Difference between revisions of "Sega Model 3"

From Sega Retro

Line 85: Line 85:
 
** Framebuffers: 528 million pixels/sec (write), 2.112 billion pixels/sec (erase)
 
** Framebuffers: 528 million pixels/sec (write), 2.112 billion pixels/sec (erase)
 
** Polygons: 300 million pixels/sec (3 million triangles/sec), 200 million pixels/sec (4 million triangles/sec)
 
** Polygons: 300 million pixels/sec (3 million triangles/sec), 200 million pixels/sec (4 million triangles/sec)
* Renderer Fillrate: 270 million pixels/sec (framebuffers),{{fileref|Real3D100ArchitectureOverview.pdf}} 100 million pixels/sec (polygons) {{fileref|Real3DPro1000ProductDescription.pdf}}
+
* Renderer Fillrate: 409 million pixels/sec (framebuffers),{{fileref|Real3D100ArchitectureOverview.pdf}} 100 million pixels/sec (polygons) {{fileref|Real3DPro1000ProductDescription.pdf}}
 
* Texture Fillrate: 100 million [[wikipedia:Texel (graphics)|texels]]/sec, 16 million colored textures/sec {{fileref|Real3DPro1000ProductDescription.pdf}}
 
* Texture Fillrate: 100 million [[wikipedia:Texel (graphics)|texels]]/sec, 16 million colored textures/sec {{fileref|Real3DPro1000ProductDescription.pdf}}
 
* VROM Access: GPU has direct access to VROM (Video ROM) on game ROM board,{{ref|https://github.com/mirror/model3emu/blob/master/Src/Model3/Real3D.h}} with fast [[wikipedia:Mask ROM|Mask ROM]] access speed allowing it to stream polygon/texture data directly from VROM {{ref|http://farm6.staticflickr.com/5471/12172411045_18bfc5912f_c.jpg}}
 
* VROM Access: GPU has direct access to VROM (Video ROM) on game ROM board,{{ref|https://github.com/mirror/model3emu/blob/master/Src/Model3/Real3D.h}} with fast [[wikipedia:Mask ROM|Mask ROM]] access speed allowing it to stream polygon/texture data directly from VROM {{ref|http://farm6.staticflickr.com/5471/12172411045_18bfc5912f_c.jpg}}
Line 145: Line 145:
 
** Framebuffers: 528 million pixels/sec (write), 2.112 billion pixels/sec (erase)
 
** Framebuffers: 528 million pixels/sec (write), 2.112 billion pixels/sec (erase)
 
** Polygons: 300 million pixels/sec (3 million triangles/sec), 200 million pixels/sec (4 million triangles/sec)
 
** Polygons: 300 million pixels/sec (3 million triangles/sec), 200 million pixels/sec (4 million triangles/sec)
* Renderer Fillrate: 356 million pixels/sec (framebuffers), 132 million pixels/sec (polygons)
+
* Renderer Fillrate: 528 million pixels/sec (framebuffers), 132 million pixels/sec (polygons)
 
* Texture Fillrate: 132 million texels/sec
 
* Texture Fillrate: 132 million texels/sec
 
}}
 
}}
Line 185: Line 185:
 
** Framebuffers: 1.584 billion pixels/sec (write), 6.336 billion pixels/sec (erase)
 
** Framebuffers: 1.584 billion pixels/sec (write), 6.336 billion pixels/sec (erase)
 
** Polygons: 900 million pixels/sec (9 million triangles/sec), 600 million pixels/sec (12 million triangles/sec)
 
** Polygons: 900 million pixels/sec (9 million triangles/sec), 600 million pixels/sec (12 million triangles/sec)
* Renderer Fillrate: 810 million pixels/sec (framebuffers), 300 million pixels/sec (polygons)
+
* Renderer Fillrate: 1.227 billion pixels/sec (framebuffers), 300 million pixels/sec (polygons)
 
* Texture Fillrate: 300 million texels/sec
 
* Texture Fillrate: 300 million texels/sec
 
* Texture RAM: 21 MB (42× 512 KB) on-board Mitsubishi CDRAM (33 MHz)
 
* Texture RAM: 21 MB (42× 512 KB) on-board Mitsubishi CDRAM (33 MHz)

Revision as of 18:36, 9 December 2015

Model3 fullboard.jpg
Sega Model 3
Manufacturer: Sega
Release Date RRP Code

The Sega Model 3 is an arcade platform produced by Sega. It is a successor to the Sega Model 2 platform, and was released in 1996.

The Model 3 hardware is very different to the Sega Model 1 and Model 2 boards which preceded it. The Model 3 utilized Real3D Pro-1000 graphics processing units, designed by Real3D in partnership with Mitsubishi. The Model 3 was designed to push as many textured polygons as possible in real-time, along with the most advanced graphical techniques available at the time, such as multisample anti-aliasing, motion blur, facial animation, specular highlighting/reflection/shading, and multiple light sources. Upon release, the Model 3 board was more powerful than any other arcade platform on the market, as well as any home console or computer at the time; it took several years for home systems to catch-up to the Model 3.

The Model 3 was succeeded by the Sega NAOMI in 1998, followed by the Sega Hikaru in 1999 and Sega NAOMI 2 in 2000.

History

The Model 3 board went through a series of delays which frustrated Sega. Following their success with the Model 2's texture-mapping chip, Real3D (a spin-off company from Lockheed Martin) were unable to finalise the specifications of the Model 3's GPU, the Real3D Pro-1000 graphics processors, until late 1995 or early 1996. By this time, Real3D had partnered with Mitsubishi, which provided the ALU and graphics memory for the Pro-1000.[1] Sega had planned to release the Model 3 board in late 1995 along with three games, one of which, Indy 500, was reportedly downgraded to Model 2 hardware thanks to the troubles.[2] In late 1995, Yu Suzuki promised the Model 3 would deliver "the best 3D graphics".[3] When the Model 3 specification was finalized, it used two Real3D Pro-1000 processors, including four Mitsubishi 3D-RAM ALU chips.[4] The Model 3 eventually debuted, with Virtua Fighter 3 as its first game, at the AOU Show 1996 in February 1996, and was followed by Scud Race later that year. The board was officially supported until 1999, to make room for the Sega NAOMI and its successors, the Sega Hikaru and NAOMI 2.

The Model 3 went through a number of revisions (steps) in which improvements were made the system and board architecture was changed. These "steppings" mainly increased the clock speed of the CPU and the speed of the 3D engine, as well as minor changes to the board architecture.[4] Step 1.0 and Step 1.5 released in 1996, Step 2.0 in 1997, and Step 2.1 in 1998. Though there was much talk of Model 3 games being ported to the Sega Saturn, all home ports of Model 3 games were seen on the Sega Dreamcast, including the likes of Sega Rally 2, Virtua Fighter 3tb, Virtual-On Oratorio Tangram and Virtua Striker 2.

It was the most powerful game system in its time, an order of magnitude more powerful than PC graphics cards from 1998, which were still producing Model 2 quality graphics, two years years after the Model 3's release.[5] By 2000, the Sega Model 2 & 3 had sold over 200,000 arcade systems worldwide,[6] making them some of the best-selling arcade game boards of all time. At around $15,000 each (for the Model 2, with the Model 3 costing higher), this amounts to at least over $3 billion revenue from cabinet sales, equivalent to over $4.9 billion in 2014.

From the early 1970s, arcades had been at the forefront of graphical technology in video games. The Model 3 hardware as well as competitors from this era were also leading the industry from a graphical perspective at the time, compared to PCs which were still producing Model 2 quality graphics in 1998,[5] but the gap began to slowly narrow after that, as PCs would begin to benefit from hardware accelerated graphics towards the end of the decade. Beginning with the co-development of the Sega Dreamcast console and Sega NAOMI arcade system, both released in 1998, consoles and later PCs would slowly become the basis for arcade systems, rather than the reverse as it had been up until this point. The last proprietary Sega arcade systems would be the Sega Hikaru and Sega NAOMI 2, after which PCs would overtake arcade systems as the forefront of graphical technology. Today, arcade games are built primarily around controls and the experience one gets from a game as opposed to graphical potential. Complex motion cabinets, and large, unique forms of control unsuitable for households is what drives the arcade industry in the present day.

Technical Specifications

Step 1.0 Specifications

Technical specifications for the Sega Model 3 Step 1.0: [4]

  • Board Composition: CPU Board + VIDEO Board + ROM Board + Network/Communication Board + Security Board [7]
  • Main CPU: IBM-Motorola PowerPC 603e @ 66 MHz [8]
    • Capabilities: 64-bit bus width, 32/64-bit instructions/operations, 198 MIPS,[9] 132 MFLOPS, direct high-speed access to main CROM (CPU ROM) on game ROM board [10][11]
  • Network/Communication Board CPU: Motorola 68000 (16/32-bit) @ 12 MHz (2.1 MIPS)

Sound

Graphics

Memory

  • Memory: Up to 251.23 MB (144 MB main, 89.157226 MB video, 17.570312 MB sound, 512 KB other) [10]
  • RAM: 35,561 KB (34.727539 MB)
  • ROM: Up to 216.5 MB [7]
    • CROM: 136 MB (CPU ROM)
    • VROM: 64 MB (Video ROM)
    • SROM: 16.5 MB (Sound ROM)

Bandwidth

  • RAM Bandwidth: 3.5 GB/sec
    • Main RAM: 528 MB/sec (64-bit, 66 MHz) [27]
    • VRAM: 3 GB/sec
      • Framebuffers: 2.2 GB/sec (1.1 GB/sec per GPU,[16] 546 MB/sec per 3D-RAM) [21]
      • Textures: 1 GB/sec (4× 264 MB/sec) [32]
    • Sound RAM: 88.888889 MB/sec (2× 16-bit, 22.222222 MHz) [29]
    • Other RAM: 52.571429 MB/sec
      • Backup NVRAM: 28.571428 MB/sec (16-bit, 14.285714 MHz) [31]
      • Network/Communication Board: 24 MB/sec (16-bit, 12 MHz) [30]
  • ROM Bandwidth: 1018 MB/sec
    • CROM: 528 MB/sec (64-bit, 66 MHz) [33]
    • VROM: 400 MB/sec (2× 32-bit,[26] 50 MHz) [34]
    • SROM: 90.4 MB/sec (2× 16-bit, 22.6 MHz)
    • Note: High-speed access allows ROM to effectively be used as RAM, and polygon/texture data streamed directly from VROM to the GPU. [11]

Step 1.5 Specifications

The Sega Model 3 Step 1.5, released in late 1996, had a higher CPU clock rate and faster 3D engine: [4]

  • Main CPU: IBM-Motorola PowerPC 603e @ 100 MHz (300 MIPS, 200 MFLOPS)

Graphics

  • Video Board: Sega 837-12875 MODEL3 STEP 1.5
  • GPU: 2× Sega 315-5830-B (Real3D Pro‑1000) @ 66 MHz
    • ALU: 4× Mitsubishi 3D‑RAM (33 MHz)
      • Performance: 528 million operations/sec, 7 million vectors/sec, 4 million tiles/sec
    • Geometrizers: 2× Geometry Engine ASIC (66 MHz, 2× 32-bit floating-point units)
    • Renderers: 2× Pixel Processors (66 MHz)
    • Texture units: 2 Texture Processors (66 MHz)
  • Geometric Performance:
    • Raw polygons: 4 million triangles/sec
    • Textured polygons: 2.64 million triangles/sec (1.32 million quads/sec), with shading, translucency, anti-aliasing, fog, lighting and Z-buffering
  • 3D-RAM Fillrate:
    • Framebuffers: 528 million pixels/sec (write), 2.112 billion pixels/sec (erase)
    • Polygons: 300 million pixels/sec (3 million triangles/sec), 200 million pixels/sec (4 million triangles/sec)
  • Renderer Fillrate: 528 million pixels/sec (framebuffers), 132 million pixels/sec (polygons)
  • Texture Fillrate: 132 million texels/sec

Bandwidth

  • RAM Bandwidth: 3.8 GB/sec
    • Main RAM: 800 MB/sec (64-bit, 100 MHz) [27]
    • VRAM: 3 GB/sec
    • Sound RAM: 88.888889 MB/sec
    • Other RAM: 52.571429 MB/sec
  • ROM Bandwidth: 1.3 GB/sec
    • CROM: 800 MB/sec (64-bit, 100 MHz) [33]
    • VROM: 528 MB/sec (2× 32-bit, 66 MHz) [34]
    • SROM: 90.4 MB/sec (2× 16-bit, 22.6 MHz)

Step 2.0 Specifications

The Sega Model 3 Step 2.0, released in 1997, was a substantial upgrade, with a higher CPU clock rate, significantly faster 3D engine (with an increased number of graphics chips), and more memory: [4]

  • CPU: IBM-Motorola PowerPC 603ev @ 166 MHz (498 MIPS,[9] 332 MFLOPS)

Graphics

  • Video Board: Sega 837-12716 MODEL3 STEP2
  • GPU: 6× Sega 315-6060 (Real3D Pro‑1000) @ 50 MHz [15][16]
    • ALU: 15× Mitsubishi 3D‑RAM (33 MHz, 2-3 ALU per GPU) [17]
      • Render output units: 48× 8-bit ROP/blend units (33 MHz), 24× 32-bit Z‑compare units (33 MHz)
      • Performance: 1.584 billion operations/sec, 21 million vectors/sec, 12 million tiles/sec [21]
    • Geometrizers: 6× Geometry Engine ASIC (50 MHz, 6× 32-bit floating-point units)
      • Lighting: 12 light spots, 12 spot lights
    • Renderers: 6× Pixel Processors (50 MHz)
    • Texture units: 6× Texture Processors (50 MHz)
    • Other units: 6 DMA devices, 6 tile generators, 6 Fragment Processors
  • Geometric Performance:
    • Raw polygons: 12 million triangles/sec
    • Textured polygons: 6 million triangles/sec (3 million quads/sec), with shading, translucency, anti-aliasing, fog, lighting and Z-buffering
  • 3D-RAM Fillrate:
    • Framebuffers: 1.584 billion pixels/sec (write), 6.336 billion pixels/sec (erase)
    • Polygons: 900 million pixels/sec (9 million triangles/sec), 600 million pixels/sec (12 million triangles/sec)
  • Renderer Fillrate: 1.227 billion pixels/sec (framebuffers), 300 million pixels/sec (polygons)
  • Texture Fillrate: 300 million texels/sec
  • Texture RAM: 21 MB (42× 512 KB) on-board Mitsubishi CDRAM (33 MHz)

Memory

  • Memory: Up to 317 MB (136 MB main, 146.835693 MB video, 33.695312 MB sound)
  • RAM: 57,567.75 KB (56.218505 MB)
    • Main RAM: 8 MB SDRAM [35]
    • VRAM: 47,959.75 KB (46.835693 MB)
      • Framebuffer RAM: 19,203.75 KB (18.75 MB Mitsubishi 3D-RAM, 3.75 KB pixel buffer SRAM cache) [18]
      • Texture RAM: 21,588 KB (21 MB Mitsubishi CDRAM, 84 KB SRAM cache,[23] 1 MB FIFO)
      • SGRAM: 7 MB [36][27]
      • Sound RAM: 1096 KB (1 MB DRAM)
      • Other RAM: 320 KB
  • ROM: Up to 260.625 MB (128 MB CROM, 100 MB VROM,[11] 32.625 MB SROM) [37]

Bandwidth

  • RAM Bandwidth: 9.5 GB/sec
    • Main RAM: 666.666666 MB/sec (64-bit, 83.333333 MHz) [35]
    • VRAM: 9 GB/sec
      • Framebuffers: 6.6 GB/sec (1.1 GB/sec per GPU, 546 MB/sec per 3D-RAM)
      • Textures: 3 GB/sec (12× 264 MB/sec) [32]
    • Sound RAM: 88.888889 MB/sec (2× 16-bit, 22.222222 MHz) [29]
    • Other RAM: 52.571429 MB/sec
      • Backup NVRAM: 28.571428 MB/sec (16-bit, 14.285714 MHz) [31]
      • Network/Communication Board: 24 MB/sec (16-bit, 12 MHz) [30]
  • ROM Bandwidth: 1.4 GB/sec
    • CROM: 800 MB/sec (64-bit, 100 MHz) [33]
    • VROM: 560 MB/sec (2× 32-bit, 70 MHz) [34]
    • SROM: 90.4 MB/sec (2× 16-bit, 22.6 MHz)

Step 2.1 Specifications

The Sega Model 3 Step 2.1, released in 1998, is largely identical to Step 2.0, but with the following updates: [4]

  • Video Board: Sega 837-13368 MODEL3 STEP2.1
  • ROM Board: Sega 837-13022-02
    • GAL: Sega 315-6090B (GAL16V8B) [33]

Hardware Images

List of Games

Step 1.0

Step 1.5

Step 2.0

Step 2.1


Sega arcade boards
Originating in arcades








  1. 1.0 1.1 http://www.thefreelibrary.com/Mitsubishi's+Graphics+Memory+Products+Power+REAL+3D's+R3D%2FPRO-1000...-a018554504
  2. File:NextGeneration US 11.pdf, page 16
  3. File:SSM_UK_02.pdf, page 21
  4. 4.0 4.1 4.2 4.3 4.4 4.5 https://github.com/mamedev/mame/blob/master/src/mame/drivers/model3.cpp
  5. 5.0 5.1 http://www.thg.ru/smoke/19991022/print.html
  6. http://web.stanford.edu/dept/HPS/TimLenoir/MilitaryEntertainmentComplex.htm
  7. 7.0 7.1 7.2 https://github.com/mirror/model3emu/blob/master/Src/Model3/Model3.h
  8. http://www.segatech.com/archives/january1998.html
  9. 9.0 9.1 File:TSPC603R datasheet.pdf
  10. 10.0 10.1 https://github.com/mirror/model3emu/blob/master/Src/Model3/Model3.cpp
  11. 11.0 11.1 11.2 11.3 http://farm6.staticflickr.com/5471/12172411045_18bfc5912f_c.jpg
  12. File:ST-103-R1-040194.pdf
  13. File:Sega Service Manual - Sega Saturn (PAL) - 013-1 - June 1995.pdf
  14. File:Model3 cpu1.jpg
  15. 15.0 15.1 15.2 15.3 15.4 File:Real3DPro1000ProductDescription.pdf
  16. 16.0 16.1 16.2 16.3 File:Real3D100ArchitectureOverview.pdf
  17. 17.0 17.1 File:M5M410092B datasheet.pdf
  18. 18.0 18.1 18.2 File:M5M410092FP datasheet.pdf
  19. http://ieeexplore.ieee.org/iel1/4/10262/00482207.pdf
  20. htt (Wayback Machine: 2014-03-29 07:45)
  21. 21.0 21.1 21.2 21.3 21.4 htt (Wayback Machine: 1998-01-22 14:39)
  22. 22.0 22.1 22.2 https://github.com/mamedev/mame/blob/master/src/mame/video/model3.cpp
  23. 23.0 23.1 23.2 File:M5M4V4169TP datasheet.pdf
  24. https://github.com/mirror/model3emu/blob/master/Src/Model3/Real3D.cpp
  25. https://github.com/mirror/model3emu/blob/master/Src/Model3/TileGen.cpp
  26. 26.0 26.1 26.2 https://github.com/mirror/model3emu/blob/master/Src/Model3/Real3D.h
  27. 27.0 27.1 27.2 27.3 File:KM4132G271A datasheet.pdf
  28. File:HM5241605 datasheet.pdf
  29. 29.0 29.1 29.2 File:HM514270 datasheet.pdf
  30. 30.0 30.1 30.2 File:N341256 datasheet.pdf
  31. 31.0 31.1 31.2 File:LH52B256 datasheet.pdf
  32. 32.0 32.1 File:DRAM Technology.pdf
  33. 33.0 33.1 33.2 33.3 File:GAL16V8B datasheet.pdf
  34. 34.0 34.1 34.2 File:MC88915 datasheet.pdf
  35. 35.0 35.1 File:TC59S1616AFT datasheet.pdf
  36. File:UPD4811650 datasheet.pdf
  37. http://mamedb.com/game/spikeofe


Console-based hardware








84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14









































PC-based hardware








05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23