Sega Saturn/Hardware comparison
From Sega Retro
This short article is in need of work. You can help Sega Retro by adding to it.
Contents
Vs. PlayStation
The Sega Saturn is generally more powerful than the rival PlayStation,[1][2] but more difficult to get to grips with.[2] The Saturn has more raw computational power and faster pixel drawing; the PS1 can only draw pixels through its polygon engine, whereas the Saturn can draw pixels directly with its processors, giving it more programming flexibility.[3]
When both SH-2 and the SCU DSP are used in parallel, the Saturn is capable of 160 MIPS and 85 million fixed-point operations/sec, faster than the PS1's GTE (66 MIPS); when programmed effectively, the Saturn's parallel geometry engine can calculate more 3D geometry than the PS1. The's VDP1 has a fillrate of 28.6364 MPixels/s per framebuffer, compared to the PS1's GPU which has a fillrate of 30 MPixels/s (15-bit RGB) or 15 MPixels/s (24-bit RGB). The fillrate for 8×8 textures is 18 MTexels/s for the VDP1 and 15.28 MTexels/s for the PS1's GPU (4000 8×8 sprites).[4][5][6]
The VDP2 has a significantly higher effective tile fillrate of 500 MPixels/s; if the VDP2 is used for drawing textured infinite planes, this frees up the VDP1's polygons for other 3D assets, whereas the PS1 needs to draw many polygons to construct 3D textured planes (with very limited draw distance compared to the VDP2). The VDP1's quad polygons are drawn with edge anti‑aliasing (for smoother edges) and forward texture mapping (with limited perspective correction), while the VDP2's infinite planes are drawn with true perspective correction, whereas the PS1's triangle polygons have aliased edges and are drawn with affine texture mapping which lacks perspective correction (resulting in perspective distortion and texture warping). The PS1 has more effective polygon transparency than the VDP1, while the VDP2 has more effective transparency than the PS1. The VDP1 is more effective at Gouraud shading than the PS1's GPU, while the VDP2 is more effective at visual effects such as misting and reflective water effects.
The PS1's straightforward hardware architecture, triangle polygons, and more effective development tools and C language support, made it easier for developers to program 3D graphics. When it came to 2D graphics, on the other hand, the Saturn's combination of a VDP1 sprite framebuffer and VDP2 parallax scrolling backgrounds made it both more powerful and straightforward to program 2D graphics, compared to the PS1 which draws all 2D graphics to a single framebuffer.
Vs. Nintendo 64
Vs. PC
The Saturn's VDP1 was the basis for Nvidia's first graphics processor, the NV1, which was one of the first 3D graphics accelerators on PC, released in 1995. Like the Saturn, it uses quad polygons and supports forward texture mapping with limited perspective correction, and several Saturn ports are available for it. However, the NV1 has a fillrate of 12.5 MPixels/s and a rendering performance of 50,000 polygons/sec, less than the VDP1's 28 MPixels/s per framebuffer and more than 500,000 polygons/sec rendering throughput. In comparison, the most powerful PC graphics card of 1995, Yamaha's Tasmania 3D, which was based on triangle polygons, had a 25 MPixels/s fillrate and 300,000 polygons/sec rendering throughput, more than the NV1, but less than the Saturn and PlayStation.
Graphics comparison
- See Sega Saturn technical specifications for more technical details on Saturn hardware
System | Sega Saturn (1994) | Sony PlayStation (1994) | PC (1995) | ||
---|---|---|---|---|---|
Geometry processors | 2x Hitachi SH-2 (28.63636 MHz),[fn 1] Sega SCU DSP (14.31818 MHz) |
Sony GTE (33.8688 MHz)[9] | Intel Pentium (133 MHz) | ||
Arithmetic operations | 87 MOPS[fn 2][fn 3] | 66 MOPS[12] | 44 MOPS[fn 4][fn 5] | ||
Calculations | Additions | 71 million adds/sec[fn 6] | 66 million adds/sec | 44 million adds/sec[fn 7] | |
Multiplications | 71 million multiplies/sec[fn 8] | 66 million multiplies/sec | 44 million multiplies/sec[fn 9] | ||
16-bit divisions | 5 million divides/sec[fn 10] | 4 million divides/sec[fn 11] | 4 million divides/sec[fn 12] | ||
Geometry | Transformations | 2,500,000 vertices/sec,[fn 13] 1,800,000 polygons/sec[fn 14] |
1,900,000 vertices/sec,[fn 15] 1,300,000 polygons/sec[fn 16] |
1,000,000 vertices/sec,[fn 17] 330,000 polygons/sec[fn 18] | |
Flat lighting | 800,000 polygons/sec[fn 19] | 700,000 polygons/sec[fn 20] | 280,000 polygons/sec[fn 21] | ||
Gouraud lighting | 700,000 polygons/sec[fn 22] | 360,000 polygons/sec[fn 23] | 190,000 polygons/sec[fn 24] | ||
Rendering processors | Hitachi VDP1 (28.63636 MHz), Yamaha VDP2 (28.63636 MHz) |
Sony GPU (33.8688 MHz)[29] | NVIDIA NV1 (12.5 MHz) |
Yamaha Tasmania 3D (50 MHz) | |
Pixel fillrate |
16-bit color/pixel | 57.27272 MPixels/s[fn 25] | 33.8688 MPixels/s[29] | 12.5 MPixels/s | 25 MPixels/s |
8-bit color/pixel | 92.91922 MPixels/s[fn 26] | 67.7376 MPixels/s[29] | |||
4-bit color/pixel | 150.19194 MPixels/s[fn 27] | ||||
Polygon shading |
Flat shading | 800,000 polygons/s, 28.63636 MPixels/s (VDP1) |
700,000 polygons/s, 33 MPixels/s (16-bit color), 36 MPixels/s (8-bit color)[30] |
50,000 polygons/s, 12.5 MPixels/s |
280,000 polygons/s, 25 MPixels/s |
Gouraud shading | 300,000 polygons/s, 28 MPixels/s (VDP1) |
250,000 polygons/s, 16 MPixels/s[29] |
50,000 polygons/s, 12.5 MPixels/s |
190,000, 16 MPixels/s | |
Texture mapping |
Texel fillrate | 28.536811 MTexels/s (504×255 textures), 20.454542 MTexels/s (10×10 textures)[31] |
33 MTexels/s (256×256 textures),[29] 24 MTexels/s (10×10 textures)[30] |
12.5 MTexels/s | 20 MTexels/s |
Polygons | 400,000 polygons/s (VDP1) | 240,000 polygons/s[30] | 50,000 polygons/s | 150,000 polygons/s | |
Gouraud shaded textures |
Fillrate | 28 MTexels/s (504×255 textures), 13 MTexels/s (10×10 textures)[31] |
16 MTexels/s (256×256 textures),[29] 12 MTexels/s (10×10 textures)[30] |
12 MTexels/s | 12 MTexels/s |
Polygons | 200,000 polygons/s (VDP1) | 120,000 polygons/s[30] | 50,000 polygons/s | 100,000 polygons/s | |
Sprites | Fillrate | 18.205897 MTexels/s (8×8 sprites), 28.536811 MTexels/s (504×255 sprites)[31] |
15.36 MTexels/s (8×8 sprites),[30] 66 MPixels/s (256×256 sprites)[29] |
12.5 MTexels/s | 15 MTexels/s |
Performance | 400,000 sprites/sec, 16,383 sprites/frame (VDP1) |
240,000 sprites/sec,[30] 4000 sprites/frame |
50,000 sprites/sec, 1000 sprites/frame |
100,000 sprites/sec, 2000 sprites/frame | |
3D textured planes |
Effective fillrate | 500 MTexels/s (VDP2) | 33 MTexels/s | 12.5 MTexels/s | 25 MTexels/s |
Equivalent polygons | 1,000,000 polygons/s (VDP2) | 240,000 polygons/s | 50,000 polygons/s | 150,000 polygons/s |
Footnotes
- ↑ [2x CPU cores, 2x DMAC controllers, 2x MULT multiplier DSP, 2x DIVU division units[7][8] 2x CPU cores, 2x DMAC controllers, 2x MULT multiplier DSP, 2x DIVU division units[7][8]]
- ↑ [MOPS (million operations per second) MOPS (million operations per second)]
- ↑ [2x SH-2 MULT DSP: 57.27272 MOPS[10]
2x SH-2 DIVU: 1.468531 MOPS (39 cycles per divide)[11]
SCU DSP: 28.63636 MOPS (add and multiply per cycle) 2x SH-2 MULT DSP: 57.27272 MOPS[10]
2x SH-2 DIVU: 1.468531 MOPS (39 cycles per divide)[11]
SCU DSP: 28.63636 MOPS (add and multiply per cycle)] - ↑ [3 cycles per add[13] 3 cycles per add[13]]
- ↑ [3 cycles per multiply[13] 3 cycles per multiply[13]]
- ↑ [2x SH-2: 57,272,720 adds/sec (1 cycle per add)[10]
SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply) 2x SH-2: 57,272,720 adds/sec (1 cycle per add)[10]
SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply)] - ↑ [3 cycles per add[13] 3 cycles per add[13]]
- ↑ [2x SH-2 MULT DSP: 57,272,720 multiplies/sec (1 cycle per multiply)[14]
SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply) 2x SH-2 MULT DSP: 57,272,720 multiplies/sec (1 cycle per multiply)[14]
SCU DSP: 14,318,180 multiplies/sec (1 cycle per multiply)] - ↑ [3 cycles per multiply[13] 3 cycles per multiply[13]]
- ↑ [2x CPU: 3,579,545 divides/sec (16 cycles per 16-bit divide)[15]
2x DIVU: 1,468,531 divides/sec (39 cycles per divide)[11] 2x CPU: 3,579,545 divides/sec (16 cycles per 16-bit divide)[15]
2x DIVU: 1,468,531 divides/sec (39 cycles per divide)[11]] - ↑ [25 cycles (23 cycles instruction,[16] 2 cycles delay[17]) per 3 divides[18] 25 cycles (23 cycles instruction,[16] 2 cycles delay[17]) per 3 divides[18]]
- ↑ [30 cycles per divide[19] 30 cycles per divide[19]]
- ↑ [Transformation (21 adds/multiplies),[20] projection (4 adds/multiplies)[21] and perspective division (1 divide)[22] per vertex:
- 894,886 vertices/sec: 894,886 SCU DSP transformations (14 cycles per transform,[20] 2 cycles per projection), 894,886 SH-2 DIVU divisions (1 divide per vertex)
- 573,644 vertices/sec: 14,341,100 SH-2 MULT DSP transform/projection operations (25 cycles per vertex), 573,644 SH-2 DIVU divisions (1 divide per vertex)
- 1,047,112 vertices/sec: 42,931,592 SH-2 MULT DSP transform/projection/divide cycles (41 cycles per vertex)
- 894,886 vertices/sec: 894,886 SCU DSP transformations (14 cycles per transform,[20] 2 cycles per projection), 894,886 SH-2 DIVU divisions (1 divide per vertex)
- 573,644 vertices/sec: 14,341,100 SH-2 MULT DSP transform/projection operations (25 cycles per vertex), 573,644 SH-2 DIVU divisions (1 divide per vertex)
- 1,047,112 vertices/sec: 42,931,592 SH-2 MULT DSP transform/projection/divide cycles (41 cycles per vertex)]
- ↑ [8 vertices per cube (6 quad polygons)[23] 8 vertices per cube (6 quad polygons)[23]]
- ↑ [17 cycles (15 cycles instruction,[24] 2 cycles delay[17]) per vertex 17 cycles (15 cycles instruction,[24] 2 cycles delay[17]) per vertex]
- ↑ [25 cycles (23 cycles instruction,[16] 2 cycles delay) per triangle polygon 25 cycles (23 cycles instruction,[16] 2 cycles delay) per triangle polygon]
- ↑ [126 cycles per vertex (32 multiplies/adds,[25] 1 divide[22]) 126 cycles per vertex (32 multiplies/adds,[25] 1 divide[22])]
- ↑ [3 vertices per triangle polygon 3 vertices per triangle polygon]
- ↑ [8 transformations (168 adds/multiplies), 6 surface normals (72 multiplies, 36 adds),[26] 6 light sources (72 adds/multiplies),[27] 8 projections (32 adds/multiplies) and 8 perspective divisions (24 divides)[21] per cube with 8 vertices and 6 quad polygons:
- 52,640 cubes/sec: 52,640 SCU DSP cubes (112 transform cycles, 72 surface normal cycles, 72 light source cycles,[27] 16 projection cycles), 1,263,360 SH-2 DIVU divisions (24 divides per cube)
- 8548 cubes/sec: 2,940,512 SH-2 MULT DSP transform/projection operations (347 cycles per cube), 205,152 SH-2 DIVU divisions (24 divides per cube)
- 74,632 cubes/sec: 54,332,096 SH-2 MULT DSP transform/projection/divide cycles (728 cycles per cube)
- 52,640 cubes/sec: 52,640 SCU DSP cubes (112 transform cycles, 72 surface normal cycles, 72 light source cycles,[27] 16 projection cycles), 1,263,360 SH-2 DIVU divisions (24 divides per cube)
- 8548 cubes/sec: 2,940,512 SH-2 MULT DSP transform/projection operations (347 cycles per cube), 205,152 SH-2 DIVU divisions (24 divides per cube)
- 74,632 cubes/sec: 54,332,096 SH-2 MULT DSP transform/projection/divide cycles (728 cycles per cube)]
- ↑ [46 cycles (15 cycles RTPS, 8 cycles MVMVA, 17 cycles NCCS,[28] 6 cycles delay) per triangle polygon 46 cycles (15 cycles RTPS, 8 cycles MVMVA, 17 cycles NCCS,[28] 6 cycles delay) per triangle polygon]
- ↑ [474 cycles per polygon (128 multiplies/adds, 3 divides)[25] 474 cycles per polygon (128 multiplies/adds, 3 divides)[25]]
- ↑ [8 transformations (168 adds/multiplies), 8 surface normals (96 multiplies, 48 adds), 8 light sources (96 adds/multiplies), 8 projections (32 adds/multiplies) and 8 perspective divisions (24 divides) per cube with 8 vertices and 6 quad polygons:
- 44,744 cubes/sec: 44,744 SCU DSP cubes (112 transform cycles, 96 surface normal cycles, 96 light source cycles, 16 projection cycles), 1,073,856 SH-2 DIVU divisions (24 divides per cube)
- 16,444 cubes/sec: 7,235,360 SH-2 MULT DSP transform/projection operations (440 cycles per cube), 394,675 SH-2 DIVU divisions (8 divides per cube)
- 60,724 cubes/sec: 50,036,576 MULT DSP transform/projection/divide cycles (824 cycles per cube)
- 44,744 cubes/sec: 44,744 SCU DSP cubes (112 transform cycles, 96 surface normal cycles, 96 light source cycles, 16 projection cycles), 1,073,856 SH-2 DIVU divisions (24 divides per cube)
- 16,444 cubes/sec: 7,235,360 SH-2 MULT DSP transform/projection operations (440 cycles per cube), 394,675 SH-2 DIVU divisions (8 divides per cube)
- 60,724 cubes/sec: 50,036,576 MULT DSP transform/projection/divide cycles (824 cycles per cube)]
- ↑ [92 cycles (23 cycles RTPT, 24 cycles MVMVA, 39 cycles NCCT,[28] 6 cycles delay) per triangle polygon 92 cycles (23 cycles RTPT, 24 cycles MVMVA, 39 cycles NCCT,[28] 6 cycles delay) per triangle polygon]
- ↑ [666 cycles per triangle polygon (192 multiplies/adds, 3 divides)[25] 666 cycles per triangle polygon (192 multiplies/adds, 3 divides)[25]]
- ↑ [28.63636 MPixels/s per VDP 28.63636 MPixels/s per VDP]
- ↑ [VDP1: 35.6465 MPixels/s
VDP2: 57.27272 MPixels/s VDP1: 35.6465 MPixels/s
VDP2: 57.27272 MPixels/s] - ↑ [VDP1: 35.6465 MPixels/s
VDP2: 114.54544 MPixels/s VDP1: 35.6465 MPixels/s
VDP2: 114.54544 MPixels/s]
References
- ↑ File:Edge UK 030.pdf, page 99
- ↑ 2.0 2.1 File:SSM UK 24.pdf, page 25
- ↑ Scavenger Interview, Edge
- ↑ PlayStation documentation
- ↑ PlayStation GPU documentation
- ↑ File:NextGeneration US 01.pdf, page 48
- ↑ File:SH7604 Hardware Manual.pdf, page 3
- ↑ File:SH7604 Hardware Manual.pdf, page 22
- ↑ PlayStation Hardware (page 2-3) (Sony)
- ↑ 10.0 10.1 File:SH7604 Hardware Manual.pdf, page 51
- ↑ 11.0 11.1 File:Hitachi SuperH Programming Manual.pdf, page 308
- ↑ File:NextGeneration US 12.pdf, page 42
- ↑ 13.0 13.1 13.2 13.3 Instruction tables (page 101)
- ↑ File:SH7604 Hardware Manual.pdf, page 36
- ↑ File:Hitachi SuperH Programming Manual.pdf, page 155
- ↑ 16.0 16.1 Everything You Have Always Wanted to Know about the Playstation (pages 60-61)
- ↑ 17.0 17.1 Team PSX (page 17)
- ↑ Playstation Specifications (GTE Coordinate Calculation Commands)
- ↑ Instruction tables (page 100)
- ↑ 20.0 20.1 File:ST-240-A-SP1-052295.pdf, page 8
- ↑ 21.0 21.1 Design of Digital Systems and Devices (page 97)
- ↑ 22.0 22.1 3D Polygon Rendering Pipeline (page 50)
- ↑ File:ST-237-R1-051795.pdf, page 51
- ↑ Everything You Have Always Wanted to Know about the Playstation (pages 59-60)
- ↑ 25.0 25.1 25.2 Design of Digital Systems and Devices (pages 95-97)
- ↑ Design of Digital Systems and Devices (page 95)
- ↑ 27.0 27.1 [Sega DTS, March 1996, DSP Demo Sega DTS, March 1996, DSP Demo]
- ↑ 28.0 28.1 Everything You Have Always Wanted to Know about the Playstation (pages 49-51, 59-67)
- ↑ 29.0 29.1 29.2 29.3 29.4 29.5 29.6 [Technical Reference CD (Sony), 12/12/96, Graphics Processing Unit (PlayStation Developer’s Conference, March 1996) Technical Reference CD (Sony), 12/12/96, Graphics Processing Unit (PlayStation Developer’s Conference, March 1996)]
- ↑ 30.0 30.1 30.2 30.3 30.4 30.5 30.6 [Technical Reference CD (Sony), 12/12/96, BBS Conference Messages (October 25, 1995) Technical Reference CD (Sony), 12/12/96, BBS Conference Messages (October 25, 1995)]
- ↑ 31.0 31.1 31.2 File:TUTORIAL.pdf, page 8