 Read to Write period 0x4 0x4
17:14 Refresh to Activate period 0x8 0x6
11:10 Pre-charge to Activate period 0x2 0x2
9:6 Activate to Pre-charge period 0x6 0x5
5:4 Activate to Read/Write command period 0x1 0x1
3:2 Write to Pre-charge period 0x1 0x1
1:0 Read to Pre-charge period 0x3 0x3
31:0 SDRAM_CFG Register setting 0x0DF20997 0x0DD18957

The following table shows the settings for HOLLY2.

Bit Contents of setting Setting by SDRAM
No NEC

uPD4516161A-10
or

NEC
uPD4516161A-10B

Rev.B,P

NEC
uPD4516161-10

Samsung
KM416S1020CT-L

or
NEC

uPD4516161-A10
Rev.B,P

28:26 Read command to returned data delay 0x5 0x5 0x5
25:23 CAS Latency value mode register in

SDRAM
0x3 0x3 0x3

22:21 Activate to Activate period 0x2 0x3 0x2
20:18 Read to Write period 0x4 0x4 0x4
17:14 Refresh to Activate period 0x7 0x8 0x5
13:12 Reserved 0x0 0x0 0x0
11:10 Pre-charge to Activate period 0x2 0x2 0x1
9:6 Activate to Pre-charge period 0x5 0x6 0x4
5:4 Activate to Read/Write command

period
0x1 0x1 0x1

3:2 Write to Pre-charge period 0x0 0x0 0x0
1:0 Read to Pre-charge period 0x1 0x1 0x1
31:0 SDRAM_CFG Register setting value 0x15D1C951 0x15F20991 0x15D14511

- 352 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FOG_COL_RAM Address：0x005F 80B0
bit 31-24 23-16 15-8 7-0

Reserved Red Green Blue

This register specifies the Fog Color for Look-up Table mode. (default = 0x000000)

FOG_COL_VERT Address：0x005F 80B4
bit 31-24 23-16 15-8 7-0

Reserved Red Green Blue

This register specifies the Fog Color for Per Vertex mode. (default = 0x000000)

FOG_DENSITY Address：0x005F 80B8
bit 31-16 15-8 7-0

Reserved Fog scale mantissa Fog scale exponent

This register specifies the Fog scale value for Look-up Table mode.

Fog scale mantissa
This field specifies the mantissa where bit 15 is the 1.0 bit. (default = 0x00) For example, to

specify 255.0 as the Fog scale value, specify 0xFF.

Fog scale exponent
This field specifies the exponent in two's complement format. (default = 0x00) For example, to

specify 255.0 as the Fog scale value, specify 0x07.

FOG_CLAMP_MAX Address：0x005F 80BC
bit 31-24 23-16 15-8 7-0
Alpha Red Green Blue

This register specifies the maximum value for color clamping. (default = 0x0000 0000)

FOG_CLAMP_MIN Address：0x005F 80C0
bit 31-24 23-16 15-8 7-0
Alpha Red Green Blue

This register specifies the minimum value for color clamping. (default = 0x0000 0000)

- 353 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SPG_TRIGGER_POS (Read Only) Address：0x005F 80C4
bit 31-26 25-16 15-10 9-0

Reserved trigger v count Reserved trigger h count

This register indicates the HV counter value that was latched at the falling edge of the external trigger
signal.

For details on the external trigger signal and the HV counter value, refer to section 5, "Peripheral
Interface."

SPG_HBLANK_INT Address：0x005F 80C8
bit 31-26 25-16 15-14 13-12 11-10 9-0

Reserved hblank_
in_interrupt

Reserved hblank_
int_mode

Reserved line_comp_val

hblank_in_interrupt
This field specifies the horizontal position at which the H Blank interrupt is output. (default =

0x31D)

hblank_int_mode
This field specifies the H Blank interrupt mode.

Setting Meaning
0x0 Output when the display line is the value indicated by

line_comp_val. (default)
0x1 Output every line_comp_val lines.
0x2 Output every line.
0x3 Reserved

line_comp_val
This field specifies the value that is compared to the display line. (default = 0x000)

SPG_VBLANK_INT Address：0x005F 80CC
bit 31-26 25-16 15-10 9-0

Reserved vblank out interrupt
line number

Reserved vblank in interrupt
line number

vblank out interrupt line number
This field specifies the position at which the V Blank Out interrupt is output. (default = 0x150)
The recommended value is 0x015.

vblank in interrupt line number
This field specifies the position at which the V Blank In interrupt is output. (default = 0x104)

- 354 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SPG_CONTROL Address：0x005F 80D0
bit 31-10 9 8 7 6 5 4 3 2 1 0

Reserved csync_
on_h

sync_
directio

n

PAL NTSC force_
field2

interlace spg_
loc

k

mcsync
_pol

mvsync
_pol

mhsync
_pol

csync_on_h
This field specifies the sync signal that is output on the HSYNC pin.

Setting Meaning
0 HSYNC (default)
1 CSYNC

sync_direction
This field specifies the sync signal pin as either an input or an output.

Setting Meaning
0 Input: Use an external sync signal. (default)
1 Output: Use the internal sync signal.

PAL
Specify "1" for PAL mode (default = 0). Specify "0" in VGA mode.

NTSC
Specify "1" for NTSC mode (default = 1). Specify "0" in VGA mode.

force_field2
This field specifies whether or not to force display in field 2.

Setting Meaning
0 Do not display in field 2. (default)
1 Display in field 2.

interlace
This field specifies whether to use interlacing or not.

Setting Meaning
0 Non-interlace (default)
1 Interlace

spg_lock
This field specifies whether to synchronize the internal circuitry with VSYNC input from an

external source.

Setting Meaning
0 During normal operation (default)
1 Set to '1' for only one frame upon extend

synchronization.

mcsync_pol
mvsync_pol
mhsync_pol

This field specifies the polarity of CSYNC, VSYNC, and HSYNC.

Setting Meaning
0 active low (default)
1 active high

- 355 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

SPG_HBLANK Address：0x005F 80D4
bit 31-26 25-16 15-10 9-0

Reserved hbend Reserved hbstart

hbend
Specify the H Blank ending position. (default = 0x07E)

hbstart
Specify the H Blank starting position. (default = 0x345)

SPG_LOAD Address：0x005F 80D8
bit 31-26 25-16 15-10 9-0

Reserved vcount Reserved hcount

vcount
Specify "number of lines per field - 1" for the CRT; in interlace mode, specify "number of lines

per field/2 - 1." (default = 0x106)

hcount
Specify "number of video clock cycles per line - 1" for the CRT. (default = 0x359)

SPG_VBLANK Address：0x005F 80DC
bit 31-26 25-16 15-10 9-0

Reserved vbend Reserved vbstart

vbend
Specify the V Blank ending position. (default = 0x150) The recommended value is 0x015.

vbstart
Specify the V Blank starting position. (default = 0x104)

SPG_WIDTH Address：0x005F 80E0
31-22 21-12 11-8 7 6-0

eqwidth bpwidth vswidth R hswidth

eqwidth
Specify the equivalent pulse width as "number of video clock cycles - 1". (default = 0x01F)

bpwidth
Specify the broad pulse width as "number of video clock cycles - 1". (default = 0x319)

vswidth
Specify the VSYNC width in terms of the number of lines. (default = 0x3)

hswidth
Specify the HSYNC width as "number of video clock cycles - 1". (default = 0x3F)

- 356 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TEXT_CONTROL Address：0x005F 80E4
31-18 17 16 15-13 12-8 7-5 4-0

Reserved Code book
endian_reg

Index
endian_reg

Reserved bank bit Reserved stride

Code book endian_reg
Index endian_reg

This field makes the Endian specification for the code book and index.

Setting Meaning
0 Little Endian (default)
1 Big Endian

bank bit
This field specifies the position of the bank bit when accessing texture memory

(default = 0x00). Normally, set 0x00.

stride
This field specifies the U size of the stride texture. The U size is the stride value × 32.

Setting Meaning
0x00 invalid (default)
0x01 32
0x02 64
0x03 96
0x04 128

・・・・・・ ・・・・・・
0x1C 896
0x1D 928
0x1E 960
0x1F 992

- 357 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

VO_CONTROL Address：0x005F 80E8
bit 31-22 21-16 15-9 8 7-4 3 2 1 0

Reserved pclk_delay Reserved pixel_double Field_mode blank
_vide

o

blank
_pol

vsync
_pol

hsync
_pol

This register contains the video output settings. (default = 0x00 0108)

pclk_delay
This field specifies the delay for the PCLK signal to the DAC.
bit21 : Reset delay value
bit20～16 : Controls delay value

pixel_double
This field specifies whether to output the same pixel or not for two pixels in the horizontal

direction.

Setting Meaning
0 not pixel double
1 pixel double (default)

field_mode
This field specifies the video field control method.

Setting Meaning
0x0 Use field flag from SPG. (default)
0x1 Use inverse of field flag from SPG.
0x2 Field 1 fixed.
0x3 Field 2 fixed.
0x4 Field 1 when the active edges of HSYNC and VSYNC match.
0x5 Field 2 when the active edges of HSYNC and VSYNC match.
0x6 Field 1 when HSYNC becomes active in the middle of the VSYNC active

edge.
0x7 Field 2 when HSYNC becomes active in the middle of the VSYNC active

edge.
0x8 Inverted at the active edge of VSYNC.

0x9-0xF Reserved

blank_video
This field specifies whether to display the screen or not.

Setting Meaning
0 Display the screen.
1 Do not display the screen. (Display the border color.)

(default)

blank_pol
vsync_pol
hsync_pol

This field specifies the polarity of BLANK, VSYNC, and HSYNC.

Setting Meaning
0 active low (default)
1 active high

- 358 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

VO_STARTX Address：0x005F 80EC
bit 31-10 9-0

Reserved Horizontal start position

This register specifies the display starting position in the horizontal direction for HSYNC. (default =
0x09D)

VO_STARTY Address：0x005F 80F0
bit 31-26 25-16 15-10 9-0

Reserved Vertical start position
on field 2

Reserved Vertical start position
on field 1

This register specifies the display start position in the vertical direction for field-1/field-2 versus
VSYNC. (The default for both is 0x015.)

SCALER_CTL Address：0x005F 80F4
bit 31-19 18 17 16 15-0

Reserved Field
Sele
ct

Interlace Horizontal
scaling enable

Vertical scale factor

Field Select
This register specifies the field that is to be stored in the frame buffer in flicker-free interlace

mode type B.

Setting Meaning
0 field 1 (default)
1 field 2

Interlace
This register specifies whether or not to use flicker-free interlace mode type B.

Setting Meaning
0 off (default)
1 on

Horizontal scaling enable
This field specifies whether or not to use the horizontal direction 1/2 scaler.

Setting Meaning
0 disable (default)
1 enable

Vertical scale factor
This field specifies the scale factor in the vertical direction. (default = 0x0400)

This value consists of a 6-bit integer portion and a 10-bit decimal portion, and expands or reduces
the screen in the vertical direction by "1/scale factor." When using flicker-free interlace mode type
B, specify 0x0800.

<Example of setting>
× 2: 0x0200
× 1: 0x0400
× 0.5: 0x0800

PAL_RAM_CTRL Address：0x005F 8108
bit 31-2 1-0

- 359 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Reserved pixel format

This register specifies the palette color format. This register must be set before storing any data in
pallete RAM.

Setting Meaning
0x0 ARGB1555 (default)
0x1 RGB565
0x2 ARGB4444
0x3 ARGB8888

SPG_STATUS (Read Only) Address：0x005F 810C
bit 31-14 13 12 11 10 9-0

Reserved vsync hsync blank fieldnum scanline

This register indicates the current status of the internal sync circuit (SPG). (Value after reset =
0x0000)

vsync
This field indicates the status of the VSYNC signal.

hsync
This field indicates the status of the HSYNC signal.

blank
This field indicates the status of the BLANK signal.

fieldnum
This field indicates the field number.

Setting Meaning
0 field 1
1 field 2

scanline
This field indicates the display line number.

FB_BURSTCTRL Address：0x005F 8110
bit 31-20 19-16 14-8 7-6 5-0

Reserved wr_burst vid_lat Reserved vid_burst

wr_burst
Specify the frame buffer burst write size - 1. (default = 0x09)

vid_lat
This field specifies the amount of data remaining in the read data FIFO when making a frame

buffer read request. (default = 0x06) Set a value such that (vid_lat) < 0x80 - (vid_burst). The
recommended value is 0x3F.

vid_burst
This field specifies the burst read size from the frame buffer. (default = 0x39)

- 360 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

FB_C_SOF (Read Only) Address：0x005F 8114
bit 31-24 23-2 1-0

Reserved Frame Buffer Current Read Address Reserved

Specify the starting address, in 32-bit units, for the frame that is currently being sent to the DAC.
(default = 0x000000)

Y_COEFF Address：0x005F 8118
bit 31-16 15-8 7-0

Reserved Coefficient 1 Coefficient 0/2

Scaling in the vertical direction is filtered with a three-line buffer. This register specifies an unsigned
8-bit value as the filtering co-efficient for each line when scaling down.

Coefficient 0/2: Coefficient for line 0/2 (default = 0x00)
Coefficient 1: Coefficient for line 1 (center) (default = 0x00)

<Normal setting example>
Coefficient 0/2 = 0x40 (Coefficient: × 0.25)
Coefficient 1 = 0x80 (Coefficient: × 0.5)

PT_ALPHA_REF Address：0x005F 811C
bit 31-8 7-0

Reserved Alpha reference
for punch through

<Additional register in HOLLY2>
This register specifies the alpha value that is used for comparison when drawing Punch Through

polygons. (default = 0xFF) Only those pixels for which [(pixel α value) ≥ (register setting)] is true are
drawn.

FOG_TABLE Address：0x005F 8200～0x005F 83FD
bit 31-16 15-0

Reserved Fog table data

This register specifies the Fog data (128 tables) for Look-up Table mode.

PALETTE_RAM Address：0x005F 9000～0x005F 9FFF
bit 31-0

Palette data

This register specifies the color data (1024 colors) for the palette texture. The color format is
specified by the PAL_RAM_CTRL register. In the case of the 16-bit color format, only the lower 16
bits (bits 15 through 0) are valid. The PAL_RAM_CTRL register must be set before any color data is set.

- 361 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.4.3 Tile Accelerator Registers

TA_OL_BASE Address：0x005F 8124
bit 31-24 23-5 4-0

Reserved Base Address 0 0000

This register specifies (in 8 × 32-bit units) the starting address for storing Object Lists as a relative
address, assuming the start of texture memory (32-bit area) as "0." (default = 0x0 0000)

TA_ISP_BASE Address：0x005F 8128
bit 31-24 23-2 1-0

Reserved Base Address 00

This register specifies (in 32-bit units) the starting address for storing the ISP/TSP Parameters as a
relative address, assuming the start of texture memory (32-bit area) as "0." (default = 0x00 0000)

TA_OL_LIMIT Address：0x005F 812C
bit 31-24 23-5 4-0

Reserved Limit Address 0 0000

This register specifies (in 8 × 32-bit units) the limit address for storing Object Lists as a relative
address, assuming the start of texture memory (32-bit area) as "0." (default = 0x0 0000) Because the TA
may automatically store data in the address that is specified by this register, it must not be used for other
data. For example, the address specified here must not be the same as the address in the TA_ISP_BASE
register.

If the Object List storage address exceeds this address, the data is not stored and an interrupt is
generated. Because the Object List will not be stored as a data structure correctly when this interrupt is
generated, the Object List can be used for drawing, but will not produce the expected image.

TA_ISP_LIMIT Address：0x005F 8130
bit 31-24 23-2 1-0

Reserved Limit Address 00

This register specifies (in 32-bit units) the limit address for storing ISP/TSP Parameters as a relative
address, assuming the start of texture memory (32-bit area) as "0." (default = 0x0 0000) If the ISP/TSP
Parameter storage address exceeds this address, an interrupt is generated and the Object List is not
stored. Because the ISP/TSP Parameters are not stored correctly when this interrupt is generated, the
parameters cannot be used for drawing.

- 362 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TA_NEXT_OPB (Read Only) Address：0x005F 8134
bit 31-24 23-5 4-0

Reserved Address 0 0000

This register indicates (in 8 × 32-bit units) the starting address for the Object Pointer Block that the
TA will use next as a relative address, assuming the start of texture memory (32-bit area) as "0." This
address is not finalized until it is initialized by the TA_LIST_INIT register.

In HOLLY1, when this register is initialized by the TA_LIST_INIT register, the following start
address is set.

OPB_Mode=0 (TA_ALLOC_CTRL)
Start address = TA_OL_BASE
　 ＋ (　 [OPB (= Object Pointer Block) size of Opaque]
 　+[OPB size of Opaque Modifier Volume]
　 　+[OPB size of Translucent]
 　+[OPB size of Translucent Modifier Volume])
 *([Tile_X_Num of TA_GLOB_TILE_CLIP] +1)
 *([Tile_Y_Num of TA_GLOB_TILE_CLIP] +1)
 *4

OPB_Mode=1 (TA_ALLOC_CTRL)
Start address = TA_OL_BASE

In HOLLY2, When this register is initialized by the TA_LIST_INIT register, the value in the
TA_NEXT_OPB_INIT register is loaded into this register. This register is not initialized by the
TA_LIST_CONT register.

 TA_ITP_CURRENT (Read Only) Address：0x005F 8138
bit 31-24 23-2 1-0

Reserved Address 00

This register specifies (in 32-bit units) the starting address where the next ISP/TSP Parameters are
stored as a relative address, assuming the start of texture memory (32-bit area) as "0." (default = 0x00
0000)　

In HOLLY2, when this register is initialized by the TA_LIST_INIT register, the value in the
TA_ISP_BASE register is loaded into this register. This register is not initialized by the
TA_LIST_CONT register.

TA_GLOB_TILE_CLIP Address：0x005F 813C
bit 31-20 19-16 15-6 5-0

Reserved Tile_Y_Num Reserved Tile_X_Num

This register specifies the Global Tile Clip values. Only those objects that correspond to Tiles in the
Global Tile Clipping area are stored in texture memory. This register must be set before the list is
initialized by the TA_LIST_INIT register.

Tile_Y_Num
This field specifies the Tile number in the Y direction (0 to 14) for the lower right corner of the

Global Tile Clip. (default = 0x0) Set [the number of Tiles in the Y direction in the valid area] - 1.
"15" (0xF) must not be specified.

Tile_X_Num
This field specifies the Tile number in the X direction (0 to 39) for the lower right corner of the

Global Tile Clip. (default = 0x00) Set [the number of Tiles in the X direction in the valid area] - 1.
"40" (0x28) through "63" (0x3F) must not be specified.

TA_ALLOC_CTRL Address：0x005F 8140
bit 31-17 20 19-18 17-16 15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0

R OPB_Mode R PT_OPB R TM_OPB R T_OPB R OM_OPB R O_OPB

- 363 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

OPB_Mode
This field specifies the address direction when storing the next Object Pointer Block (OPB) in

texture memory, in the event that the specified Object Pointer Block size has been exceeded.
*The position differs according to the HOLLY version; bit 16 in HOLLY1 and bit 20 in HOLLY2.

Setting OPB storage method
0 Store in the direction of increasing addresses (default)
1 Store in the direction of decreasing addresses

PT_OPB
This field specifies the unit size for the Object Pointer Block of the Punch Through list in

HOLLY2.

TM_OPB
This field specifies the unit size of an Object Pointer Block for a Translucent Modifier Volume

list.

T_OPB
This field specifies the unit size of an Object Pointer Block for a Translucent list.

OM_OPB
This field specifies the unit size of an Object Pointer Block for an Opaque Modifier Volume list.

O_OPB
This field specifies the unit size of an Object Pointer Block for an Opaque list.

These fields specify the Object Pointer Block unit size for each type of list (Opaque, etc.) Specify
"No List" for a list that is not used in the screen. For the Pointer Burst Size value in the
FPU_PARAM_CFG register, set a value that is less than or equal to the Object Pointer Block size
specified here.

This register must be set before the lists are initialized through the TA_LIST_INIT register.

Setting Unit size
0 No List (Not used in screen)
1 8×32bit
2 16×32bit
3 32×32bit

TA_LIST_INIT Address： 0x005F 8144
bit 31 30-0

List_Init Reserved

Setting the List_Init bit to "1" initializes the lists. This bit must be set before the lists are created by
the TA. This bit always returns a "0" when read.

Before initializing the lists through this register, the TA_GLOB_TILE_CLIP register, the
TA_ALLOC_CTRL register ,and, in HOLLY2, the TA_NEXT_OPB_INIT register must be set.

TA_YUV_TEX_BASE Address：0x005F 8148
bit 31-24 23-3 2-0

Reserved Base Address 000

This register specifies (in 64-bit units) the starting address for storing YUV422-Texture data as a
relative address, assuming the start of texture memory (64-bit area) as "0." (default = 0x00 0000) When
this register is written, the YUV-data Converter in the TA is initialized, and then begins operation using
the next data that is input as U-data.

TA_YUV_TEX_CTRL Address：0x005F 814C

- 364 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

bit 31-25 24 23-17 16 15-14 13-8 7-6 5-0
Reserved YUV_Form R YUV_Tex R YUV_V_Size R YUV_U_Size

YUV_Form
This field specifies the format of the YUV data that is input to the TA.

Setting YUV data format
0 YUV420 format (default)
1 YUV422 format

YUV_Tex
This field selects the type of YUV422-Texture that is stored in texture memory.

Setting Texture type
0 One texture of [(YUV_U_Size + 1) * 16] pixels (H) ×

[(YUV_V_Size + 1) * 16] pixels (V)
1 [(YUV_U_Size + 1) * (YUV_V_Size + 1)] textures of 16

texels (H) × 16 texels (V)

YUV_V_Size
This field specifies the vertical size of the YUV422-Textures that are stored in texture memory.

(default = 0x00) Specify "the number of pixels in the vertical direction/16 - 1."

＜Non-Twiddled texture＞
Texture V size 16 32 64 128 256 512 1024

YUV_V_Size setting 0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F

YUV_U_Size
This field specifies the horizontal size of the YUV422 textures that are stored in texture memory.

(default = 0x00) Specify "the number of pixels in the horizontal direction/16 - 1." Based on the
texture sizes that the CORE Block supports, the following values can be specified:

<Non-Twiddled texture>
Texture U size 16 32 64 128 256 512 1024

YUV_U_Size setting 0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F

<Non-Twiddled Stride texture>
Texture U size 32 64 96～960

(a multiple of 32)
992 1024

YUV_U_Size setting 0x01 0x03 0x05～ 0x3B
(an odd number)

0x3D 0x3F

- 365 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TA_YUV_TEX_CNT (Read Only) Address：0x005F 8150
bit 31-13 12-0

Reserved YUV_Num

This register indicates the number of macroblocks (16 pixels × 16 pixels) that are currently stored in
texture memory. (default = 0x0000) If the TA_YUV_TEX_BASE register is written, this register is
initialized to "0."

TA_LIST_CONT Address: 0x005F 8160
bit 31 30-0

List_Cont Reserved

<Additional register in HOLLY2>
If the List_Cont bit is set to "1", list continuation processing is performed. Although the TA is

initialized, just as with the TA_LIST_INIT register, the values in the TA_NEXT_OPB register and in the
TA_ITP_CURRENT register are not initialized. As a result, when the second and subsequent lists are
input on a continued basis, the Object List and ISP/TSP Parameters are stored after the previous
parameters. If this bit is read, it returns a "0".

The value of the TA_OL_BASE register must be changed before performing list continuation
processing.

TA_NEXT_OPB_INIT Address：0x005F 8164
bit 31-24 23-5 4-0

Reserved Address 0 0000

<Additional register in HOLLY2>
This register indicates (in 32-bit units) the address for storing additional OPBs during list

initialization as a relative address, assuming the start of texture memory (32-bit area) as "0." (default =
0x0 0000) When setting this register, it is necessary to consider the total number of OPBs for which
area will need to be allocated in texture memory for the entire list that is being input (in several pieces)
to the TA.

This register must be set before initializing lists through the TA_LIST_INIT register.

TA_OL_POINTERS (Read Only) Address：0x005F 8600～0x005F 8F5C
bit 31 30 29 28-25 24 23-2 1-0
Entry Sprite

flag
Triangle

flag
Number of

Triangles/Quads
Shadow Pointer Address Skip[1:0]

There are enough of these registers for 600 Tiles: 40 Tiles in the X direction × 15 Tiles in the Y
direction. These registers cannot be accessed while the TA is in operation.

Entry
This field indicates whether the current object type has been registered at least once in the Tile in

question. If the lists are initialized through the TA_LIST_INIT register or the End Of List Control
Parameter is input, this field is cleared to "0."

Sprite flag
This field indicates that the previous polygon that was registered in the Tile in question was a

Quad polygon.

Triangle flag
This field indicates that the previous polygon that was registered in the Tile in question was a

Triangle polygon.

Number of Triangle/Quad
This field indicates the number of consecutive previous polygons that were registered in the Tile

in question.

- 366 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Shadow
This field indicates the shadow value for the previous polygon that was registered in the Tile in

question.

Pointer Address
This field indicates the storage address of the next Object List for the Tile in question. The

address that is indicated is a 32-bit aligned relative address, assuming the start of texture memory
(32-bit area) as "0."

Skip[1:0]
This field indicates the lower 2 bits of the skip value for the previous polygon that was registered

in the Tile in question.

§8.4.4 GD-ROM Registers
The GD-ROM device is positioned as an ATA device, and the registers are designed accordingly. Note

that in some cases, different registers are indicated for reading as opposed to writing.

(The Control Block Registers are described below.)

Alternate Status(Read) / Device Control(Write) Address：0x005F 7018
bit 31-8 7-0

Reserved Alternate Status
/ Device Control

• Alternate Status (Read)

The contents of this register are identical to those of the 0x005F 709C status register; refer to that
description for details on the function of each bit. Note also that interrupt and DMA status
information is not cleared even if this register is read.

7 6 5 4 3 2 1 0
BSY DRDY DF DSC DRQ CORR Reserved CHECK

• Device Control (Write)

7 6 5 4 3 2 1 0
Reserved 1 SRST nIEN 0

SRST
This is the bit that the SH4 (i.e., the "system" or the "host") sets in order to initiate a software

reset. This protocol is not used, however. To initiate a software reset, use the software reset defined
by ATAPI.

nIEN
This bit sets interrupts to the host. When "0," the interrupt is enabled; when "1," the interrupt is

disabled.

- 367 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(The Command Block Registers are described below.)

Data (Read/Write) Address：0x005F 7080
bit 31-16 15-0

Reserved Data / Data

• Data (Read/Write)
This register is used for data transfers with the host, and can switch between 8 bits and 16 bits.

Error(Read) / Features(Write) Address：0x005F 7084
bit 31-8 7-0

Reserved Error / Features

• Error (Read)
This register can be used to read the end status of the command that was executed last. This

register is also set when device diagnostics are terminated. If bit 0 of the status register is "1," it
indicates that an error occurred. In that event, the details of the error are reflected in this register.

7 6 5 4 3 2 1 0
Sense Key MCR ABRT EOMF ILI

Sense Key
The contents of this field are explained below.

Code Meaning
0 NO SENSE. This sense key code indicates that there is no specific sense key information that should be reported.

This sense key code is also used when the command was executed successfully.
1 RECOVERED ERROR. This sense key code indicates that the last command was executed successfully after some

error recovery processing by the device. Further details can be found by checking the supplemental sense byte and
information field. If multiple error recoveries occurred during the execution of one command, this device reports the
error that was recovered from last.

2 NOT READY. This sense key code indicates that this device cannot be accessed.
3 MEDIUM ERROR. This sense key code indicates that the command terminated with a nonrecoverable error due to a

defect on the recording medium or an error that occurred during recording or reading. This sense key code is also
returned when this device cannot determine whether the problem was a medium defect or a hardware error (sense
key code 4).

4 HARDWARE ERROR. This sense key code indicates that a nonrecoverable hardware error (for example, a
controller failure, a device failure, a parity error, etc.) occurred while this device was executing a command or
running self-diagnostics.

5 ILLEGAL REQUEST. This sense key code indicates either that there was an illegal parameter in a command packet,
or that there was an illegal parameter in additional parameters that were added as data for a command. When this
device detects an illegal parameter in a command packet, it terminates the command without making any changes to
the medium. When this device detects an illegal parameter in additional parameters that were added as data for a
command, it is possible that the device has already made changes to the medium.

When this sense key code is reported, the command has not yet been executed.
6 UNIT ATTENTION. This sense key code indicates either that a removable media has been switched, or that this

device was reset.
7 DATA PROTECT. This sense key code indicates that an attempt was made to write to a block that is write-protected.

8-0xA Reserved
0xB ABORTED COMMAND. This sense key code indicates that the device aborted the command. Recovery may be

possible by re-executing the command from the host system.
0xC-0xF Reserved

- 368 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

MCR
This field indicates that there was a media change request and the media was ejected (ATA level).

ABRT
This field indicates that the command was invalidated because the drive is not ready (ATA level).

EOMF
This field indicates that the end of the media was detected (option).

ILI
This field indicates that the command has an illegal length (option).

• Features (Write)

This register is normally used to specify the data transfer method, but is also used to specify the
Set Features parameters among the SATA commands (commands that correspond to the ATA
command within the protocol).

When using this register to specify the data transfer method

7 6 5 4 3 2 1 0
Reserved DMA

DMA
This field indicates that the transfer of the data to a command is to be performed in DMA mode.

When using this register to the parameter of Set Features command.

7 6 5 4 3 2 1 0
Set(1)/

Clear(0)F
eature

Feature Number(= "3")

Feature Number
This field is the transfer mode setting. The transfer mode that was set in the Sector Count register

can be set by writing a "3" in Feature Number and then receiving the Set Feature command.
The actual transfer mode is specified by using the Sector Count register.

- 369 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Interrupt reason(Read) / Sector Count(Write) Address：0x005F 7088
bit 31-8 7-0

Reserved Interrupt reason /
Sector Count

• Interrupt reason (Read)

7 6 5 4 3 2 1 0
Reserved IO CoD

IO
When "0," this field indicates the direction of transfer is from the host to the device; when "1,"

this field indicates the direction of transfer is from the device to the host.

CoD
When "0," this field indicates data; when "1," this field indicates a command.

IO DRQ CoD Meaning
0 1 1 Ready to receive command packet.
1 1 1 Ready to send message from device to host.
1 1 0 Ready to send data to the host.
0 1 0 Ready to receive data from the host.
1 0 1 The "completed" status is in the status register.

• Sector Count (Write)

7 6 5 4 3 2 1 0
Transfer Mode Mode value

Transfer mode according to the sector count register value
Register value Transfer mode

00000 00x PIO Default Transfer Mode
00001 xxx PIO Flow Control Transfer Mode x
00010 xxx Single Word DMA Mode x
00100 xxx Multi-Word DMA
00011 xxx Reserved(for Pseudo DMA Mode)

This register is used in combination with the Set Features command, a SATA command.

- 370 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Sector Number (Read/Write) Address：0x005F 708C
bit 31-8 7-0

Reserved Sector Number /
Sector Number

• Sector Number (Read/Write)

The information that is obtained in this register is identical to the value of the REQ_STAT
command. For details, refer to the explanation of REQ_STAT. The operation of this register does
not conform with the ATA standard.

7 6 5 4 3 2 1 0
Disc Format Status

Byte Count Low (Read/Write) Address：0x005F 7090
bit 31-8 7-0

Reserved Byte Count LSB /
Byte Count LSB

Byte Count High (Read/Write) Address：0x005F 7094
bit 31-8 7-0

Reserved Byte Count MSB /
Byte Count MSB

These two registers (Byte Count Low and Byte Count High) are used to control the number of
bytes that the host sends in response to each DRQ.

These register show the LSB (Byte Count Low) and the MSB (Byte Count High), respectively, for
the byte count.

These registers are used in PIO transfer mode only. In DMA mode, this byte count is ignored.
This count is set before the packet command is issued. This count stipulates the total transfer length
for commands that transfer data groups (MODE SELECT/SENSE, INQUIRY, etc.).

For commands that request multiple DRQ interrupts, such as read and write instructions, the
expected transfer length is set in this count.

Whenever data is transferred, this device sets the number of data bytes that the host transfers in
this byte count, and then generates a DRQ interrupt. The contents of this register do not change
while DRQ is "1."

Drive Select (Read/Write) Address：0x005F 7098
bit 31-8 7-0

Reserved Drive Select /
Drive Select

• Drive Sector (Read/Write)

7 6 5 4 3 2 1 0
1 Reserved 1 0 LUN

LUN
This field specifies the logical unit that executes the command.
This parameter is optional, and is reserved for future use.

- 371 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Status(Read) / Command (Write) Address：0x005F 709C
bit 31-8 7-0

Reserved Drive Select /
Drive Select

• Status (Read)

This register indicates the drive status. If this register is read, the interrupt signal that was
pending is cleared.

When bit 7 (BSY) is "0," the other bits are also valid, and access to the command block is
possible. When bit 7 (BSY) is "1," the other bits are invalid, and access to the command block is not
possible.

Bit 7 (BSY) becomes valid 400nsec after the command is accepted.

7 6 5 4 3 2 1 0
BSY DRDY DF DSC DRQ CORR Reserved CHECK

BSY
This field is set to "1" when a command is accepted.

DRDY
This field is set to "1" when response to an ATA command is possible.

DF
This field returns the Drive Fault information.

DSC
This field indicates that seek processing is complete.

DRQ
This field is set to "1" when data transfer with the host is possible.

CORR
This field indicates that a correctable error occurred.

CHECK
If an error occurs, this bit is set to "1."

• Command (Write)

The host sets commands in this register. The command is loaded into the appropriate register in
the command block along with the necessary parameters, and becomes valid when the command
code is written to the Command register (0x005F 70C9).

When the GD-ROM device receives a command, it sets BSY within 400nsec.
The following commands that are part of the ATA standard specifications are supported by this

system.

Command Code
NOP 0x00
Soft Reset 0x08
Execute Device Diagnostic 0x90
Packet Command 0xA0
Identify Device 0xA1
Set Features 0xEF

The contents of the commands are described below.

- 372 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

NOP (0x00)
This command enables access to the device status for hosts for which only 16-bit register access is

valid. The device executes this command as a response to commands that are not recognized by
doing the following:

・ Setting "abort" in the error register
・ Setting "error" in the status register
・ Clearing BUSY in the status register
・ Asserting the INTRQ signal

Soft Reset (0x08)
This command executes a software reset.
If the GD-ROM device receives a "Soft Reset" command, it initializes the hardware and sets the

default parameters. When the device is stopped, the disc motor begins to rotate and the device
becomes ready to operate.

Execute Drive Diagnostic (0x90)
This command executes the device's internal diagnostics.
（a） The device reports the results of its own diagnostics.
（b） The device clears the BSY bit and initiates an interrupt.

The diagnostics codes that are written to the error register are 8-bit codes such as those shown in
the table below.

Error Code Meaning
0x00 Normal
0x03 Data buffer error
0x04 ODC error
0x05 CPU error
0x06 DSC error
0x07 Other error

Packet Command (0xA0)
For details, refer to the GD-ROM Protocol SPI (Sega Packet Interface) Specifications.

Identify Device (0xA1)
This command requests information on the drive (device) that is connected.
The host can get information from the device by using the ATAPI IDENTIFY DEVICE command.

Byte Meaning
0x00 Manufacturer's ID
0x01 Model ID
0x02 Version ID

0x03～0x0F Reserved
0x10～0x1F Manufacturer's name (16 ASCII characters)
0x20～0x2F Model name (16 ASCII characters)
0x30～0x3F Firmware version (16 ASCII characters)
0x40～0x4F Reserved

Set Features (0xEF)
This command makes settings concerning the timing and protocol for the interface with the

device. A device can only make settings that concern the transfer mode.

1. Set "3" in the Feature register Set bit and the Feature Number.
2. Specify the transfer method in the upper five bits of the Sector Count register, and the mode
number in the lower three bits.
3. Issue the Set Features command.

These settings can be made independently for DMA mode and PIO mode.

§8.4.5 AICA Register

- 373 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The contents and function of each register for the AICA audio chip are explained below.
The addresses (in the "ADDRESS" column in the table that follows and in the descriptions) are the same

for accesses that are internal and external to the AICA. In addition, register accesses by the SH4 are 4-byte
accesses only, and only the lower 16 bits are valid.

• Channel Data

AICA ADDR. G2 ADDR. 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0x00800000 0x00700000 KX KB -- SS LP PCMS SA[22:16] KX:KYONEX

0x00800004 0x00700004 SA[15:0] LP:LPCTL

0x00800008 0x00700008 LSA[15:0] KB:KYONB

0x0080000C 0x0070000C LEA[15:0] SS:SSCTL

0x00800010 0x00700010 D2R[4:0] D1R[4:0] -- AR[4:0]

0x00800014 0x00700014 -- LS KRS[3:0] DL[4:0] RR[4:0] LS:LPSLNK

0x00800018 0x00700018 -- OCT[3:0] -- FNS[9:0]

0x0080001C 0x0070001C RE LFOF[4:0] PLFOWS PLFOS[2:0] ALFOWS ALFOS[2:0] RE:LFORE

0x00800020 0x00700020 -- IMXL[3:0] ISEL[3:0]

0x00800024 0x00700024 -- DISDL[3:0] -- DIPAN[4:0]

0x00800028 0x00700028 TL[7:0] -- Q[4:0]

0x0080002C 0x0070002C -- FLV0[12:0]

0x00800030 0x00700030 -- FLV1[12:0]

0x00800034 0x00700034 -- FLV2[12:0]

0x00800038 0x00700038 -- FLV3[12:0]

0x0080003C 0x0070003C -- FLV4[12:0]

0x00800040 0x00700040 -- FAR[4:0] -- FD1R[4:0]

0x00800044 0x00700044 -- FD2R[4:0] -- FRR[4:0]

0x00800080
|

0x008000C4

0x00700080
|

0x007000C

4

SLOT 1 CONTROL REGISTER

: : ：

0x00801F80
|

0x00801FC4

0x00701F80
|

0x00701FC

4

SLOT 63 CONTROL REGISTER

0x00802000 0x00702000 -- EFSDL[3:0] -- EFPAN[4:0] DSP_OUT_1

: : ：

0x00802044 0x00702044 -- EFSDL[3:0] -- EFPAN[4:0] DSP_OUT_18

Table 8-21 Channel Data

- 374 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Register Descriptions (Channel Data)
The various registers that comprise the channel data are described below. (All registers are read/write

registers, unless indicated otherwise.)

KYONEX(-/w)
Writing "1" to this register executes KEY_ON, OFF for all slots. Writing "0" is invalid.

KYONB
This register registers KEY_ON, OFF.
(If KEY_ON is to be registered simultaneously, set this bit to "1" for all slots to be turned ON,

and then write a "1" to KEYONEX for one of the slots.)

SSCTL
0: Use the data in external memory (SDRAM) as sound input data.
1: Use noise as sound input data.

LPCTL
0: Loop OFF (The LSA and LEA settings are required; once LEA is reached, processing ends.)
1: Forward loop.

PCMS[1:0]
(Cannot be changed during ADPCM playback.)
0: 16-bit PCM (two's complement format)
1: 8-bit PCM (two's complement format)
2: 4-bit ADPCM (Yamaha format)
3: 4-bit ADPCM long stream

SA[22:0]
This register specifies the starting address for the sound data in terms of the byte address.

However,
when PCMS = 0, the LSB of SA must be "0."

PCMS ="2" or "3", LSB two bits of SA must be "00".

LSA[15:0]
This register specifies the loop starting address for the sound data in terms of the number of

samples from SA.
The number of samples indicates the number of bytes in 8-bit PCM, the number of pairs of bytes

(16 bits) in the case of 16-bit PCM, and the number of half-bytes in the case of ADPCM. The
minimum values that can be set are limited by the pitch and the loop mode. Because the actual
value is not approximated at values near SA due to the specifications for ADPCM, as large a value
as possible must be used for LSA (LSA > 0x8). (When in a loop) When using long stream, the
lowest two bits of LSA must be "00".

LEA[15:0]
This register specifies the loop ending address for the sound data in terms of the number of

samples from SA.
The minimum value that can be set is limited by the pitch and the loop mode.
Specify so that SA≦ LSA≦ LEA. When using long stream, the lowest two bits of LEA must be

"00".
Refer to section 8.1.1.1, "Loop Control."

AR[4:0]
This register specifies the rate of change in the EG in the attack state. (The volume increases.)

D1R[4:0]
This register specifies the rate of change in the EG in the decay 1 state. (The volume decreases.)

D2R[4:0]
This register specifies the rate of change in the EG in the decay 2 state. (The volume decreases.)

RR[4:0]
This register specifies the rate of change in the EG in the release state. (The volume decreases.)

DL[4:0]
This register specifies the EG level at which the transition is made from decay 1 to decay 2,

making the specification through the upper 5 bits of the EG code.

- 375 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

KRS[3:0]
This register specifies the EG key rate scaling rate (as a positive number).
0x0: Minimum scaling

:
0xE: Maximum scaling
0xF: Scaling off

LPSLNK
Loop start link function: when the sound slot input data address that is read exceeds the loop start

address, the EG makes the transition to decay 1.
(When EG = 000, the transition is not made.) In this case, the transition to decay 2 may not be

made, depending on the DL setting.
(Refer to section 8.1.1.3, "AEG.")

OCT[3:0]
This register specifies the octave in two's complement format. The values that appear in

parentheses in the table below could generate noise in the ADPCM, so they should be used with
caution. (A maximum of "2" (when FNS = 0) is valid.)

OCT 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
Interval -8 -7 -6 -5 -4 -3 -2 -1 0 +1 (+2) (+3) (+4) (+5) (+6) (+7)

Table 8-22 Octave Specification

FNS[9:0]
The pitch is set along with OCT by setting the F number.
Pitch: P[CENT] = 1200 × log2((2^10 + FNS)/2^10)
When FNS = 0 (and OCT = 0), the interval matches the sampling source. The pitch error (pitch

precision) that is equivalent to the LSB of the FNS is 1.69.
(Refer to section 8.1.1.4 “PG.")

LFORE
This register specifies whether or not to put the LFO into the initial state. (If noise was selected,

the setting is invalid.)
0: Do not put the LFO in the reset state.
1: Put the LFO in the reset state.

LFOF[4:0]
This register specifies the LFO oscillating frequency. (If noise was selected, the setting is

invalid.)

ALFOWS[1:0]
This register specifies the shape of the ALFO waveform.

PLFOWS[1:0]
This register specifies the shape of the PLFO waveform.

ALFOS[2:0]
This register specifies the degree of mixing of the LFO to the EG.

PLFOS[2:0]
This register specifies the degree of the LFO on the pitch.
(Refer to section 8.1.1.5, "LFO.")

ISEL[3:0]
This register specifies the MIXS register address for each slot when inputting sound slot output

data to the DSP's MIXS register.
(Supplement) MIXS determines the sum of the inputs for all slots and handles the result as the

DSP input. MIXS has an area for adding the input on each slot, and an area for
storing the interval and value of one sample. These areas are allocated in
alternation. As a result, reads on the DSP side are possible at any step.

(Caution) Make the settings so that the sum of the inputs to the MIXS does not exceed 0dB.
(There is no overflow protect function.)

- 376 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

TL[7:0]
Total level: This register specifies the actual attenuation, which is derived by multiplying the EG

value by this value which indicates the attenuation.

DIPAN[4:0]
This register specifies the orientation for each slot when sending direct data.

EFPAN[4:0]
This register specifies the orientation for each slot of effect data and external input data.

IMXL[3:0]
This register specifies the level for each slot when inputting sound slot output data to the DSP

MIXS register. (Refer to Table 8-23 below.)

DISDL[3:0]
This register specifies the send level for each slot when outputting direct data to the DAC. (Refer

to the table below.)

EFSDL[3:0]
This register specifies the send level for each slot when outputting of effect data and external

input data to the DAC.

Register value Volume
0 -MAXdB
1 -42dB
2 -39dB
： ：

0xD -6dB
0xE -3dB
0xF 0dB

Table 8-23 Send Level

(Refer to section 8.1.1.6, "MIXER.")

Q[4:0]
This register contains resonance data, and sets the Q value for the FEG filter. A gain range from -

3.00 to 20.25dB can be specified. The relationship between the bit settings and the gain is illustrated
in the following table. (Q[dB] = 0.75 × register value - 3)

DATA GAIN[dB] DATA GAIN[dB]
11111 20.25 00110 1.50
11100 18.00 00100 0.00
11000 15.00 00011 -0.75
10000 9.00 00010 -1.50
01100 6.00 00001 -2.25
01000 3.00 00000 -3.00

Table 8-24 Resonance Data Setting Values
The definition of Q is illustrated in the following graph.

- 377 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Fig. 8-13 Definition of Q

FLV0[12:0]
This is the cutoff frequency at attack start.

FLV1[12:0]
This is the cutoff frequency at attack end (decay start).

FLV2[12:0]
This is the cutoff frequency at decay end (sustain start).

FLV3[12:0]
This is the cutoff frequency at KOFF.

FLV4[12:0]
This is the cutoff frequency after release.

FAR[4:0]
However, only values ranging from 0x0008 to 0x1FF8 can be used for FLV0 through 4. Playback

may not be possible if any other values are used.

The following graph summarizes the function of each register.

Fig. 8-14 Function of Each Register

- 378 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The following graph roughly shows the correspondence between the filter cutoff frequency and
the registers.

Fig. 8-15 Filter Cutoff Frequency

* To set the filter to pass signals through, set Q to 4h and FLV to 0x1FF8.

FAR[4:0]
This register specifies the rate of change in the FEG in the attack state.

FD1R[4:0]
This register specifies the rate of change in the FEG in the decay 1 state.

FD2R[4:0]
This register specifies the rate of change in the FEG in the decay 2 state.

FRR[4:0]
This register specifies the rate of change in the FEG in the release state.

- 379 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

• Common Data (Data that Does Not Depend on the Channel)

AICA ADDR. G2 ADDR. 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0x00802800 0x00702800 MN -- M8 D8 VER[3:0] MVOL[3:0]
MN:Mono D8:DAC18B

M8:MEM8MB

0x00802804 0x00702804 $T RBL -- RBP[22:11]
$T:TESTB0(IC TEST)

0x00802808 0x00702808 -- OF OE IO IF IE MIBUF[7:0]
IF:MIFUL IO:MIOVF

OE:MOEMP
OF:MOFUL IE:MIEMP

0x0080280C 0x0070280C -- AF MSLC[5:0] MOBUF[7:0]
AF:AFSET

0x00802810 0x00702810
LP

SGC EG[12:0]

0x00802814 0x00702814 CA[15:0]

0x00802880 0x00702880 DMEA[22:16] -- $TSCD[2:0] $T MRWINH[3:0] $*** (IC TEST)

0x00802884 0x00702884 DMEA[15:2] --

0x00802888 0x00702888 GA DRGA[14:2] -- GA:DGATE

0x0080288C 0x0070288C DI DLG[14:2] -- EX DI:DDIR　 EX:DEXE

0x00802890 0x00702890 -- TACTL[2:0] TIMA[7:0]

0x00802894 0x00702894 -- TBCTL[2:0] TIMB[7:0]

0x00802898 0x00702898 -- TCCTL[2:0] TIMC[7:0]

0x0080289C 0x0070289C -- SCIEB[10:0]

0x008028A0 0x007028A0 -- SCIPD[10:0]

0x008028A4 0x007028A4 -- SCIRE[10:0]

0x008028A8 0x007028A8 -- SCILV0[7:0]

0x008028AC 0x007028AC -- SCILV1[7:0]

0x008028B0 0x007028B0 -- SCILV2[7:0]

0x008028B4 0x007028B4 -- MCIEB[10:0]

0x008028B8 0x007028B8 -- MCIPD[10:0]

0x008028BC 0x007028BC -- MCIRE[10:0]

-- 0x00702C00 -- *VREG -- AR
AR:ARMRST

0x00802D00 -- -- L7 L6 L5 L4 L3 L2 L1 L0
For interruption

0x00802D04 -- -- RP M7 M6 M5 M4 M3 M2 M1 M0
For interruption

RP:ReadProtection

-- 0x00710000 *RTC[31:16]

-- 0x00710004 *RTC[15:0]

-- 0x00710008 --
*EN EN:RTC Write Enable

Table 8-25 Common Data

- 380 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Register Descriptions (Common Data)

The various registers that comprise the common data are described below.

MONO (-/w)
0: Enables the panpot information.
1: Disables the panpot information.
(Note) If the panpot information has been disabled, a sound that is on only one channel doubles

in volume, so it is necessary to lower MVOL.

MVOL[3:0] (-/w)
This is the master volume for the digital output to the DAC.
(Refer to section 8.1.1.6, "MIXER.")

DAC18B (-/w)
0: Makes the digital output a 16-bit DAC interface.
1: Makes the digital output an 18-bit DAC interface.

MEM8MB (-/w)
This register specifies the size of the memory that is used for wave memory.
0：16Mbit_SDRAM
1：64Mbit_SDRAM

The following table indicates the relationship between memory size and the memory space that is
used.

ADDRESS 16Mbit
SDRAM

64Mbit
SDRAM

0x00FF FFFF
|

0x00E0 0000

Not
Available

Available

0x00DF FFFF
|

0x00C0 0000
0x00BF FFFF

|
0x00A0 0000

0x009F FFFF
|

0x0080 0000

Available

Table 8-26 Relationship between Memory Space and the Memory That Is Used

VER[3:0] (r/-)
This register is used to read the version information for the AICA chip based on these

specifications.

RBL[1:0] (-/w)
This specifies the length of the ring buffer.
0：8K words
1：16K words
2：32K words
3：64K words

RBP[22:11] (-/w)
This register specifies the starting address of the ring buffer. (1K word boundary)

MIBUF[7:0] (r/-)
This register is the MIDI input data buffer. (4-byte FIFO buffer)

- 381 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

MIOVF (r/-)
This register indicates that the input FIFO buffer has overflowed.

MIEMP (r/-)
Indicates that the input FIFO is empty.

MIFUL (r/-)
This register indicates that the input FIFO buffer is full (i.e., has no free space).

(The three flags MIOVF, MIEMP and MIFUL indicate the status before reading MIBUF[7:0].)

MOFUL (r/-)
This register indicates that the output FIFO buffer is full.

MOEMP (r/-)
This register indicates that the output FIFO buffer is empty.

MOBUF[7:0] (-/w)
This register is the MIDI output data buffer.

AFSEL (-/w)
This register determines whether to use the AEG or the FEG to monitor the EG.
0: AEG monitor
1: FEG monitor

MSLC[5:0] (-/w)
This register specifies the slot number for which to monitor SGC, CA, EG, and LP below.

SGC[1:0] (r/-)
This register monitors the current EG status.
0: Attack
1: Decay 1
2: Decay 2
3: Release

CA[15:10] (r/-)
This register indicates the position of the sample that is currently being read from the sound

source, in terms of the upper 16 bits of the relative sample number from the SA. The LSB is
equivalent to one sample.

EG[12:0] (r/-)
These bits monitor the upper 13 bits of the current EG value. Only the lower 10 bits are valid for

AEG. When the channel is selected by MSLC[5:0], these flags can be used to check for the loop
end. Performing a read while a flag is "1" clears that flag to "0."

LP (r/-)
This bit is set when the sample position that is read by the sound source loops. However, this bit

is undefined when monitoring FEG. When a slot for which this bit has been set is set in MSLC[5:0],
the flag is cleared to "0" by reading LP.

MRWINH[3:0] (-/w)
By writing a "1" to each of the bits shown below, the corresponding type of wave memory access

can be prohibited. (Register access cannot be prohibited.)
bit 0: Access by DSP
bit 1: Read by sound source
bit 2: Access by AICA's built-in sound processor (ARM, hereafter) (This bit cannot be written by

the ARM.)
bit 3: Access by system (SH4)

DGATE (r/w)
This register specifies zero clear of the destination area by DMA transfer.
0: Zero clear is not executed.
1: Zero clear is executed.

- 382 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

DDIR (r/w)
This register specifies the DMA transfer direction.
0: Transfer to AICA register from wave memory.
1: Transfer to wave memory from AICA register.

DEXE (r/w)
This register specifies DMA start. (The value goes to "0" at DMA end.)
Writing a "1" to this register starts DMA. (Writing "0" is invalid.)

DMEA[22:2] (-/w)
This register specifies, as a word address, the wave memory address where DMA is to start.

DRGA[14:2] (-/w)
This register specifies, as a word address, the internal register address where DMA is to start.

DLG[14:2] (-/w)
This register specifies the number of words to be transferred by DMA.
(Note) The source and destination areas must not exceed the memory area and the internal

register area. DMA-related registers must not be changed while DMA transfer is
in progress.

(Supplement) Registers are allocated to the memory space [AICA:0x00800000-0x008045C7],
[G2:0x00700000-0x007045C7]. The transfer address always changes in the
increasing direction. DMA to an RTC register is not possible. The offset address
from the start of each area is input in the DMEA and DRGA registers.

TACTL[2:0] (-/w)
This register specifies the cycle for incrementing timer A.
0: Increment once every sample
1: Increment once every 2 samples
2: Increment once every 4 samples
3: Increment once every 8 samples
4: Increment once every 16 samples
5: Increment once every 32 samples
6: Increment once every 64 samples
7: Increment once every 128 samples

TIMA[7:0] (-/w)
Timer A (An interrupt request is generated each time that the UP counter changes from All “1” to

All “0”.)

TBCTL[2:0] (-/w)
This register specifies the increment cycle for timer B. (The codes are the same as for timer A.)

TIMB[7:0] (-/w)
Timer B (Interrupt generation is the same as for timer A.)

TCCTL[2:0] (-/w)
This register specifies the increment cycle for timer C. (The codes are the same as for timer A.)

TIMC[7:0] (-/w)
Timer C (Interrupt generation is the same as for timer A.)

SCIPD[10:0]
This register stores interrupt requests to the ARM. (The bit correspondence is as shown below.)
bit 0(r): Interrupt request to external interrupt input pin INTN (SCSI)
bit 1(r): Reserved
bit 2(r): Reserved
bit 3(r): This is the MIDI input interrupt request; an interrupt request is generated when valid data

is loaded into the input FIFO buffer. Therefore, when reading the FIFO buffer, it is
necessary to read out the entire buffer in one operation, so that the FIFO buffer is then
empty. This interrupt request is automatically cleared when the FIFO buffer is emptied.

bit 4(r): DMA end interrupt request
bit 5(r/w): This interrupt request to the ARM is written by the CPU; only a "1" can be written to

this bit. (If a "0" is written, it is invalid.) This flag can be set by the system (SH4) or by

- 383 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

the ARM.
bit 6(r): Timer A interrupt request
bit 7(r): Timer B interrupt request
bit 8(r): Timer C interrupt request
bit 9(r): This is the MIDI output interrupt request. This interrupt request is generated when the

output FIFO buffer becomes empty. This interrupt request is automatically cleared
when a write to the output FIFO buffer causes it to no longer be empty.

bit 10(r): Sample interval interrupt request

SCIEB[10:0] (r/w)
This register enables interrupts to the ARM. If a bit is set to "1," the interrupt that corresponds to

that bit is enabled.

SCIRE[10:0] (-/w)
Writing a "1" to a bit in this register resets the interrupt request that corresponds to that bit.

SCILV0[7:0] (-/w)
This register specifies bit 0 of the level codes for the interrupts to the ARM that are defined by the

corresponding bits.

SCILV1[7:0] (-/w)
This register specifies bit 1 of the level codes for the interrupts to the ARM that are defined by the

corresponding bits.

SCILV2[7:0] (-/w)
This register specifies bit 2 of the level codes for the interrupts to the ARM that are defined by the

corresponding bits. (For details on the bits, refer to the description of SCIPD.)
(Supplement) The level of bits 7, 8, 9, and 10 of an interrupt request can be specified as a

group through bit 7.

- 384 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

MCIPD[10:0]
This register stores interrupt requests to the system (SH4).
bit 0(r): Interrupt request to external interrupt input pin INTN (SCSI)
bit 1(r): Reserved
bit 2(r): Reserved
bit 3(r): This is the MIDI input interrupt request; an interrupt request is generated when valid data

is loaded into the input FIFO buffer. Therefore, when reading the FIFO buffer, it is
necessary to read out the entire buffer in one operation, so that the FIFO buffer is then
empty. This interrupt request is automatically cleared when the FIFO buffer is emptied.

bit 4(r): DMA end interrupt request
bit 5(r/w): This interrupt request to the system (SH4) is written by the CPU; only a "1" can be

written to this bit. (If a "0" is written, it is invalid.) This flag can be set by the system
(SH4) or by the ARM.

bit 6(r): Timer A interrupt request
bit 7(r): Timer B interrupt request
bit 8(r): Timer C interrupt request
bit 9(r): This is the MIDI output interrupt request. This interrupt request is generated when the

output FIFO buffer becomes empty. This interrupt request is automatically cleared
when a write to the output FIFO buffer causes it to no longer be empty.

bit 10(r): Sample interval interrupt request

MCIEB[10:0] (r/w)
This register enables interrupts to the system (SH4). If a bit is set to "1," the interrupt that

corresponds to that bit is enabled.

MCIRE[10:0] (-/w)
Writing a "1" to a bit in this register resets the interrupt request that corresponds to that bit.
(Supplement) The MCINTN interrupt signal to the system (SH4) is regarded to indicate the

start of the above interrupt request, and generates a negative pulse that
corresponds to one clock cycle on “MCCK”. Interrupt levels cannot be specified
for interrupts to the system (SH4).

ARMRST (r/w)
This register resets the ARM.
0: Reset clear
1: Reset
(Note) This register can only be controlled by the system (SH4).

RP (-/w)
This register sets control of the SDRAM (wave memory) from the system side (SH4) to the "write

only" state.
0: The system (SH4) can read/write SDRAM.
1: The system (SH4) can only write SDRAM.
(Note) This register can only be controlled by the ARM.

L[7:0] (r/-)
This register indicates the number of the interrupt input to the ARM. Note that using L[7:3] is

prohibited.
(Note) This register can only be controlled by the ARM.

M[7:0] (-/w)
When the ARM has completed interrupt processing, it indicates the end of interrupt processing by

setting this bit to "1". Note that using M[7:1] is prohibited.
(Note) This register can only be controlled by the ARM.

- 385 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

The following registers are inside the AICA, but are not related to the sound system. These registers can
only be controlled from the SH4 side.

* VREG[1:0] (r/w)
This register sets the operation and output mode of the DVE (Digital Video Encoder). (Refer to

section 6.1, "DVE.") The relationship between the setting in this register and the output mode is
shown in the table below.

VREG1 VREG0 DVE output mode
0 0 VGA (RGB)
0 1 VGA (RGB)
1 0 NTSC/PAL (RGB)
1 1 NTSC/PAL (VBS / Y+S / C)

Table 8-27 Video Mode Setting

* RTC[31:0] (r/w)
This is the setting register for the AICA's internal real time clock. This register indicates the

status of the counter that is incremented by one each second. This register permits both read and
write access. This register can count for up to 136 years. For details on usage, refer to section 4.2.3,
"RTC."

* EN (-/w)
Setting this bit to "1" enables writes to the RTC. For details, refer to section 4.2.3, "RTC."

- 386 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

• DSP Data

The register configuration of the DSP section in the chip is shown below.

AICA ADDR. G2 ADDR. 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0x00803000
|

0x008031FF

0x00703000
|

0x007031FF

COEF REG
"COEF[12:0]"

0 0 0 00～ 127

0x00803200
|

0x008032FF

0x00703200
|

0x007032FF

MEMORY ADDRESS REG
"MADRS[16:1]" 00 ～ 63

0x00803400 0x00703400 DSP MICRO PROGRAM
"MPRO[63:48]"

STEP_0

0x00803404 0x00703404 DSP MICROPROGRAM
"MPRO[47:32]"

0x00803408 0x00703408 DSP MICROPROGRAM
"MPRO[31:16]"

0x0080340C 0x0070340C DSP MICROPROGRAM
"MPRO[15:0]"

0x00803410
|

0x00803BEC

0x00703410
|

0x00703BEC

： STEP_1～
STEP_126

0x00803BF0 0x00703BF0 DSP MICRO PROGRAM
"MPRO[63:48]"

STEP_127

0x00803BF4 0x00703BF4 DSP MICROPROGRAM
"MPRO[47:32]"

0x00803BF8 0x00703BF8 DSP MICROPROGRAM
"MPRO[31:16]"

0x00803BFC 0x00703BFC DSP MICROPROGRAM
"MPRO[15:0]"

0x00804000
|

0x008043FF

0x00704000
|

0x007043FF

-- LOW "TEMP[7:0]"
00～ 127

TEMPBUFFER HIGH
"TEMP[23:8]"

0x00804400
|

0x008044FF

0x00704400
|

0x007044FF

-- LOW "MEMS[7:0]"
00～ 31

SOUND MEMORY DATA HIGH
"MEMS[23:8]"

0x00804500
|

0x0080457F

0x00704500
|

0x0070457F

-- "MIXS[3:0]" 00～ 15

MIXSOUND SLOT DATA STACK
"MIXS[19:4]"

0x00804580
|

0x008045BF

0x00704580
|

0x007045BF

EFCTED DATA OUTPUT
"EFREG[15:0]"

00～ 15

0x008045C0
|

0x008045C7

0x007045C0
|

0x007045C7

EXTERNAL INPUT DATA STACK
"EXTS"

00～ 01

Table 8-28 DSP Data

- 387 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Register Descriptions

The various registers that comprise the DSP data are described below. (EXTS is read-only; all of the
other registers are read/write.)

COEF[12:0]
This is the DSP coefficient buffer. (Number of data items: 128)
(Note) In order to maintain compatibility in the event of a future expansion of the data width to

16 bits, a "0" should be written to the lower three bits that are undefined in the register
map.

MADRS[16:1]
This is the DSP address buffer. (Number of data items: 64)

MPRO[63:0]
This is the DSP microprogram buffer. (Number of data items: 128)

TEMP[23:0]
This is the DSP work buffer. (Number of data items: 128)
This buffer has a ring buffer configuration, but the pointer is decremented by "1" for each sample.

MEMS[23:0]
This is the buffer for input data from wave memory. (Number of data items: 32)
Actual writes to MEMS[7:0] are executed at the same time as writes to MEMS[23:16].

MIXS[19:0]
This is the buffer for the sound data from the input mixture. (Number of data items: 16)
(Note) Writes to MIXS[19:0] are used for LSI testing.
Writes that are not made in test mode are invalid for the following reasons:
- Regardless of the register settings, data from the sound source is always being written to this

register.
- Second-generation data is retained in order to integrate all slots, but it is not possible to specify

a generation when accessing the register.

EFREG｢15:0]
This is the DSP output buffer. (Number of data items: 16)

EXTS[15:0]
This is the digital audio input data buffer. (Number of data items: 2)

- 388 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.5 List of Interrupts

§8.5.1 Interrupt Tree
Diagram only

- 389 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.5.2 List of Interrupt Sources
(System Bus-related Interrupts)

i/f Block Internal Name (Source) Type Description
PVR i/f PIDEINT

(End of DMA)
Notificati
on

When a PVR-DMA transfer has been completed normally, this
interrupt is generated when completion of the write in the
destination has been confirmed for a "PVR CORE → Root Bus
(the HOLLY's internal bus)" transfer, and when the write is
completed on the PVR side for a "Root Bus → PVR" transfer.

PIIAINT
(Illegal Address Set)

Error This interrupt is generated when an address outside of the range
indicated in Note 1 1 has been set in SB_PDSTAP(0x005F7C00),
SB_PDSTR(0x005F7C04) both when the address is written to the
register and when an attempt is made to initiate DMA with that
address in effect.

PIORINT
(DMA Over Run)

Error This interrupt is generated when a PVR-DMA transfer that is in
progress attempts to access an address outside of the range
specified by Note 1.

Maple i/f MDEINT
(End of DMA)

Notificati
on

This interrupt is generated when a Maple-DMA transfer
(transmission/reception) has ended normally, when the transfer is
completed at the instruction level.

MVOINT
(V-Blank Over)

Notificati
on

This interrupt is generated when a Maple interface
transmission/reception operation spans V-Blank_In.

MIAINT
(Illegal Address Set)

Error This interrupt is generated when an address outside of the range
indicated in Note 22 has been set in SB_MDSTAR(0x005F 6C04)
both when the address is written to the register and when an
attempt is made to initiate DMA with that address in effect.

MORINT
(DMA Over Run)

Error This interrupt is generated when a Maple-DMA transfer that is in
progress attempts to access an address outside of the range
specified by Note 2.

MFOFINT
(Write FIFO Over Flow)

Error This interrupt is generated when an attempt was made to write
data from a peripheral to the FIFO buffer, and the FIFO buffer was
already full. The interrupt is generated at the time of the write to
the FIFO buffer.

MICINT
(Illegal Command)

Error This interrupt is generated when the Maple interface loaded in an
illegal instruction through a transmission/reception operation. The
interrupt is generated at the time of the instruction fetch.

G1bus i/f G1DEINT
(End of DMA)

Notificati
on

When a G1-DMA transfer has been completed normally, this
interrupt is generated when completion of the write in the
destination has been confirmed for a "G1 Bus → Root Bus"
transfer and when the write is completed on the G1 side for a
"Root Bus → G1 Bus" transfer.

G1IAINT
(Illegal Address Set)

Error This interrupt is generated when an address outside of the range
indicated in Note 33 has been set in SB_GDSTAR(0x005F 7404)
both when the address is written to the register and when an
attempt is made to initiate DMA with that address in effect.

G1bus i/f G1ORINT
(DMA Over Run)

Error This interrupt is generated when a G1-DMA transfer that is in
progress attempts to access an address outside of the range
specified by Note 3.

G1ATINT
(G1 Access At DMA)

Error This interrupt is generated when an attempt is made during a G1-
DMA transfer to access ROM or the GD-ROM device on the G1
Bus from the Root bus.

G1GDINT Status This interrupt is generated by the GD-ROM device. (This is an

1 Note 1: Range on the Power VR side (texture memory area) from 0x0400 0000 to 0x05FF FFE0, on the Root Bus
side (system memory area) from 0x0C00 0000 to 0x0FFF FFE0, or the range specified by the register at 0x005F
7C80 (PVR-DMA System Memory Area Protection).

2 Note 2: Range from 0x0C00 0000 to 0x0FFF FFE0 (system memory area), or the range specified by the register at 0x005F 6C8C
(Maple System Memory Area Protection).

3 Note 3: Range from 0x0080 0000 to 0x00FF FFE0 (wave memory), from 0x0400 0000 to 0x05FF FFE0 (texture memory), from
0x0C00 0000 to 0x0FFF FFE0 (system memory area), from 0x0300 0000 to 0x0300 000 to 0x03FF FFE0, from 0x1400 0000 to
0x17FF FFE0 (G2-external device), or the range specified by the register at 0x005F 74B8 (GD-DMA System Memory Area
Protection).

- 390 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(From GD-ROM Drive) asynchronous level interrupt.)
G2bus i/f G2DEAINT(End of AICA-DMA) Notificati

on
When a G2-DMA transfer has been completed normally, these
four interrupts are generated when completion of the write in the
destination has been confirmed for a "G2 Bus → Root Bus"
transfer, and when the write is completed on the G2 side for a
"Root Bus → G2 Bus" transfer.

G2DE1INT(End of Ext-DMA1)
G2DE2INT(End of Ext-DMA2)
G2DEDINT(End of Dev-DMA)

G2IAAINT
(AICA-DMA Illegal Address Set)

Error These four interrupts are generated when an address outside of the
range indicated in Note 44 has been set in the corresponding
"DMA Start Address," both when the address is written to the
register and when an attempt is made to initiate DMA with that
address in effect.

G2IA1INT
(Ex1-DMA Illegal Address Set)

G2IA2INT
(Ex2-DMA Illegal Address Set)

G2IADINT
(Dev-DMA Illegal Address Set)

G2ORAINT
(AICA-DMA Over Run)

Error These four interrupts are generated if, during an attempt at access
by a G2-DMA transfer, the target device does not respond within
the specified period of time.G2OR1INT

(Ex1-DMA Over Run)
G2OR2INT

(Ex1-DMA Over Run)
G2ORDINT

(Dev-DMA Over Run)
G2TOAINT

(AICA-DMA Time Out)
Error These four interrupts are generated if, during an attempt at access

by a G2-DMA transfer, the target device does not respond within
the specified period of time.G2TO1INT

(EX1-DMA Time Out)
G2TO2INT

(EX2-DMA Time Out)
G2TODINT

(Dev-DMA Time Out)
G2TOCINT

(Time Out in CPU Accessing)
Error this interrupt is generated during an access from the CPU if the

target device on the G2 Bus does not respond within the specified
period of time.

G2AICINT (from AICA) Status These three interrupts are interrupt signals from their respective
devices; the timing with which these interrupts are generated
depends on the device. (These are asynchronous level interrupts.)

G2MDMINT (from Modem)
G2EXTINT (from Ext. DEV)

DDT i/f DTDE2INT (End of ch2-DMA) Notificati
on

This interrupt is generated at the end of a DMA transfer.

DTDESINT (End of Sort-DMA) Notificati
on

This interrupt is generated at the end of a DMA transfer.

DTCESINT
(Sort-DMA Command Error)

Error When a format that Sort-DMA cannot handle is encountered in the
polygon parameters, this interrupt is generated while loading the
Global Parameters.

SH4 i/f CIHINT
(Accessing to Inhibited Area)

Error This interrupt is generated when the area indicated in Note 5 is
accessed.

Table 8-29

(Drawing Core-related Interrupts)
PCEOVINT

(End Of Render Video)
Notificati
on

This interrupt is generated when the last data in a frame is transferred
to the frame buffer.

PCEOIINT
(End Of Render ISP)

Notificati
on

This interrupt is generated when rendering of the final Tile to the ISP
has been completed.

PCEOTINT Notificati This interrupt is generated when rendering of the final Tile to the

4 Note 4: Range on the G2 side from 0x0080 0000 to 0x00FF (wave memory), on the Root Bus side from 0x0400 0000 to 0x05FF
FFE0 (texture memory), from 0x0C00 0000 to 0x0FFF FFE0 (system memory), or the range specified by the register at 0x005F
78BC (G2-DMA System Memory Area Protection).

- 391 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(End Of Render TSP) on TSP has been completed.
PCVIINT

(V-Blank In)
Notificati
on

Indicates the start of the V-Blank interval. (This interrupt is
generated when the raster reaches the value specified by the
SPG_VBLANK_INT register.)

PCVOINT
(V-Blank Out)

Notificati
on

Indicates the end of the V-Blank interval. (This interrupt is
generated when the raster reaches the value specified by the
SPG_VBLANK_INT register.)

PCHIINT
(H-Blank In)

Notificati
on

Indicates the start of the H-Blank interval. This interrupt can be
generated either at a specified line, after every specified number of
lines, or every line; this selection is made through the
SPG_HBLANK_INT register.

PCIOCINT
(ISP Out of Cache)

Error ISP parameter cache overflow.

PCHZDINT
(Hazard Processing of Strip Buffer)

Error This interrupt is generated when rendering is forcibly terminated due
to strip buffer switching.

Table 8-30

- 392 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(Tile Accelerator-related Interrupts)
TAYUVINT
(End Of YUV Data Strage)

Notifica
tion

This interrupt is generated when the number of macroblocks of
YUV data set in the TA_YUV_TEX_CTRL register have been
stored in texture memory.

TAEOINT
(End Of Opaque List Strage)

Notifica
tion

This interrupt is generated when, according to the End Of List
(Control Parameter), all of the data in the Opaque List has
been transferred to texture memory.

TAEOMINT
(End Of Opaque
 Modifier Volume List Strage)

Notifica
tion

This interrupt is generated when, according to the End Of List
(Control Parameter), all of the data in the Opaque Modifier
Volume List has been transferred to texture memory.

TAETINT
(End Of Translucent List Strage)

Notifica
tion

This interrupt is generated when, according to the End Of List
(Control Parameter), all of the data in the Translucent List has
been transferred to texture memory.

TAETMINT
(End Of Translusent
 Modifier Volume List Strage)

Notifica
tion

This interrupt is generated when, according to the End Of List,
all of the data in the Translucent Modifier Volume List has
been transferred to texture memory.

TAEPTIN* . From HOLLY2 specifications
(End Of Punch Through List Strage)

Notifica
tion

This interrupt is generated when the transfer of Punch Through
List data to texture memory is complete, as indicated by End
Of List.

TAPOFINT
(ISP/TSP Parameter Limit Address)

Error This interrupt is generated when the ISP/TSP Parameter
storage address has exceeded the value set in the
TA_ISP_LIMIT register.
Because the integrity of the display list cannot be guaranteed if
this interrupt has been generated, it is necessary to start over
from list initialization.

TALOFINT
(Object List Limit Address)

Error This interrupt is generated when the Object List storage
address has exceeded the value set in the Object List Limit
register.
Because the integrity of the display list cannot be guaranteed if
this interrupt has been generated, it is necessary to start over
from list initialization.

TAIPINT
(Illegal Parameter Input)

Error This interrupt is generated if a parameter that is not a Vertex
Parameter has been input, even though the Vertex Parameter
that specifies "End Of Strip" (in the Parameter Control Word)
has not been input.

TAFOFINT
(TA FIFO Overflow)

Error This interrupt is generated when an Overflow has occurred in
the input data FIFO buffer. Because the input data is invalid
and the operation of the TA after this interrupt has been
generated cannot be guaranteed, it is necessary to execute a
software reset, etc.

Table 8-31

- 393 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§8.6 List of Input Parameters

<Triangle Polygon Input Parameters>
The parameters that are input to the TA for a Triangle polygon are determined by the polygon data

settings. The configuration of the input parameter data can be determined by checking the table below and
the parameter tables on the following pages.

Switching of
parameters inside/

outside of a
volume

Shading data type Use of texture Use of Offset
Color

Number of UV
bits

Input parameter
number

Does not switch Packed Color Non-Textured Not used Not applicable (1)
Textured Not used 32bit (2)

16bit (3)
Used 32bit (2)

16bit (3)
Floating Color Non-Textured Not used Not applicable (4)

Textured Not used 32bit (5)
16bit (6)

Used 32bit (5)
16bit (6)

Intensity A Non-Textured Not used Not applicable (7)
Textured Not used 32bit (8)

16bit (9)
Used 32bit (10)

16bit (11)
Intensity B Non-Textured Not used Not applicable (12)

Textured Not used 32bit (13)
16bit (14)

Used 32bit (13)
16bit (14)

Switches Packed Color Non-Textured Not used Not applicable (15)
Textured Not used 32bit (16)

16bit (17)
Used 32bit (16)

16bit (17)
Floating Color Non-Textured Not used Not applicable Not supported

Textured Not used 32bit Not supported
16bit Not supported

Used 32bit Not supported
16bit Not supported

Intensity A Non-Textured Not used Not applicable (18)
Textured Not used 32bit (19)

16bit (20)
Used 32bit (19)

16bit (20)
Intensity B Non-Textured Not used Not applicable (21)

Textured Not used 32bit (22)
16bit (23)

Used 32bit (22)
16bit (23)

Table 8-32

<Note>
"Intensity A" specifies the Face Color through the immediately preceding Global Parameter, while

"Intensity B" uses the Face Color that was used for the previous object.

- 394 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(1) Packed Color
Non-Textured

(2) Packed Color
Textured
32bit UV

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 0

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 3

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
(ignored) Z Texture Control Word Z
(ignored) Base Color (ignored) U
(ignored) (ignored) (ignored) V

Data Size for Sort DMA (ignored) Data Size for Sort DMA Base Color
Next Address for Sort DMA (ignored) Next Address for Sort DMA Offset Color

(3) Packed Color
Textured
16bit UV

(4) Floating Color
Non-Textured

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 4

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 1

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
Texture Control Word Z (ignored) Z

(ignored) U / V (ignored) Base Color Alpha
(ignored) (ignored) (ignored) Base Color R

Data Size for Sort DMA Base Color Data Size for Sort DMA Base Color G
Next Address for Sort DMA Offset Color Next Address for Sort DMA Base Color B

(5) Floating Color
Textured
32bit UV

(6) Floating Color
Textured
16bit UV

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 5

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 6

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
Texture Control Word Z Texture Control Word Z

(ignored) U (ignored) U / V
(ignored) V (ignored) (ignored)

Data Size for Sort DMA (ignored) Data Size for Sort DMA (ignored)
Next Address for Sort DMA (ignored) Next Address for Sort DMA (ignored)

Base Color Alpha Base Color Alpha
Base Color R Base Color R
Base Color G Base Color G
Base Color B Base Color B

Offset Color Alpha Offset Color Alpha
Offset Color R Offset Color R
Offset Color G Offset Color G
Offset Color B Offset Color B

- 395 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(7) Intensity A
Non-Textured

(8) Intensity A
Textured
no Offset Color
32bit UV

Global Parameter
Polygon Type 1

Vertex Parameter
Polygon Type 2

Global Parameter
Polygon Type 1

Vertex Parameter
Polygon Type 7

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
(ignored) Z Texture Control Word Z

Face Color Alpha Base Intensity Face Color Alpha U
Face Color R (ignored) Face Color R V
Face Color G (ignored) Face Color G Base Intensity
Face Color B (ignored) Face Color B (ignored)

(9) Intensity A
Textured
no Offset Color
16bit UV

(10) Intensity A
Textured

use Offset Color
32bit UV

Global Parameter
Polygon Type 1

Vertex Parameter
Polygon Type 8

Global Parameter
Polygon Type 2

Vertex Parameter
Polygon Type 7

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
Texture Control Word Z Texture Control Word Z

Face Color Alpha U / V (ignored) U
Face Color R (ignored) (ignored) V
Face Color G Base Intensity Data Size for Sort DMA Base Intensity
Face Color B (ignored) Next Address for Sort DMA Offset Intensity

Face Color Alpha
Face Color R
Face Color G
Face Color B

Face Offset Color Alpha
Face Offset Color R
Face Offset Color G
Face Offset Color B

(11) Intensity A
Textured

use Offset Color
16bit UV

(12) Intensity B
Non-Textured

Global Parameter
Polygon Type 2

Vertex Parameter
Polygon Type 8

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 2

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
Texture Control Word Z (ignored) Z

(ignored) U / V (ignored) Base Intensity
(ignored) (ignored) (ignored) (ignored)

Data Size for Sort DMA Base Intensity Data Size for Sort DMA (ignored)
Next Address for Sort DMA Offset Intensity Next Address for Sort DMA (ignored)

Face Color Alpha
Face Color R
Face Color G
Face Color B

Face Offset Color Alpha
Face Offset Color R
Face Offset Color G
Face Offset Color B

- 396 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(13) Intensity B
Textured
32bit UV

(14) Intensity B
Textured
16bit UV

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 7

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 8

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X

TSP Instruction Word Y TSP Instruction Word Y
Texture Control Word Z Texture Control Word Z

(ignored) U (ignored) U / V
(ignored) V (ignored) (ignored)

Data Size for Sort DMA Base Intensity Data Size for Sort DMA Base Intensity
Next Address for Sort DMA Offset Intensity Next Address for Sort DMA Offset Intensity

(15) Packed Color
Non-Textured

Two Volumes

(16) Packed Color
Textured
32bit UV

Two Volumes
Global Parameter

Polygon Type 3
Vertex Parameter

Polygon Type 9
Global Parameter

Polygon Type 3
Vertex Parameter

Polygon Type 11
Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word

ISP/TSP Instruction Word X ISP/TSP Instruction Word X
TSP Instruction Word 0 Y TSP Instruction Word 0 Y

(ignored) Z Texture Control Word 0 Z
TSP Instruction Word 1 Base Color 0 TSP Instruction Word 1 U0

(ignored) Base Color 1 Texture Control Word 1 V0
Data Size for Sort DMA (ignored) Data Size for Sort DMA Base Color 0

Next Address for Sort DMA (ignored) Next Address for Sort DMA Offset Color 0
U1
V1

Base Color 1
Offset Color 1

(ignored)
(ignored)
(ignored)
(ignored)

(17) Packed Color
Textured
16bit UV

Two Volumes

(18) Intensity A
Non-Textured

Two Volumes

Global Parameter
Polygon Type 3

Vertex Parameter
Polygon Type 12

Global Parameter
Polygon Type 4

Vertex Parameter
Polygon Type 10

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X ISP/TSP Instruction Word X
TSP Instruction Word 0 Y TSP Instruction Word 0 Y
Texture Control Word 0 Z (ignored) Z
TSP Instruction Word 1 U0 / V0 TSP Instruction Word 1 Base Intensity 0
Texture Control Word 1 (ignored) (ignored) Base Intensity 1
Data Size for Sort DMA Base Color 0 Data Size for Sort DMA (ignored)

Next Address for Sort DMA Offset Color 0 Next Address for Sort DMA (ignored)
U1 / V1 Face Color Alpha 0

(ignored) Face Color R 0
Base Color 1 Face Color G 0

Offset Color 1 Face Color B 0
(ignored) Face Color Alpha 1
(ignored) Face Color R 1
(ignored) Face Color G 1
(ignored) Face Color B 1

- 397 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(19) Intensity A
Textured
32bit UV

Two Volumes

(20) Intensity A
Textured
16bit UV

Two Volumes
Global Parameter

Polygon Type 4
Vertex Parameter

Polygon Type 13
Global Parameter

Polygon Type 4
Vertex Parameter

Polygon Type 14
Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word

ISP/TSP Instruction Word X ISP/TSP Instruction Word X
TSP Instruction Word 0 Y TSP Instruction Word 0 Y
Texture Control Word 0 Z Texture Control Word 0 Z
TSP Instruction Word 1 U0 TSP Instruction Word 1 U0 / V0
Texture Control Word 1 V0 Texture Control Word 1 (ignored)
Data Size for Sort DMA Base Intensity 0 Data Size for Sort DMA Base Intensity 0

Next Address for Sort DMA Offset Intensity 0 Next Address for Sort DMA Offset Intensity 0
Face Color Alpha 0 U1 Face Color Alpha 0 U1 / V1

Face Color R 0 V1 Face Color R 0 (ignored)
Face Color G 0 Base Intensity 1 Face Color G 0 Base Intensity 1
Face Color B 0 Offset Intensity 1 Face Color B 0 Offset Intensity 1

Face Color Alpha 1 (ignored) Face Color Alpha 1 (ignored)
Face Color R 1 (ignored) Face Color R 1 (ignored)
Face Color G 1 (ignored) Face Color G 1 (ignored)
Face Color B 1 (ignored) Face Color B 1 (ignored)

(21) Intensity B
Non-Textured

Two Volumes

(22) Intensity B
Textured
32bit UV

Two Volumes
Global Parameter

Polygon Type 3
Vertex Parameter

Polygon Type 10
Global Parameter

Polygon Type 3
Vertex Parameter

Polygon Type 13
Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word

ISP/TSP Instruction Word X ISP/TSP Instruction Word X
TSP Instruction Word 0 Y TSP Instruction Word 0 Y

(ignored) Z Texture Control Word 0 Z
TSP Instruction Word 1 Base Intensity 0 TSP Instruction Word 1 U0

(ignored) Base Intensity 1 Texture Control Word 1 V0
Data Size for Sort DMA (ignored) Data Size for Sort DMA Base Intensity 0

Next Address for Sort DMA (ignored) Next Address for Sort DMA Offset Intensity 0
U1
V1

Base Intensity 1
Offset Intensity 1

(ignored)
(ignored)
(ignored)
(ignored)

- 398 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

(23) Intensity B
Textured
16bit UV

Two Volumes
Global Parameter

Polygon Type 3
Vertex Parameter

Polygon Type 14
Parameter Control Word Parameter Control Word

ISP/TSP Instruction Word X
TSP Instruction Word 0 Y
Texture Control Word 0 Z
TSP Instruction Word 1 U0 / V0
Texture Control Word 1 (ignored)
Data Size for Sort DMA Base Intensity 0

Next Address for Sort DMA Offset Intensity 0
U1 / V1

(ignored)
Base Intensity 1

Offset Intensity 1
(ignored)
(ignored)
(ignored)
(ignored)

<Quad Polygon Input Parameters>
There are two types of parameters that are input to the TA for a Quad polygon, depending on whether

textures are used or not. The configuration of the input parameter data can be determined by checking the
table below. Setting s that are not found in the table below are not supported.

Switching of
parameters inside/

outside of a
volume

Shading data
type

Use of texture Use of Offset Color Number of UV
bits

Input parameter
number

Does not switch Packed Color Non-Textured Not used Not applicable (1)
Textured Not used 32bit Not supported

16bit (2)
Used 32bit Not supported

16bit (2)

(1) Non-Textured (2) Textured
16bit UV

Global Parameter
Sprite

Vertex Parameter
Sprite Type 0

Global Parameter
Sprite

Vertex Parameter
Sprite Type 1

Parameter Control Word Parameter Control Word Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word AX ISP/TSP Instruction Word AX

TSP Instruction Word AY TSP Instruction Word AY
(ignored) AZ Texture Control Word AZ

Base Color BX Base Color BX
(ignored) BY Offset Color BY

Data Size for Sort DMA BZ Data Size for Sort DMA BZ
Next Address for Sort DMA CX Next Address for Sort DMA CX

CY CY
CZ CZ
DX DX
DY DY

(ignored) (ignored)
(ignored) AU / AV
(ignored) BU / BV
(ignored) CU / CV

<Shadow Volume Input Parameters>
There is only one type of parameter (shown in the table below) that is input to the TA for a shadow

- 399 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

volume.

Global Parameter
Shadow Volume

Vertex Parameter
Shadow Volume

Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word AX

(ignored) AY
(ignored) AZ
(ignored) BX
(ignored) BY
(ignored) BZ
(ignored) CX

CY
CZ

(ignored)
(ignored)
(ignored)
(ignored)
(ignored)
(ignored)

＜ Control Parameter＞
There are three types of Control Parameters (shown in the table below) that are input to the TA.

Control Parameter
End Of List

Control Parameter
User Tile Clip

Control Parameter
Object List Set

0x0000 0000 0x2000 0000 0x4000 0000
(ignored) (ignored) Object Pointer
(ignored) (ignored) (ignored)
(ignored) (ignored) (ignored)
(ignored) User Clip X Min Bounding Box X Min
(ignored) User Clip Y Min Bounding Box Y Min
(ignored) User Clip X Max Bounding Box X Max
(ignored) User Clip Y Max Bounding Box Y Max

- 400 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

* The parameters shown below are changed in HOLLY2 versus HOLLY1.

(1) Packed Color
 Non-Textured

Global Parameter
Polygon Type 0

Vertex Parameter
Polygon Type 0

Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X

TSP Instruction Word Y
(ignored) Z
(ignored) Base Color
(ignored) (ignored)

Data Size for Sort DMA (ignored)
Next Address for Sort DMA (ignored)

(7) Intensity Mode 1
 Non-Textured

Global Parameter
Polygon Type 1

Vertex Parameter
Polygon Type 2

Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X

TSP Instruction Word Y
(ignored) Z

Face Color Alpha (ignored)
Face Color R (ignored)
Face Color G Base Intensity
Face Color B (ignored)

(11) Intensity Mode 1
 Textured
 use Offset Color
 16bit UV

Global Parameter
Polygon Type 2

Vertex Parameter
Polygon Type 8

Parameter Control Word Parameter Control Word
ISP/TSP Instruction Word X

TSP Instruction Word Y
Texture Control Word Z

(ignored) U / V
(ignored) (ignored)

Data Size for Sort DMA Base Intensity
Next Address for Sort DMA Offset Intensity

Face Color Alpha
Face Color R
Face Color G
Face Color B

Face Offset Color Alpha
Face Offset Color R
Face Offset Color G
Face Offset Color B

- 401 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

§9 Bug List
A list of the bugs in each Holly revision that affect software development is provided in this section.
The Holly chip revision number can be determined through the registers indicated in Table 9-1.
The subsequent bug list must be referenced according to the revision number of the chip as determined by the
values of the registers listed below.
* Regarding Holly 2.4, the bug list includes the contents of version 2.41.

No. Register Adress Holly1.
5

Holly
2.2

Holly
2.3

Holly
2.4*

Holly
2.42

1 REVISION 0x005F8004 0x01 0x11 0x11 0x11 0x11
2 SB_REVISION 0x005F689C 0x02 0x08 0x09 0x0A 0x0B

Table 9-1

<<Register-related bugs>>

A list of register-related bugs is shown below.

No. Problem Restriction/remedy Holly 1.5 Holly 2.2 Holly 2.3 Holly
2.4*

Holly
2.42

1 Not possible to read registers,
palette RAM, or fog table RAM
correctly.

There software work-around. × ○ ○ ○ ○

2 Incorrect description of the
SOFTRESET register (0x005F8008)
in the documentation

<Wrong>: bit 0 ＝ TA soft reset,
bit 1 = Pipeline soft reset

<Right>: bit 1 = Pipeline soft reset,

bit 0 ＝ TA soft reset

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

3 Incorrect description of the
ISP_FEED_CFG register in the
documentation

<Wrong>: Adress = 0x005F8090
<Right>: Adress = 0x005F8098

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on
4 Incorrect description of the

SPG_VBLANK_INT register
(0x005F80CC) in the
documentation

<Wrong>: bit 25-16 default = 0x015
<Right>: bit 25-16 default =

0x150, recommended value = 0x015

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

5 Incorrect description of the
SPG_VBLANK register
(0x005F80DC) in the
documentation

<Wrong>: bit 25-16 default = 0x015
<Right>: bit 25-16 default =

0x150,

 recommended value = 0x015

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

6 Incorrect description of the
FPU_PARAM_CFG register
(0x005F807C) in the
documentation

<Wrong>: bit 7-4 default=0xF
<Right>: b i t 7 - 4

default=0x7,

 recommended value = 0x015

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

7 Incorrect description of the
FB_R_CTRL register
(0x005F8044) in the
documentation

<Wrong>: bit 20-16 = fb_stripsize
 s i ze o f s t r i p buffer in mul t ip le s o f 32

lines.

<Right>: bit 21-16 = fb_stripsize

 s i ze o f s t r i p buffer in mul t ip le s o f 32

lines. (bit 16 = 0)

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

Corrected
documentati

on

8 Does not operate correctly even
when a "1" is written to the lowest
bit of fb_stripsize in the
FB_R_CTRL register
(0x005F8044).

The strip buffer size is restricted to 32-
line units only.

 → W i l l b e c o m e p a r t o f t h e

specifications.

× × × × ×

9 The wrong value is read from the
SPAN_SRT_CFG register
(0x005F8030).

The value of bit 8 is read for both bit 8
and bit 16.

× ○ ○ ○ ○

- 402 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

Table 9-2

- 403 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<<SB-related bugs>>

A list of SB (System Bus) block-related bugs is shown below.

No. Problem Restriction/remedy Holly
1.5

Holly
2.2

Holly
2.3

Holly
2.4*

Holly
2.42

1 Addition of a TA processing end
interrupt signal for Punch Through
lists

Internal signal name:
TA_ptendint_n

× ○ ○ ○ ○

2 <G1 i/f>
In the case of DMA with a transfer
size of "32 bytes ???, 32 bytes or

more, or where bit 5 is 0", DMA
does not end.

Do not perform DMA transfers of
these sizes. To transfer data in these
sizes, use PIO access.

× ○ ○ ○ ○

3 <G1 i/f>
If a DMA-Read and a PIO-Read
overlap, control of the DMA transfer
may be lost.

Wait until the DMA-Read ends, or
interrupt it, before conducting the
PIO access.

× ○ ○ ○ ○

4 <G1 i/f>
If a PIO access overlaps with the

end of a DMA-Read, the G1 block
may hang.

Wait until the DMA-Read ends, or
interrupt it, before conducting the
PIO access.

× ○ ○ ○ ○

5 <Maple i/f>
Correct DMA initiation by V-Blank
is not possible.

Using DMA initiation by V-Blank is
prohibited.

× ○ ○ ○ ○

6 <Maple i/f>
If there is a Maple command set in
system memory, and it is part of a
special pattern that includes single
instructions to the Maple-Host
(output reset, switch gun mode,
illegal command), the Maple block
may hang.

Send single instructions (output
reset, switch gun mode, illegal
command) in a special format that
does not cause the Maple block to
hang. (The current Systems
Laboratories driver does not support
single instructions.)

- Will become part of the
specifications.
 → Will become part of the

specifications.

× × × × ×

7 <DDT i/f>
The C2DMAXL (ch2-DMA
maximum burst length) register does
not function as it should.

The settings are restricted to 0, 1, or
2.
 → Will become part of the

specifications.

× × × × ×

Table 9-3

- 404 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

<<CORE & TA-related bugs>>

A list of CORE and TA block-related bugs is shown below.

No. Problem Restriction/remedy Holly
1.5

Holly
2.2

Holly
2.3

Holly
2.4*

Holly
2.42

1 A red ghost pixel appears on the left
side a white pixel, etc.

This is a problem with the internal
circuitry that manifests itself with
certain pixel data patterns. There is
no software work-around.

○ ○ ○ ○ ○

2 If FB is specified in the first 4MB,
vertical or diagonal lines appear.

FB must not be specified in the first
4MB (32-bit area). Specify FB in the
second 4MB.

○ ○ ○ ○ ○

3 During drawing, vertex data is
sometimes not drawn properly.

There is no software work-around. ○ ○ ○ ○ ○

4 The PAL non-interlaced VSYNC
width is 3H.

The DVE compensates to 2.5H, so
this is not a problem.

 →Will become part of the
specifications.

× × × × ×

5 Modifier Volumes do not work for
sprites (quad polygons).

There is no software work-around.
Modifier Volumes cannot be applied
to sprites.

× ○ ○ ○ ○

6 Lines are shifted to the right on the
screen display.

The following software work-arounds
are available:

1) Do not store FB and texture data
in the same bank in SDRAM.

2) Set texture filtering to "point
sampling."

× ○ ○ ○ ○

7 Using the Vertex Parameter type 11,
12, 13, or 14 for TA, the block hangs.

When using type 11, 12, 13, or 14, set
the partition strip length as either 1
strip or 2 strips. 4 strips or 6 strips
cannot be specified.

× ○ ○ ○ ○

8 The TSP cache circuit does not
operate properly, causing tiles to be
missing or copied, or for polygons to
be distorted.

Do not set bit 16 of the
SPAN_SORT_CFG register
(0x005F8030) to "1" and then use the
TSP cache.

○ ○ ○ ○ ○

9 Control on the TSP side of the FIFO
between the Span Sorter and TSP
does not operate correctly. The
rendering operation hangs.

There is no software work-around.
Setting "0x0001000" in the
SPAN_SORT_CFG register can
lessen this problem.

○ ○ ○ ○ ○

10 pixel write operation to the FB is not
performed, and the previous pixels
remain as is. This problem occurs
more when the X-Scaler is used.

There is no software work-around.
Using the X-Scaler makes the
problem worse.

○ ○ ○ ○ ○

11 The "End_Of_Render" interrupt is not
output.

Because this has the same cause as
No. 10, there is no software work-
around.

○ ○ ○ ○ ○

12 In Strip Buffer mode, the Hazard
interrupt is output even though
drawing has not been completed.

Ignore the first Hazard interrupt that is
output.

The Hazard interrupt will be output
correctly after drawing is started a

second and subsequent times.
 → Will become part of the

specifications.

× × × × ×

13 In Strip Buffer mode, if the Strip
Buffer size is set to a number of lines
that divides the display screen by an
odd number, incorrect pixels will be
drawn in the upper left corner of the
screen.

The Strip Buffer size must be set to a
number of lines that divides the screen
by an even number.

→ Will become part of the
specifications.

× × × × ×

- 405 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

No. Problem Restriction/remedy Holly
1.5

Holly
2.2

Holly
2.3

Holly
2.4*

Holly
2.42

14 If X clipping is used in Strip Buffer
mode, incorrect pixels are drawn at
the right edge of the screen.

The X clipping function must not be
used in Strip Buffer mode.

The FB_X_CLIP register value
specifies the horizontal direction size
of the display screen.

 → Will become part of the
specifications.

× × × × ×

15 Pixels are sometimes not drawn.
(Apart from bug Nos. 10 and 11.)

When this happens, the
"End_Of_Render" interrupt is also not
output.

There is no software work-around. × ○ ○ ○ ○

16 The TSP cache circuit does not
operate properly. (Apart from bug
No. 8.)

The rendering operation hangs.

Do not set bit 16 of the
SPAN_SORT_CFG register
(0x005F8030) to "1" and then use the
TSP cache.

× ○ ○ ○ ○

17 If a user tile clip that is the same size
as the screen or smaller is used, the
TA sometimes hangs.

The following software work-arounds
are available:

1) Set the strip length to "1".
2) Do not use user tile clips.

Replace them with global tile
clips.

× ○ ○ ○ ○

18 The timing of switching of user tile
clips (the area according to the control
parameters, or the usage method
according to the global parameters) is
one polygon (= one strip) too early.

The following software work-arounds
are available:

1) Add a dummy polygon before
switching the clip.

2) Do not use user tile clips.
Replace them with global tile
clips.

→ Will become part of the
specifications.

× × × × ×

19 The "ispdone" flag in the ISP2 block
is not cleared, making drawing
impossible.

Perform a CORE reset each time
before drawing.

－ × ○ ○ ○

20 The "End_Of_Video" interrupt is
sometimes not output. (Apart from
bug Nos. 11 and 15.)

Replace with "End_Of_TSP".
→ Will become part of the

specifications.

－ × × × ×

21 Misshapen tiles or missing tiles occur. Use multi-path processing to add a
dummy region array. (4 data elements/
tile)

1) Region Array for Opaque,
Opaque MV, or Punch Through

2) Region Array for full-screen
dummy translucent polygon
(Autosort)

3) Region Array for Translucent or
Translucent MV

4) Region Array for Accumulation
Buffer Flush

－ × × ○ ○

22 If the translucent polygon sort mode
is switched for each tile, the drawing
operation may hang.

The following software work-arounds
are available:

1) Do not switch the sort mode for

－ × × × ×

- 406 -

Dreamcast/Dev.Box System Architecture
Last Update : 99/09/03

No. Problem Restriction/remedy Holly
1.5

Holly
2.2

Holly
2.3

Holly
2.4*

Holly
2.42

each tile.
2) Register a full-screen opaque

polygon for the background.
→ Will become part of the

specifications.
23 At a boundary edge where a non-

twiddle texture is switched with a
palette texture, the colors of two
pixels on the non-twiddled texture
side are incorrect.

Do not use non-twiddled texture
polygons and palette texture polygons
at the same time.

－ × × ○ ○

24 If the Y Scaler is enlarged beyond
0x400 and filtering is applied, the
pixel color at the left end of the last
line of FB output for the final tile will
be affected as a result of filtering (32
pixels).

The following software work-arounds
are available:

1) Reduce the number of display
lines by one.

2) Add dummy final region array
data in the upper right corner
outside of the screen (Y = 0).

→ Will become part of the
specifications.

－ × × × ×

25 If the polygon edge is located on the
negative side (near "0") of the pixel
center position, the gap will be written
twice.

There is no software work-around.
Making a running change is not
expected to cause a problem.
→ Will become part of the

specifications.

－ × × × ×

26 Operation hangs if a non-twiddled
format bump texture is used.

Use only twiddled format for bump
textures.

→ Will become part of the
specifications.

－ × × × ×

27 The Group_En bit (bit 23) in the
global parameters is not valid for the
User_Clip bits (bits 167 and 16).

Specify the User-Clip bits correctly
for each global parameter.

→ Will become part of the
specifications.

× × × × ×

28 The texture data flickers (VQ is
obvious). The data in the texture
memory may even be damaged.

There is no software fix for this
problem.

In Holly 2.41, this problem can
sometimes be resolved by clamping.
→ Will be incorporated into

specifications.

? × × ×/∆ ○

Table 9-4

- 407 -

	§1 THE SYSTEM
	§1.1 Overview
	§1.2 System Architecture
	§1.3 Block Diagram
	§1.4 Dev.Box Board

	§2 CPU AND PERIPHERAL MEMORY
	§2.1 System Mapping
	§2.1.1 Cache Access

	§2.2 SH4
	§2.2.1 Overview of the SH4
	§2.2.2 CPU Bus Interface
	§2.2.3 Initial Settings for the SH4

	§2.3 System Memory
	§2.3.1 System Memory Configuration and Control
	§2.3.2 System Memory Initial Settings
	§2.3.3 Access Procedure

	§2.4 Register Map
	§2.5 Single Access to Each Block
	§2.6 DMA Transfers
	§2.6.1 Overview of DMA Transfers
	§2.6.2 Types of DMA
	§2.6.3 GD-ROM Data Transfers
	§2.6.4 Texture Data Transfers
	§2.6.4.1 Direct Texture Transfers
	§2.6.4.2 YUV Texture Transfer

	§2.6.5 Display List Transfers
	§2.6.5.1 Direct Display list DMA
	§2.6.5.2 TA Input Display List Transfers
	§2.6.5.3 Sort-DMA Transfer of Polygon Parameters

	§2.6.6 Wave Data Transfers
	§2.6.7 ARM Data Transfers
	§2.6.8 Peripheral Data Transfers
	§2.6.9 Color Palette Transfers
	§2.6.10 External Data Transfer

	§2.7 Interrupts
	§2.7.1 Overview
	§2.7.2 Interrupt Settings and Access Procedures
	§2.7.3 Notes Concerning Interrupts

	§3 The Graphics System
	§3.1 Overview
	§3.1.1 Graphics Architecture
	§3.1.1.1 Basic Polygons
	§3.1.1.2 Coordinate System
	§3.1.1.3 Display List
	§3.1.1.4 Tile Partitioning and Surface Equations
	§3.1.1.5 Block Diagram
	§3.1.1.6 Triangle Setup
	§3.1.1.7 ISP(Image Synthesis Processor)
	§3.1.1.8 TSP(Texture and Shading Processor)
	§3.1.1.9 Polygon List

	§3.1.2 Drawing Function Overview
	§3.1.3 Display Function Overview

	§3.2 Memory Map
	§3.3 Register Map
	§3.4 Drawing Function Details
	§3.4.1 Background
	§3.4.2 Translucent Polygon Sort
	§3.4.2.1 Auto-sort Mode
	§3.4.2.2 Pre-sort Mode

	§3.4.3 Punch Through Polygons
	§3.4.3.1 ISP Cache Size
	§3.4.3.2 Relationship with Translucent Polygons

	§3.4.4 Processing List Discarding
	§3.4.5 Modifier Volume
	§3.4.5.1 Inclusion and Exclusion Volumes
	§3.4.5.2 Volume Modes
	§3.4.5.3 Modifier Volume Processing for Various Polygons

	§3.4.6 Flow of Texture Mapping and Shading Processing	
	§3.4.6.1 Secondary Accumulation Buffer

	§3.4.7 Texture Mapping	
	§3.4.7.1 MIPMAP
	§3.4.7.2 Texture Filtering
	§3.4.7.2.1 Point Sampling	
	§3.4.7.2.2 Bi-linear Filtering
	§3.4.7.2.3 Tri-linear Filtering	
	§3.4.7.2.4 Texture Super-Sampling

	§3.4.7.3 Bump Mapping
	§3.4.7.3.1 Bump Mapping Algorithm
	§3.4.7.3.2 Bump Mapped + Textured Polygons

	§3.4.8 Fog Processing
	§3.4.8.1 Look-up Table Mode
	§3.4.8.2 Per Vertex Mode

	§3.4.9 Clipping
	§3.4.9.1 Tile Clipping
	§3.4.9.2 Pixel Clipping

	§3.4.10 Drawing to a Texture Map
	§3.4.11 X Scaler & Y Scaler
	§3.4.11.1 X Scaler
	§3.4.11.2 Y Scaler

	§3.4.12 Flicker-free Interlacing
	§3.4.12.1 Type A
	§3.4.12.2 Type B

	§3.4.13 Strip Buffers
	§3.4.14 Frame Buffer Drawing Data and Display Data

	§3.5 Display Function Details
	§3.5.1 Sync Pulse Generator
	§3.5.2 Frame Buffer Settings

	§3.6 Texture Definition
	§3.6.1 Texture Pixel Format
	§3.6.1.1 RGB Textures
	§3.6.1.2 YUV Textures
	§3.6.1.3 Bump Map Textures
	§3.6.1.4 Palette Textures

	§3.6.2 Texture Formats
	§3.6.2.1 Twiddled Format
	§3.6.2.2 Non-Twiddled Format
	§3.6.2.3 VQ Textures
	§3.6.2.4 MIPMAP Texture

	§3.6.3 Color Data Extension
	§3.6.4 Texture Format Combinations
	§3.6.5 Efficient Storage in Texture Memory

	§3.7 Display List Details
	§3.7.1 Polygon List Input
	§3.7.1.1 TA Parameter Input Flow
	§3.7.1.2 TA Register Settings for List Input
	§3.7.1.3 Region Array Data Storage
	§3.7.1.4 Object List Starting Address for Each List

	§3.7.2 Tile Arrangement
	§3.7.3 Tile Accelerator
	§3.7.3.1 Strip Partitioning
	§3.7.3.2 Tile Division
	§3.7.3.3 Tile Clipping
	§3.7.3.4 Object List Generation
	§3.7.3.4.1 List Initialization Processing and List Continuation Processing
	§3.7.3.4.2 Adding an OPB
	§3.7.3.4.3 Processing When a Limit Address Is Exceeded

	§3.7.3.5 ISP/TSP Parameter Generation

	§3.7.4 Explanation of TA Parameters
	§3.7.4.1 Control Parameter
	§3.7.4.2 Global Parameter
	§3.7.4.3 Vertex Parameter
	§3.7.4.4 Parameter Control Word
	§3.7.4.4.1 Para Control
	§3.7.4.4.2 Group Control
	§3.7.4.4.3 Obj Control

	§3.7.5 Parameter Format
	§3.7.5.1 Control Parameter Format
	§3.7.5.2 Global Parameter Format
	§3.7.5.3 Vertex Parameter Format

	§3.7.6 Overview of TA Parameters
	§3.7.6.1 Notes When Using the TA
	§3.7.6.2 Parameter Combinations
	§3.7.6.3 Parameter Input Example

	§3.7.7 Region Array Data Configuration
	§3.7.8 Object List Data Configuration
	§3.7.9 ISP/TSP Parameter Data Configuration
	§3.7.9.1 ISP/TSP Instruction Word
	§3.7.9.2 TSP Instruction Word
	§3.7.9.3 Texture Control Word

	§3.8 Details on Miscellaneous Functions
	§3.8.1 YUV-data Converter

	§4 Peripheral Interface
	§4.1 G1 Bus
	§4.1.1 GD-ROM
	§4.1.1.1 Register Map
	§4.1.1.2 Access Methods
	§4.1.1.3 Initial Settings
	§4.1.1.4 Access Procedure

	§4.1.2 System ROM
	§4.1.2.1 Access Methods
	§4.1.2.2 System Initial Settings
	§4.1.2.3 Access Procedure

	§4.1.3 FLASH Memory
	§4.1.3.1 System Initial Settings
	§4.1.3.2 Access Procedure

	§4.1.4 System Code
	§4.1.4.1 Initial Setting
	§4.1.4.2 Access Procedure

	§4.2 G2 Interface
	§4.2.1 Interface
	§4.2.2 AICA
	§4.2.2.1 Memory/Register Map
	§4.2.2.2 Initial Settings
	§4.2.2.3 Access Procedure
	§4.2.2.4 Wave Memory

	§4.2.3 RTC(Real Time Clock)
	§4.2.3.1 Access Method

	§4.2.4 MODEM
	§4.2.4.1 Address Map
	§4.2.4.2 Access Method
	§4.2.4.2.1 ID
	§4.2.4.2.2 Reset

	§4.2.5 Expansion Devices

	§5 User Interface
	§5.1 Peripherals
	§5.1.1 Overview
	§5.1.2 Register Map
	§5.1.3 Operating Sequence
	§5.1.4 Access Procedure
	§5.1.5 Example of Transmission and Reception Data
	§5.1.6 Notes Regarding Access

	§5.2 Control Pad
	§5.3 Light Phaser Gun
	§5.4 Backup (Option)
	§5.5 Sound Recognition (Option)

	§6 Peripheral Devices
	§6.1 DVE (Digital Video Encoder)

	§7 Debugger
	§8 Appendix
	§8.1 Technical Explanations
	§8.1.1 Technical Explanation Concerning Audio
	§8.1.1.1 Loop Control
	§8.1.1.2 ADPCM
	§8.1.1.3 AEG
	§8.1.1.4 PG
	§8.1.1.5 LFO
	§8.1.1.6 Mixer
	§8.1.1.7 FEG
	§8.1.1.8 Audio DSP

	§8.1.2 Reset Sequence
	§8.1.3 Clock
	§8.1.3.1 PLL
	§8.1.3.2 Clock Tree

	§8.1.4 JTAG Interface
	§8.1.4.1 SH4
	§8.1.4.2 HOLLY
	§8.1.4.3 AICA

	§8.2 Individual Block Diagrams
	§8.2.1 Detailed Block Diagram of Entire System
	§8.2.2 CPU Subsystem (Including System Memory)
	§8.2.3 HOLLY Subsystem
	§8.2.4 GD-ROM Subsystem
	§8.2.5 AICA Subsystem
	§8.2.6 Digital Video Encoder Subsystem
	§8.2.7 16Mbit SDRAM (16bit)
	§8.2.8 64Mbit SGRAM (32bit)
	§8.2.9 Power Supply

	§8.3 Pin Assignments (with Descriptions of Pins) Pin Assignments for Each Chip
	§8.3.1 CPU
	§8.3.2 HOLLY
	§8.3.3 GD-ROM
	§8.3.4 AICA
	§8.3.5 Digital Video Encoder
	§8.3.6 16Mbit SDRAM (16bit)
	§8.3.7 64Mbit SGRAM (32bit)

	§8.4 List of Registers
	§8.4.1 System Bus Register
	§8.4.1.1 System Registers
	§8.4.1.2 Maple Peripheral Interface
	§8.4.1.3 G1 Interface
	§8.4.1.4 G2 Interface
	§8.4.1.5 PowerVR Interface

	§8.4.2 CORE Registers
	§8.4.3 Tile Accelerator Registers
	§8.4.4 GD-ROM Registers
	§8.4.5 AICA Register

	§8.5 List of Interrupts
	§8.5.1 Interrupt Tree
	§8.5.2 List of Interrupt Sources

	§8.6 List of Input Parameters

	§9 Bug List

