Difference between revisions of "Sega Model 2"
From Sega Retro
m (Fixed typos) |
|||
Line 37: | Line 37: | ||
*Board composition: CPU Board, Video Board, Communication Board, ROM Board, Sound Board, Feedback Driver Board{{ref|[https://github.com/mamedev/mame/blob/master/src/mame/drivers/model2.cpp Sega Model 2 (MAME)]}} | *Board composition: CPU Board, Video Board, Communication Board, ROM Board, Sound Board, Feedback Driver Board{{ref|[https://github.com/mamedev/mame/blob/master/src/mame/drivers/model2.cpp Sega Model 2 (MAME)]}} | ||
** Revisions: CPU Board 837-10071 (50 MHz), Video Board 837-10072 (50 MHz), Communication Board 837-10537, ROM Board 834-10798, Sound Board 837-8679 (20 MHz), Drive Board 838-10646{{ref|[http://www.tvspels-nostalgi.com/pcb_sega.htm Sega PCB]}} | ** Revisions: CPU Board 837-10071 (50 MHz), Video Board 837-10072 (50 MHz), Communication Board 837-10537, ROM Board 834-10798, Sound Board 837-8679 (20 MHz), Drive Board 838-10646{{ref|[http://www.tvspels-nostalgi.com/pcb_sega.htm Sega PCB]}} | ||
− | *Main [[wikipedia:Central processing unit|CPU]]: [[ | + | *Main [[wikipedia:Central processing unit|CPU]]: [[Intel]] [[i960-KB]] @ 25 MHz{{fileref|I960 datasheet.pdf}}{{fileref|80960KB datasheet.pdf}} |
** [[wikipedia:Fixed-point arithmetic|Fixed-point arithmetic]]: 32‑bit [[wikipedia:Reduced instruction set computing|RISC]] [[wikipedia:Instruction set|instructions]] @ 25 [[wikipedia:Instructions per second|MIPS]]{{fileref|I960 datasheet.pdf|page=2}} | ** [[wikipedia:Fixed-point arithmetic|Fixed-point arithmetic]]: 32‑bit [[wikipedia:Reduced instruction set computing|RISC]] [[wikipedia:Instruction set|instructions]] @ 25 [[wikipedia:Instructions per second|MIPS]]{{fileref|I960 datasheet.pdf|page=2}} | ||
** [[wikipedia:Floating-point unit|Floating-point unit]]: [[wikipedia:Single-precision floating-point format|32]]/[[wikipedia:Double-precision floating-point format|64]]/[[wikipedia:Extended precision|80‑bit]] operations @ 13.6 MFLOPS{{fileref|80960KB datasheet.pdf}} | ** [[wikipedia:Floating-point unit|Floating-point unit]]: [[wikipedia:Single-precision floating-point format|32]]/[[wikipedia:Double-precision floating-point format|64]]/[[wikipedia:Extended precision|80‑bit]] operations @ 13.6 MFLOPS{{fileref|80960KB datasheet.pdf}} | ||
Line 60: | Line 60: | ||
{{multicol| | {{multicol| | ||
* GPU: | * GPU: | ||
− | ** 6x [[Fujitsu]] TGP MB86234 | + | ** 6x [[Fujitsu]] TGP [[MB86234]] |
** [[Sega]] Video Board 837-10072 | ** [[Sega]] Video Board 837-10072 | ||
− | * GPU [[wikipedia:Geometry pipelines|Geometry Engine]] [[wikipedia:Digital signal processor|DSP]] [[wikipedia:Coprocessor|coprocessors]]: 6x [[Fujitsu]] TGP MB86234 @ 16 MHz{{ref|[http://members.iinet.net.au/~lantra9jp1_nbn/gurudumps/m2status/index.html Sega Model 2 ROM Dump]}}{{fileref|MB86232 datasheet.pdf}}{{ref|[http://www.tvspels-nostalgi.com/pcb_sega.htm Sega PCB]}} | + | * GPU [[wikipedia:Geometry pipelines|Geometry Engine]] [[wikipedia:Digital signal processor|DSP]] [[wikipedia:Coprocessor|coprocessors]]: 6x [[Fujitsu]] TGP [[MB86234]] @ 16 MHz{{ref|[http://members.iinet.net.au/~lantra9jp1_nbn/gurudumps/m2status/index.html Sega Model 2 ROM Dump]}}{{fileref|MB86232 datasheet.pdf}}{{ref|[http://www.tvspels-nostalgi.com/pcb_sega.htm Sega PCB]}} |
** Revisions: 315‑5673, 315‑5677, 2x 315‑5678, 2x 315‑5679 (later updated with 2x 315‑5679B in 1994) | ** Revisions: 315‑5673, 315‑5677, 2x 315‑5678, 2x 315‑5679 (later updated with 2x 315‑5679B in 1994) | ||
** Coprocessor abilities: [[wikipedia:Decimal floating point|Floating decimal point]] operation function, axis rotation operation function, 3D [[wikipedia:Matrix (mathematics)|matrix operation]] function, [[wikipedia:Arithmetic logic unit|ALU]], [[wikipedia:Direct memory access|DMA]] controllers, [[wikia:w:c:gaming:Transform, clipping, and lighting|T&L (transform, clipping, lighting)]]{{ref|[http://wiki.mamedev.org/index.php/TGP:Index TGP (MAME)]}} | ** Coprocessor abilities: [[wikipedia:Decimal floating point|Floating decimal point]] operation function, axis rotation operation function, 3D [[wikipedia:Matrix (mathematics)|matrix operation]] function, [[wikipedia:Arithmetic logic unit|ALU]], [[wikipedia:Direct memory access|DMA]] controllers, [[wikia:w:c:gaming:Transform, clipping, and lighting|T&L (transform, clipping, lighting)]]{{ref|[http://wiki.mamedev.org/index.php/TGP:Index TGP (MAME)]}} | ||
Line 208: | Line 208: | ||
{{multicol| | {{multicol| | ||
− | * GPU geometry coprocessors: 2x Fujitsu TGPx4 MB86235 @ 40 MHz{{ref|[https://github.com/mamedev/mame/blob/master/src/mame/video/model2.cpp Sega Model 2 Geometry Engine and 3D Rasterizer (MAME)]}}{{fileref|3DGraphicsProcessorChipSet.pdf}} | + | * GPU geometry coprocessors: 2x Fujitsu TGPx4 [[MB86235]] @ 40 MHz{{ref|[https://github.com/mamedev/mame/blob/master/src/mame/video/model2.cpp Sega Model 2 Geometry Engine and 3D Rasterizer (MAME)]}}{{fileref|3DGraphicsProcessorChipSet.pdf}} |
** Coprocessor capabilities: Geometry Engine DSP, floating decimal point operation function, axis rotation operation function, 3D matrix operation function, ALU, DMA, T&L | ** Coprocessor capabilities: Geometry Engine DSP, floating decimal point operation function, axis rotation operation function, 3D matrix operation function, ALU, DMA, T&L | ||
** Bus width: 192‑bit (96‑bit each; 64‑bit SDRAM, 32‑bit SRAM) | ** Bus width: 192‑bit (96‑bit each; 64‑bit SDRAM, 32‑bit SRAM) | ||
− | * GPU rendering processors: 2x Fujitsu MB86271 AGP (Advanced Graphics Processor) @ 60 MHz{{fileref|3DGraphicsProcessorChipSet.pdf|page=4}} | + | * GPU rendering processors: 2x Fujitsu [[MB86271]] AGP (Advanced Graphics Processor) @ 60 MHz{{fileref|3DGraphicsProcessorChipSet.pdf|page=4}} |
** Capabilities: Hardware rendering, DMA | ** Capabilities: Hardware rendering, DMA | ||
** Fixed-point arithmetic: 32/[[wikipedia:64‑bit computing|64‑bit]] instructions, 240 MIPS (120 MIPS each) | ** Fixed-point arithmetic: 32/[[wikipedia:64‑bit computing|64‑bit]] instructions, 240 MIPS (120 MIPS each) | ||
− | * GPU Z-sorters: 2x Fujitsu MB86272{{fileref|3DGraphicsProcessorChipSet.pdf|page=4}} | + | * GPU Z-sorters: 2x Fujitsu [[MB86272]]{{fileref|3DGraphicsProcessorChipSet.pdf|page=4}} |
** Capabilities: Z-sorting, clipping | ** Capabilities: Z-sorting, clipping | ||
* Graphical hardware features: [[Gouraud shading]], [[wikipedia:Hidden surface determination|hidden surface]], Z-buffering, point sampling, bilinear filtering, trilinear filtering{{fileref|3D-CG System with Video Texturing.pdf}} | * Graphical hardware features: [[Gouraud shading]], [[wikipedia:Hidden surface determination|hidden surface]], Z-buffering, point sampling, bilinear filtering, trilinear filtering{{fileref|3D-CG System with Video Texturing.pdf}} |
Revision as of 12:47, 20 October 2017
Sega Model 2 | |||||
---|---|---|---|---|---|
Manufacturer: Sega | |||||
Variants: Model 2A-CRX, Model 2B-CRX, Model 2C-CRX | |||||
Add-ons: DSB1/DSB2 (Model 2C-CRX) | |||||
|
The Sega Model 2 is an arcade system board originally debuted by Sega in 1993 as a successor to the Sega Model 1 board. It is an extension of the Model 1 hardware, most notably introducing the concept of texture-mapped polygons, allowing for more realistic 3D graphics for its time.
The Model 2 board was an important milestone for the arcade industry, and helped launch several key arcade franchises of the 1990s, including Daytona USA, Virtua Cop, Sega Rally Championship, Dead or Alive, Virtua Striker, Cyber Troopers Virtual-On and The House of the Dead.
Contents
Hardware
The Model 2 was designed as the direct successor to the Model 1, and like its predecessor was released as a set of printed circuit boards to arcade operators, or packaged in bespoke cabinets created by Sega.
The most noticeable improvement of the Model 2 over the Model 1 is texture mapping, which enables polygons to be painted with bitmap images, as opposed to the limited monotone flat shading that the previous board supported. The Model 2 also introduced the use of texture filtering and texture anti-aliasing,[1] as well as trilinear filtering.[2] It was the most powerful game system in its time, equivalent to the power of a PC graphics card in 1998, five years after the Model 2's release.[2]
There are in fact four versions of the system: the original Model 2, and the Model 2A-CRX, Model 2B-CRX and Model 2C-CRX variants. The Model 2 and 2A-CRX use a custom DSP with internal code for the geometrizer, while 2B-CRX and 2C-CRX use well documented DSPs and upload the geometrizer code at startup to the DSP.
According to Yu Suzuki, the Sega Model 2B-CRX arcade system board developed for Fighting Vipers "has a slightly faster processing speed" and "a higher response to displaying more polygons".[3]
Technical specifications
Model 2
- Board composition: CPU Board, Video Board, Communication Board, ROM Board, Sound Board, Feedback Driver Board[4]
- Revisions: CPU Board 837-10071 (50 MHz), Video Board 837-10072 (50 MHz), Communication Board 837-10537, ROM Board 834-10798, Sound Board 837-8679 (20 MHz), Drive Board 838-10646[5]
- Main CPU: Intel i960-KB @ 25 MHz[6][7]
- Fixed-point arithmetic: 32‑bit RISC instructions @ 25 MIPS[8]
- Floating-point unit: 32/64/80‑bit operations @ 13.6 MFLOPS[7]
- Bus width: 32‑bit
- Additional CPU: 2x Zilog Z80 (8/16‑bit instructions @ 1.74 MIPS)
Sound
- Sound CPU: Motorola 68000 @ 10 MHz (16/32‑bit instructions @ 1.75 MIPS)
- Sound chip: 2x Sega 315‑5560 Custom MultiPCM
- Sound timer: Yamaha YM3834 @ 8 MHz (Model 2 only)
Graphics
Graphical specifications of the Sega Model 2:[11][4][12]
- GPU:
- GPU Geometry Engine DSP coprocessors: 6x Fujitsu TGP MB86234 @ 16 MHz[13][14][5]
- Revisions: 315‑5673, 315‑5677, 2x 315‑5678, 2x 315‑5679 (later updated with 2x 315‑5679B in 1994)
- Coprocessor abilities: Floating decimal point operation function, axis rotation operation function, 3D matrix operation function, ALU, DMA controllers, T&L (transform, clipping, lighting)[15]
- Instruction set: 32‑bit instructions, 480 MIPS (80 MIPS each)[n 1]
- Fixed-point arithmetic: 192 MIPS (32 MIPS each)[n 2]
- Floating-point units: 96 MFLOPS (16 MFLOPS each)[n 3]
- Bus width: 192‑bit (32‑bit each)
- Notes: Located on CPU Board. DSP are modified by Sega with custom microcode for coprocessor and T&L capabilities.[15]
- GPU graphics card: Sega Video Board 837-10072 @ 50 MHz[5][17]
- Sega Z-sorting & clipping chipset: 315‑5644 (32 MHz), 315‑5645 (32 MHz), 315‑5712 (40 MHz), 2x 315‑5725 (50 MHz)
- Lockheed Martin rasterization & texture mapping processors: 315‑5646 (50 MHz), 315‑5647 (50 MHz)
- Sega System 24 tilemap engine: 315‑5292 tilemap generator (32 MHz)[18][19]
- Display: Up to 50-inch display[20]
- Display resolution: 496×384 pixels, 24 Hz HSync, progressive scan (non-interlaced), double-buffering[11]
- Overscan resolution: 656×496
- Pixel clock rate: 19.523 MHz
- Refresh rate: 60 Hz, 57.52416 Hz, 30 Hz[11]
- Frame rate: 60 FPS,[21] 57.52416 FPS, 30 FPS
- Color depth: 65,536 (16bpp), 16,777,216 (24bpp),[22] 256 (8bpp)
- Graphical hardware features: Flat shading, texture mapping, perspective correction, texture filtering, texture anti-aliasing, microtexture, diffuse reflection, specular reflection, specular lighting, alpha blending, transparency, rasterization, mipmapping, LOD,[11] Z-buffering, point sampling, bilinear filtering, trilinear filtering[2]
- Texture map resolution: Up to 1024×2048 pixels
- Microtexture size: Up to 128×128 pixels
- Arithmetic: 110 MFLOPS (floating-point), 210 MIPS (fixed-point)[n 4]
- Geometry transformations: 6 million vertices/sec,[n 8] 2 million polygons/sec[n 9]
- Flat lighting: 1.2 million polygons/sec (floating-point),[n 10] 2 million polygons/sec (fixed-point)[n 11]
- Specular lighting: 900,000 polygons/sec[n 12]
- Gouraud lighting: 880,000 polygons/sec (floating-point),[n 13] 1.5 million polygons/sec (fixed-point)[n 14]
- Rendering fillrate: 110 MPixels/s (16bpp), 230 MPixels/s (8bpp), 260 MPixels/s (4bpp)
- Polygon rendering performance: 100 MPixels/s, 900,000 vectors/sec
- Texture mapping performance: 100 MTexels/s, lighting
- Hardware support: Motion capture
Memory
Bandwidth
Model 2A-CRX
Model 2A-CRX, released in 1994, featured upgraded sound capabilities and increased ROM capacity:
- Sound CPU: Motorola 68000 @ 12 MHz (16/32‑bit instructions @ 2.1 MIPS)
- Sound chip: Yamaha SCSP
- Memory: Up to 142 MB (35,969 KB main, 90,244 KB video, 16,960 KB audio, 2064 KB other)
- System RAM: 9776 KB (9.546875 MB)
- Main RAM: 1152 KB (1.125 MB)
- VRAM: 5984 KB (5.84375 MB)
- Audio RAM: 576 KB
- Other RAM: 2064 KB (2.015625 MB)
- Internal processor cache: 36.75 KB
- CPU cache: 768 bytes
- TGP internal RAM cache: 36 KB
- Game ROM: Up to 132.25 MB (34 MB main, 82.25 MB video,[35] 16 MB audio)
- System RAM: 9776 KB (9.546875 MB)
Model 2B-CRX
Model 2B-CRX, released in 1995, featured upgraded geometry engine DSP coprocessors and increased VRAM:[11]
- GPU Geometry Engine DSP coprocessors: 2x ADSP-21062 SHARC @ 40 MHz[36]
- Coprocessor abilities: Floating decimal point operation function, axis rotation operation function, 3D matrix operation function, SOC, ALU, T&L
- Fixed-point instructions: 32‑bit instructions, 80 MIPS (40 MIPS each)
- Floating-point units: 32/40‑bit operations, 240 MFLOPS (120 MFLOPS each), 80 MAC operations/sec (40 MACs/sec each)
- Data bus width: 96‑bit (48‑bit each)
- DMA controllers: 20 DMA channels (10 channels each), 80 MHz memory access (dual memory access) per SHARC, 480 MB/s transfer rate (240 MB/s each)
- Lighting calculations: 240 MFLOPS
- Rendering fillrate: 130 MPixels/s (16bpp), 270 MPixels/s (8bpp), 300 MPixels/s (4bpp)
- Polygons: 120 MPixels/s (16bpp),[n 33] 240 MPixels/s (8bpp)
- Tilemaps: 15 MPixels/s (16bpp), 30 MPixels/s (8bpp), 61 MPixels/s (4bpp)
- Texture mapping performance: 120 MTexels/s, lighting
- 900,000 polygons/sec: Specular, 130-texel polygons
- 600,000 polygons/sec: Specular, 200-texel polygons
- 300,000 polygons/sec: Gouraud shading (software), 32-texel polygons[n 34]
- Memory: Up to 150.21 MB (35.125 MB main, 99,332 KB video, 16,960 KB audio, 18 KB other)
- System RAM bandwidth: 1.1 GB/s
- Main RAM bandwidth: 112 MB/s
- VRAM bandwidth: 979.34066 MB/s
- SHARC: 480 MB/s (2x 240 MB/s)[37]
- Video Board: 499.34066 MB/s
- Audio RAM bandwidth: 20 MB/s
Model 2C-CRX
Model 2C-CRX, released in 1996, featured an upgraded GPU chipset and optional MPEG sound boards:
- GPU geometry coprocessors: 2x Fujitsu TGPx4 MB86235 @ 40 MHz[11][38]
- Coprocessor capabilities: Geometry Engine DSP, floating decimal point operation function, axis rotation operation function, 3D matrix operation function, ALU, DMA, T&L
- Bus width: 192‑bit (96‑bit each; 64‑bit SDRAM, 32‑bit SRAM)
- GPU rendering processors: 2x Fujitsu MB86271 AGP (Advanced Graphics Processor) @ 60 MHz[39]
- Capabilities: Hardware rendering, DMA
- Fixed-point arithmetic: 32/64‑bit instructions, 240 MIPS (120 MIPS each)
- GPU Z-sorters: 2x Fujitsu MB86272[39]
- Capabilities: Z-sorting, clipping
- Graphical hardware features: Gouraud shading, hidden surface, Z-buffering, point sampling, bilinear filtering, trilinear filtering[40]
- Rendering fillrate: 200 MPixels/s (16bpp), 400 MPixels/s (8bpp), 430 MPixels/s (4bpp)
- Polygons: 188 MPixels/s (16bpp),[n 35] 376 MPixels/s (8bpp)
- Tilemaps: 15 MPixels/s (16bpp), 30 MPixels/s (8bpp), 61 MPixels/s (4bpp)
- Texture mapping performance: 188 MTexels/s, lighting, specular,[11] alpha blending[38]
- Optional MPEG sound board: DSB1
- Sound CPU: Zilog Z80 (8/16‑bit instructions)
- Sound chip: NEC µD65654GF102
- Optional MPEG sound board: DSB2
- Sound CPU: Motorola 68000 (16/32‑bit instructions)
- Sound chip: NEC µD65654GF102
History
The Model 2's development was led by famed game designer Yu Suzuki and his team at Sega AM2[44] as part of a joint project between Sega, Fujitsu and GE Aerospace (acquired by Martin Marietta in 1993, now part of Lockheed Martin). Sega developed the polygon geometry engine in-house[12], using Fujitsu coprocessors DSP coprocessors that were modified with Sega's custom microcode for hardware T&L capabilities[15] (it would be years before hardware T&L would appear on consumer home systems). This was then combined with GE Aerospace's expensive texture-mapping technology,[12] which Suzuki's team condensed into a more affordable chipset.
Suzuki stated that the Model 2's texture mapping chip originated "from military equipment from Lockheed Martin, which was formerly General Electric Aerial & Space's textural mapping technology. It cost $2 million USD to use the chip. It was part of flight-simulation equipment that cost $32 million. I asked how much it would cost to buy just the chip and they came back with $2 million. And I had to take that chip and convert it for video game use, and make the technology available for the consumer at 5,000 yen ($50)" per machine. He said "it was tough but we were able to make it for 5,000 yen. Nobody at Sega believed me when I said I wanted to purchase this technology for our games."[44] Suzuki stated that, in "the end," it "was a hit and the industry gained mass-produced texture-mapping as a result." For Virtua Fighter 2, he also utilized motion capture technology, introducing it to the game industry.[45]
There were also issues working on the new CPU,[44] the Intel i960-KB, which had just released in 1993[7]. Suzuki stated that when working "on a brand new CPU, the debugger doesn't exist yet. The latest hardware doesn't work because it's full of bugs. And even if a debugger exists, the debugger itself is full of bugs. So, I had to debug the debugger. And of course with new hardware there's no library or system, so I had to create all of that, as well. It was a brutal cycle."[44]
In a late 1998 interview, Read3D's Jon Lenyo, a former employee of GE Aerospace (later Lockheed Martin), stated that Sega's development for the Model 2 can be traced back as early as November 1990, when he and other GE Aerospace employees visited Sega and demonstrated the trilinear texture filtering and shading capabilities of their technology. As Sega was already working on the Sega Model 1 internally, they eventually incorporated GE Aerospace's technology into the Model 2.[2]
The arcade board debuted along with Daytona USA, a game which was finished and copyrighted in 1993, and debuted at the Amusement Machine Show 1993[46].
Despite its high price tag of around $15,000 (equivalent to $25,000 in 2014), the Model 2 platform was very successful. It featured some of the highest grossing arcade games of all time, including Daytona USA, Virtua Fighter 2, Cyber Troopers Virtual-On, The House of the Dead, and Dead or Alive, to name a few. Sega sold over 33,000 units of the Model 2 in its first year,[47] followed by 65,000 units annually,[2] and eventually sold over 130,000 units by 1996, amounting to $2 billion revenue from hardware cabinet sales[n 41] (over $3 billion with inflation), making it one of the best-selling arcade systems of all time.
The Model 2 was succeeded in 1996 by the Sega Model 3, which in turn was succeeded by the Sega NAOMI, Sega Hikaru and Sega NAOMI 2.
List of games
Model 2
- Daytona USA (1993)
- Daytona USA Deluxe '93 (1993)
- Desert Tank (1994)
- Virtua Cop (1994)
Model 2A-CRX
- Virtua Fighter 2 (1994)
- Manx TT Superbike (1995)
- Sega Rally Championship (1995)
- Sky Target (1995)
- Virtua Cop 2 (1995)
- Dead or Alive (1996)
- Dynamite Baseball (1996)
- Dynamite Cop (1996)
- Pilot Kids (1999)
- Virtua Fighter 2.1 (1996)
- Motor Raid (1997)
- Zero Gunner (1997)
Model 2B-CRX
- Fighting Vipers (1995)
- Gunblade NY (1995)
- Indy 500 (1995)
- Rail Chase 2 (1995)
- Virtua Striker (1995)
- Dead or Alive (1996)
- Dynamite Baseball (1996)
- Dynamite Cop (1996)
- Last Bronx (1996)
- Pilot Kids (1999)
- Sonic the Fighters (1996)
- Super GT 24H (1996)
- Cyber Troopers Virtual-On (1996)
- Dynamite Baseball 97 (1997)
- Zero Gunner (1997)
Model 2C-CRX
- Dynamite Cop (1996)
- Over Rev (1997)
- Power Sled (1996)
- Sega Ski Super G (1996)
- Sega Touring Car Championship (1996)
- Sega Water Ski (1996)
- Wave Runner (1996)
- The House of the Dead (1997)
- Top Skater (1997)
- Behind Enemy Lines (1998)
Other
- Ultimate Domain (unreleased) - Developed by Atlus. Previewed in Mean Machines Sega #51.
Magazine articles
- Main article: Sega Model 2/Magazine articles.
Photo gallery
A typical ROM (Virtua Cop)
Model 2A ROM (Dead or Alive)
Notes
- ↑ [5 instructions per cycle[16] 5 instructions per cycle[16]]
- ↑ MAC (multiply–accumulate) operation (multiply and add) per cycle[16]
- ↑ [1 operation per cycle (2 cycles per MAC operation)[16] 1 operation per cycle (2 cycles per MAC operation)[16]]
- ↑ [TGP: 96 MFLOPS, 192 MIPS[14]
i960: 13.6 MFLOPS, 25 MIPS[7] TGP: 96 MFLOPS, 192 MIPS[14]
i960: 13.6 MFLOPS, 25 MIPS[7]] - ↑ [TGP: 48 million adds/sec (floating-point), 96 million adds/sec (fixed-point)[23]
i960: 13.6 million adds/sec (floating-point), 25 million adds/sec (fixed-point) TGP: 48 million adds/sec (floating-point), 96 million adds/sec (fixed-point)[23]
i960: 13.6 million adds/sec (floating-point), 25 million adds/sec (fixed-point)] - ↑ [TGP: 48 million multiplies/sec (floating-point), 96 million multiplies/sec (fixed-point)[23]
i960: 13.6 million multiplies/sec (floating-point), 25 million multiplies/sec (fixed-point) TGP: 48 million multiplies/sec (floating-point), 96 million multiplies/sec (fixed-point)[23]
i960: 13.6 million multiplies/sec (floating-point), 25 million multiplies/sec (fixed-point)] - ↑ [Z-sorting & clipping chipset, 32 MHz Z-sorting & clipping chipset, 32 MHz]
- ↑ [TGP: 5,333,333 vertices/sec, 18 cycles (9 MAC operations) per vertex[11]
i960: 755,555 vertices/sec, 18 floating-point operations (9 MAC operations) per vertex TGP: 5,333,333 vertices/sec, 18 cycles (9 MAC operations) per vertex[11]
i960: 755,555 vertices/sec, 18 floating-point operations (9 MAC operations) per vertex] - ↑ [3 vertices per triangle polygon 3 vertices per triangle polygon]
- ↑ [TGP: 1,043,478 polygons/sec, 92 cycles (46 MAC operations) per polygon[11]
i960: 147,826 polygons/sec, 92 floating-point operations (46 MAC operations) per polygon TGP: 1,043,478 polygons/sec, 92 cycles (46 MAC operations) per polygon[11]
i960: 147,826 polygons/sec, 92 floating-point operations (46 MAC operations) per polygon] - ↑ [46 cycles (46 MAC operations) per polygon[11] 46 cycles (46 MAC operations) per polygon[11]]
- ↑ [102 cycles (51 MAC operations) per polygon[11] 102 cycles (51 MAC operations) per polygon[11]]
- ↑ [TGP: 774,193 polygons/sec, 124 cycles (62 MAC operations) per polygon[11][24]
i960: 109,677 polygons/sec, 124 floating-point operations (62 MAC operations) per polygon TGP: 774,193 polygons/sec, 124 cycles (62 MAC operations) per polygon[11][24]
i960: 109,677 polygons/sec, 124 floating-point operations (62 MAC operations) per polygon] - ↑ [62 cycles (62 MAC operations) per polygon[11][24] 62 cycles (62 MAC operations) per polygon[11][24]]
- ↑ [400 MB/s polygon rendering bandwidth (2x 32‑bit, 50 MHz) 400 MB/s polygon rendering bandwidth (2x 32‑bit, 50 MHz)]
- ↑ [30.769232 MB/s tilemap generator bandwidth (2x 16‑bit, 7.692308 MHz) 30.769232 MB/s tilemap generator bandwidth (2x 16‑bit, 7.692308 MHz)]
- ↑ [163 cycles (124 cycles geometry, 39 raster operations) per polygon, 175 cycles per 4-scanline polygon (3 operations/scanline per polygon),[26][27] 271 cycles per 32-pixel polygon (3 cycles per pixel) 163 cycles (124 cycles geometry, 39 raster operations) per polygon, 175 cycles per 4-scanline polygon (3 operations/scanline per polygon),[26][27] 271 cycles per 32-pixel polygon (3 cycles per pixel)]
- ↑ [2x 8‑bit, 8/4 MHz 2x 8‑bit, 8/4 MHz]
- ↑ [6x 32‑bit, 16 MHz[29] 6x 32‑bit, 16 MHz[29]]
- ↑ [2x 16‑bit, 7.692308 MHz[30] 2x 16‑bit, 7.692308 MHz[30]]
- ↑ [16‑bit, 14.285714 MHz[31] 16‑bit, 14.285714 MHz[31]]
- ↑ [2x 32‑bit, 50 MHz 2x 32‑bit, 50 MHz]
- ↑ [8‑bit, 40 MHz[32] 8‑bit, 40 MHz[32]]
- ↑ [16‑bit, 10 MHz 16‑bit, 10 MHz]
- ↑ [32‑bit, 25 MHz 32‑bit, 25 MHz]
- ↑ [6x 32‑bit, 16 MHz 6x 32‑bit, 16 MHz]
- ↑ [5x 32‑bit 5x 32‑bit]
- ↑ [32‑bit, 33–50 MHz, 20–30 ns[33][34] 32‑bit, 33–50 MHz, 20–30 ns[33][34]]
- ↑ [4x 32‑bit, 50 MHz 4x 32‑bit, 50 MHz]
- ↑ [46 MAC operations per polygon:[11] 1,739,130 polygons/sec (SHARC), 147,826 polygons/sec (i960) 46 MAC operations per polygon:[11] 1,739,130 polygons/sec (SHARC), 147,826 polygons/sec (i960)]
- ↑ [51 MAC operations per polygon[11] 51 MAC operations per polygon[11]]
- ↑ [62 MAC operations per polygon:[11][24] 1,290,322 polygons/sec (SHARC), 109,677 polygons/sec (i960) 62 MAC operations per polygon:[11][24] 1,290,322 polygons/sec (SHARC), 109,677 polygons/sec (i960)]
- ↑ [2 megapixels per frame 2 megapixels per frame]
- ↑ [101 cycles (62 cycles geometry, 39 raster operations) per polygon, 113 cycles per 4-scanline polygon (3 operations/scanline per polygon),[26][27] 209 cycles per 32-pixel polygon (3 cycles per pixel) 101 cycles (62 cycles geometry, 39 raster operations) per polygon, 113 cycles per 4-scanline polygon (3 operations/scanline per polygon),[26][27] 209 cycles per 32-pixel polygon (3 cycles per pixel)]
- ↑ [94 megapixels/sec per GPU[41] 94 megapixels/sec per GPU[41]]
- ↑ [88 cycles per polygon,[42] 266 fixed-point instructions per polygon, 450,000 150-pixel polygons/sec per GPU[43] 88 cycles per polygon,[42] 266 fixed-point instructions per polygon, 450,000 150-pixel polygons/sec per GPU[43]]
- ↑ [272 floating-point operations per polygon 272 floating-point operations per polygon]
- ↑ [151 cycles per polygon[42] 151 cycles per polygon[42]]
- ↑ [250,000 150-pixel polygons/sec per GPU[43] 250,000 150-pixel polygons/sec per GPU[43]]
- ↑ [438 floating-point operations per polygon 438 floating-point operations per polygon]
- ↑ [130,000 units[48] at $15,000 each[2][49] 130,000 units[48] at $15,000 each[2][49]]
References
- ↑ IGN PRESENTS THE HISTORY OF SEGA (page 8)
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Second Hand Smoke: One up, two down (October 22, 1999)
- ↑ File:SSM_UK_02.pdf, page 21
- ↑ 4.0 4.1 4.2 4.3 4.4 Sega Model 2 (MAME)
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 Sega PCB
- ↑ 6.0 6.1 File:I960 datasheet.pdf
- ↑ 7.0 7.1 7.2 7.3 File:80960KB datasheet.pdf
- ↑ File:I960 datasheet.pdf, page 2
- ↑ http://pdf.datasheetarchive.com/indexerfiles/Scans-068/DSA2IH00225160.pdf
- ↑ File:ST-077-R2-052594.pdf
- ↑ 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 11.14 11.15 11.16 Sega Model 2 Geometry Engine and 3D Rasterizer (MAME)
- ↑ 12.0 12.1 12.2 File:NextGeneration US 11.pdf, page 16
- ↑ Sega Model 2 ROM Dump
- ↑ 14.0 14.1 14.2 File:MB86232 datasheet.pdf
- ↑ 15.0 15.1 15.2 TGP (MAME)
- ↑ 16.0 16.1 16.2 File:MB86232 datasheet.pdf, page 32
- ↑ 17.0 17.1 Sega Model 2 Video Board
- ↑ Sega 16‑Bit Common Hardware, MAME
- ↑ Sega System 24 Hardware Notes (2013-06-16)
- ↑ File:EGM US 059.pdf, page 68
- ↑ File:VirtuaFighter2 Model2 Flyer.pdf, page 2
- ↑ 22.0 22.1 Saturn maybe not so stellar (Game Zero Magazine)
- ↑ 23.0 23.1 File:MB86232 datasheet.pdf, page 33
- ↑ 24.0 24.1 24.2 Design of Digital Systems and Devices (pages 95-97)
- ↑ File:DaytonaUSA Model2 Flyer.pdf, page 2
- ↑ 26.0 26.1 Transformation Of Rendering Algorithms For Hardware Implementation (page 53)
- ↑ 27.0 27.1 File:32XUSHardwareManual.pdf, page 76
- ↑ File:80960KB datasheet.pdf, page 7
- ↑ File:TC5588P datasheet.pdf
- ↑ File:TC518128CPL datasheet.pdf
- ↑ File:MB84256A datasheet.pdf
- ↑ http://pdf.datasheetarchive.com/datasheetsmain/Datasheets-39/DSA-764435.pdf
- ↑ File:AM27C1024 datasheet.pdf
- ↑ File:MX27C1024 datasheet.pdf
- ↑ Dynamite Cop (MAME) (Wayback Machine: 2016-03-26 03:06)
- ↑ 36.0 36.1 File:ADSP-2106 datasheet.pdf
- ↑ File:ADSP-2106 datasheet.pdf, page 4
- ↑ 38.0 38.1 File:3DGraphicsProcessorChipSet.pdf
- ↑ 39.0 39.1 File:3DGraphicsProcessorChipSet.pdf, page 4
- ↑ File:3D-CG System with Video Texturing.pdf
- ↑ File:3DGraphicsProcessorChipSet.pdf, page 12
- ↑ 42.0 42.1 File:3DGraphicsProcessorChipSet.pdf, page 8
- ↑ 43.0 43.1 File:3DGraphicsProcessorChipSet.pdf, page 11
- ↑ 44.0 44.1 44.2 44.3 The Disappearance of Yu Suzuki: Part 1 (1UP)
- ↑ Yu Suzuki recalls using military tech to make Virtua Fighter 2
- ↑ File:EGM US 051.pdf, page 222
- ↑ Press release: 1995-03-20: Lockheed Martin 3D Graphics Accelerator offers real-time PC visual system performance
- ↑ Sega Enterprises (Real3D)
- ↑ Early concept of Daytona USA at Summer CES 1993
Sega arcade boards |
---|
Originating in arcades |
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
Console-based hardware |
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
|
PC-based hardware |
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|